

Enhancement Of Data Compression Using Incremental Encoding

And Infix Substitution

 Neeti Sangwan Aanchal Nayyar Meenakshi Kapoor

Dept. of Computer Dept. of Computer Dept. of Computer

Science, GGSIPU Science, GGSIPU Science, GGSIPU

University, Delhi, India University, Delhi, India University, Delhi, India

Abstract

In today’s world scenario data has been

multiplied to very large volumes and also

the number of data storage applications has

increased manifolds. At the same time, the

communication networks are having in

massive transfer of data through

communication channels. In this paper a

methodology has been proposed to reduce

storage and thus reducing communication

costs and also helps increase the capacity of

channels and storage medium. The purpose

indeed can be met by optimizing Incremental

encoding algorithm which is a data

compression technique to increase its

performance even further. In this

redundant/similar data between data entries

are replaced by shorter codes. Also the

previous research of optimizing incremental

encoding algorithm with RLE algorithm has

been compared with our proposed technique

which will work more efficiently than the

previous research done.

Keywords— Compression, Lossless

compression, Lossy compression, Run

length encoding, incremental encoding,

Longest common substring, Pattern

Matching

1. Introduction

When we have enormous amounts of data

we would like to apply techniques to

minimize the usage of space, such

techniques are techniques of Data

compression. It involves the development of

a compact representation of information.

Most representations of information contain

large amounts of redundancy. Redundancy

can be defined as the repetition of linguistic

information inherent in the structure of a

language, as singularity in the sentence it

works. Therefore, one aspect of data

compression is redundancy removal.

Data compression is an art of reducing the

size of original data and data compression

stores the same amount of data in few bits.

This Paper specifies the study of efficient

encoding and develops an algorithm to

encode the data into as few bits as possible.

The primary objective of data compression

is to minimize the amount of data to be

transmitted. The theme of this paper is to

1457

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

present and analyze a data compression

technique.

At this stage we make use of the fact that in

a database where a particular string of data

that is common in entries of that database

can be encoded as shorter codes. In the

coding step we use shorter code words to

represent letters that occur more frequently,

thus lowering the average number of bits

required to represent each letter. The design

of a compression algorithm involves

understanding the types of redundancy

present in the data and then developing

strategies for exploiting these redundancies

to obtain a compact representation of the

data. Redundancy or similarity can be

present within a single input or between 2

inputs or both.

2. Compression Techniques

The Compression techniques can be

basically classified into two types depending

upon whether data is lost or not during the

process of compression. These are as

follows:

2.1. Lossless Compression

Lossless data compression technique use

algorithms which usually exploit statistical

redundancy to represent data more concisely

without losing information. Lossless data

compression is possible because most real-

world data has statistical redundancy.

Lossless compression techniques are used

for transmitting textual data because we

cannot afford losing any part of the text,

because such loss can significantly change

the meaning of the text, for example: Please

do not attempt the first question of the

paper, now let us say on compression the

text becomes Please do attempt the first

question of the paper, a loss of the “not”

word changes the meaning of the original

sentence completely, hence we use Lossless

compression techniques for compressing

textual data.

2.2. Lossy Compression

Lossy data compression is the converse

of lossless data compression. In these

schemes, some loss of information is

acceptable. Dropping nonessential detail

from the data source can save storage space.

Lossy data compression schemes are

informed by research on how people

perceive bits of information. There is a

corresponding trade-off between

information lost and the size reduction. A

number of popular compression formats

exploit these perceptual differences,

1458

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

including those used in music files, images,

and video.

3. Review of Incremental Encoding

Incremental encoding algorithm is a data

compression technique employed where we

replace common prefixes with shorter codes

to save memory and avoid duplication. That

is why it is also known as front

compression, back compression, or front

coding,This algorithm is particularly well-

suited for compressing sorted data, e.g., a

list of words from a dictionary. Following is

the example of such words:

Table 1: Incremental Encoding

The encoding used to store the common

prefix length itself varies from application to

application.

4. Related Work

Incremental encoding is a data compression

technique where we save memory for

storage of data by replacing longer words

with shorter codes especially holds true for a

dictionary encoder where the similarity

between consecutive entries is exploited to

save memory.

In the previous research paper incremental

encoding algorithm has been enhanced by

combining it with RLE algorithm. The

methodology involved is 2-phased:

4.1. Phase 1

In the first phase of the algorithm, RLE

algorithm is applied where repetitive

patterns are replaced by a 2-byte code {no of

times the particular letter appears

repetitively, the repeated letter itself}, which

means FFFFF can be encoded as 5F.Let us

understand the concept by taking a simple

example of 2 inputs, the first being

FFFFGGGCCCDDE and the second being

FFFFGGGCD. We can encode the first

output as 4F3G3CDDE and the second

output as 4F3GCD.

4.2. Phase 2

In the
 2nd

 phase of encoding data is encoded

using incremental encoding wherein we

Input Common

prefix

Compressed

output

psxa No

preceding

word

0 psxa

psxorhvta „psx‟ 0 orhyta

psxorod „psxor‟ 5 od

cab No common

prefix

0 cab

cabbed „cab‟ 3 bed

cabbing „cabb‟ 4 ing

cabit „cab‟ 3 it

cabk „cab‟ 3 k

cabob „cab‟ 3 ob

50 bytes 35 bytes

1459

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

replace common prefixes by the common

prefix length that is of 1 byte. Let us

understand the concept by taking a same

example of 2 inputs in the 1
st
 step, in the

 1st

phase of encoding we observe that the

incremental output for the
 2nd

 entry can be

encoded as 8D where 8 is the common

prefix length and the common prefix being

FFFFGGGC. Finally both incremental

encoding and RLE algorithm have been

combined to increase the efficiency even

further in the published research paper.

5. Proposed Technique

In our proposed technique an approach is

used which comprises of 2 phases:-

5.1. Phase 1

The 1
st
 phase involves the technique of

encoding the data using incremental

encoding algorithm where the common

prefix between successive data entries is

replaced by common prefix length in exactly

the same way illustrated before in the 2
nd

phase of related work content.

 5.2. Phase 2

The 2
nd

 phase in the methodology proposed

increases the efficiency by using concept of

infix matching in any 2 successive data

entries after the incremental encoding has

been done.

5.3. Relative Analysis of Proposed

Technique and Related Work

RLE algorithm works well where large

amounts of repetitive character is available

to us, whereas our methodology works more

efficiently on record based datasets where

repetitive pattern occurs. RLE algorithm

does not cater to the needs of encoding real

world data where similar patterns between

successive data entries can be observed and

exploited for saving more memory unlike

our proposed methodology. The proposed

Technique can be used to compress data of

different organizations/firms/colleges.

Let us try to understand the comparison by

illustrating the application of the proposed

methodology on a dataset which is close to

the kind of data we generally observe in the

real scenario where in a firm we maintain

the record of the computers in the firm

where the nomenclature indicates the use of

the computer and also its location:

CADC/AI/TPO/LG-11

CADC/ERP/TPO/LG-12

Taking up the above example, we can

observe that applying the proposed

methodology will lead to by far better

results as compared to the RLE algorithm

because in this case similar pattern is

observed which can be treated as infix and

can be encoded according to our proposed

technique.

5.4. Implementation

The proposed technique is a 2-phased

operation on data to be compressed. In the

first phase we are using Incremental

Encoding engine and in the second phase we

1460

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

are using Infix Substitution engine, which

replaces the longest common substring

between two consecutive words by its code

which is of the form (Starting position

length), after the incremental coding has

been done. The procedure for encoding

matched infix between successive data

entries is as follows:-

After the 1
st
 phase, to encode a matched

infix, we use an algorithm by which we get

the length of the common substring/infix

which is the longest from the 2 successive

entries, that are being compared, can be

retrieved. The length is only taken into

account when it is greater than 2 bytes

because only in that situation we will save at

least 1 byte of memory for the minimum

case and much more in case in the length of

the matched substring is considerably

greater than 2 bytes. In the 2
nd

 phase of

encoding a pattern matching algorithm on

the 2 data strings received as inputs has been

applied by which the starting position of the

matched substring/infix in the 1
st
 word can

be retrieved.

After the 2
nd

 phase, using the above

techniques the values for the starting

position of the matched infix in the first

word as well as its length have been already

retrieved. Using these 2 values the final

encoded form can be represented by

replacing a matched infix by a combination

of 2 bytes code that is [starting position,

length of infix matched]. The form of

encoding can be understood using the

following example of let us say any 2

consecutive data entries in a database:

AAAEL127091310

AAAEL172709032

Using the proposed technique the final

encoded output for the 2
nd

 entry is

represented as [6]7[7,4]032 where 6

represents the length of common prefix in

the 2 entries,7 is written as it is since it is not

similar to the 1
st
 word, then 2709 which

appears as infix in both the strings has been

encoded by replacing 2709 as [7,4] where 8

indicates the starting position of the matched

infix with respect to the 1
st
 word and 4

corresponds to the length of the matched

infix, also the technique takes into account

that a particular matched infix will only be

encoded if its length is greater than or equal

to 3.

Figure 2 : Proposed Technique

5.4.1. Phase 1: Algorithm for

 Incremental Prefix Encoding

Step 1: Initialize Queues (Q1, Q2, Q3)

 and String s1

 T.count <- count1 <- count2 <- 0

 alphabet1 <- alphabet2 <- NIL

Step 2: Q1 <- NULL;

1461

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Q2 <- Q3 <- First Word

Step 3: if (Q1 == EMPTY)
 then Dequeue and print all

 element of Q2 and save in s1

 Go to Step 5.

 else Dequeue one element of Q1

 and Q2

 for i = 1, 2 if (Qi(E) ==

 Alphabet)

 then if (counti == 0)

 then counti <- 1

 alphabeti <- Qi(E)

 else counti <- Qi(E)

 Repeat Step 3.

Step 4: if (alphabet1 == alphabet2)

 then T.count <- T.count +

 count2

 if (count1 == count2)
 then Go to Step 3.

 else print “ T.count “

 Dequeue all elements of

 Q2 and save in s1.

 else Go to Step 5.

Step 5: Q1 <- Q3; Q2 <- Q3 <- Next

 Word

 T.count <- count1 <- count2 <-

 0

 alphabet1 <- alphabet2 <-

 NULL

Step 6: if (Q2 == EMPTY)

 then EXIT.

 else Go to Step 3.

5.4.2. Phase 2: Algorithm for matched Infix

 Encoding

Step 1: Initialize String (s2,s3,s4,s5,s6)

 s2 < - First Word

 s3 < - Next Word [1…n]

 s4 <- s5 <- s6 <- NULL

Step 2: function Infix(String1[1..m],

 String2[1..n])

 L <- array(1..m, 1..n)

 z <- 0

 inf <- {}

 for i <- 1..m

 for j <- 1..n

 if s1[i] = s2[j]

 if i = 1 or j = 1

 L[i,j] <- 1

 else

 L[i,j] <- L[i-1,j-1] + 1

 if L[i,j] > z

 z <- L[i,j]

 inf <- {s1[i-z+1..i]}

 if L[i,j] = z

 inf <- inf ∪ {s1[i-z+1..i]}

 else L[i,j]=0;

 return inf

Step 3: function PatMatch(String1,String2)

 j<- 1;

 while j <- n-m+1 do begin

 i<- 1;

 while (i<=m) and

 (String1[i]=String2[j]) do

 begin

 i<- i+1;

 j<- j+1

 end;

 if i<=m then j<- j-i+2

 else return j-i+1;

 end.

Step 4: s4 <- Infix (s1,s2)

 p <- s4.length

 if(p > 2)

 q <- PatMatch(s2,s4)

 r <- PatMatch(s3,s4)

 else

 Go to step 7.

1462

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Step 5: s5 < - s3(T.count…r-1)

 s6 <- s3(p+r-1….n)

Step 6: print”s5 „.‟ q „,‟ p‟.‟ s6”

Step7: s2 <- NULL

 s2 <- Next Word

 s3 <- Next to Next Word

 s4 <- s5 <- s6 <- NULL

Step 8: if (s2== NULL)

 EXIT

 else

 Go to step 2.

5.5. Comparison Analysis

Let us take an example to understand the

proposed technique and its advantages in

terms of compression ratio with RLE

encoding, incremental encoding and

combination of these two in related work.

“.” is used to differentiate data from encode

output. In this example we are taking 4

words as input and compressing the input

words using RLE encoding, Incremental

encoding, related work and our proposed

technique. Below is the comparison table of

the algorithm:

Table 2: Comparison Analysis Table

We can see that uncompressed data takes 56

bytes of memory and RLE, Incremental and

combination of these two take 51 bytes, 49

bytes and 44 bytes of memory respectively

while with the help of our proposed

technique we are using only 33 bytes of

memory to save data and thus the

compression % is raised to 41 %. Hence it is

Input

Wor

d

RLE

Output

Incre

ment

al

Outp

ut

RLE

+

Incre

menta

l

Outpu

t

Propos

ed

Techni

que

Output

AAB

CEA

AAA

CYB

BC

AABCE

4ACYB

BC

AAB

CEA

AAA

CYB

BC

AABC

E4AC

YBBC

AABC

EAAA

ACYB

BC

AAB

CBA

AAC

YBB

EA

AABCB

3ACYB

BEA

4BA

AAC

YBB

EA

4B3A

CYBB

EA

4B7,7E

A

AAB

BAA

ACY

BDC

BE

AABB3

ACYBD

CBE

3BA

AAC

YBD

CBE

3B3A

CYBD

CBE

3.5,7D

CBE

AAB

CAA

ACY

BDC

CD

AABB3

ACYBD

CCD

3CA

AAC

YBD

CCD

3C3A

CYBD

CCD

3C5,8C

D

Takes

56

bytes

Takes

51 bytes

Takes

49

bytes

Takes

44

bytes

Takes

33

bytes

Com

press

ion

%

9%

12.5

%

21.5%

41%

1463

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

the best among all the four types of

technique to compress real world data.

5.6. Key Features

 The proposed technique has the following

key features:

 It is a lossless compression

technique.

 Increases the efficiency of

Incremental encoding algorithm

considerably.

 Increase the transmission rate

because of high compression.

 Increase the disk storage capacity.

 Increases the capacity of

input/output channels and

communication channels.

 It is a 2-phased enhanced

encoding procedure.

6. Conclusion

The proposed technique gives an excellent

result of data compression among Lossless

compressions. As already illustrated in the

table it is evident that the proposed

methodology saves 41% of memory which

is the highest among all the 4 results that are

from incremental encoding, RLE algorithm,

Incremental encoding, combination of these

two and our proposed methodology

respectively.

Thus, we can conclude that our proposed

theory saves 20 % more than that in the

related work, in the example we have

illustrated. Also by replacing “infixes” we

have broadened the horizon of its

application beyond a dictionary to an

organization based database which is

primarily record-based that exhibits similar

relationship among data in the database.

7. References

[1]Data Compression Khalid Sayood

university of Nebraska, Lincoln

[2] Enhancement of Data Compression

Using Incremental Encoding by Ajit Singh

and Yogita Bhatnagar.

[3] http://en.wikibooks.org/wiki/Data_

Compression

[4] http://en.wikipedia.org/wiki/Data_

Compression

[5] http://www.ics.uci.edu/~dan/pubs/ Data

Compression.html

[6] http://books.google.co.in/books?

id=ChSOjgiY84YC&printsec=frontcover&s

ource=gbs_ge_summary_r&cad=0#v=onepa

ge&q&f=false

[7] http://datacompression.info/

[8]http://www.data-compression.com/index.

shtml

[9] http://www.cs.cmu.edu/~guyb/

Realworld/compression.pdf

[10] http://www.webopedia.com/TERM/D/

data_compression.html

[11] Introduction To Data Compression by

Khalid Sayood (http://books.google.co.in/

books?id=ChSOjgiY84YC&printsec=frontc

over&source=gbs_ge_summary_r&cad=0#v

=onepage&q&f=false)

[12]http://www.amazon.com/Data-

Compression -Book MarkNelson/dp/

1558514341#reader_1558514341

[13] http://www.cs.cmu.edu/~guyb/real

world/compress.html

1464

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

[14]http://en.wikipedia.org/wiki/Run-length

_encoding

[15] http://en.wikipedia.org/wiki/Run_

Length Limited

[16] http://www.fileformat.info/mirror/egff/

ch09_03.htm

[17] http://www.datacompression.info/

Algorithms/RLE/index.htm

[18] http://www.ijser.org/researchpaper%

5CEnhancement-of-Data-Compression-

Using-Incremental-Encoding.pdf

1465

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

