

Abstract
In java applications, access control is used to prevent the

resources from unauthorized access but it is difficult to

provide security for cross cutting concerns. Among the

techniques introduced to address this issue, AOP stands

out to be the best; it being strong in terms of reducing the

code scattering and tangling. However, this faces some

challenges in case of dynamic control for exchanging the

policies and reusability. To overcome this we present one

framework called AOJAC (Aspect Oriented Java Access

Control) which supports access control policies which use

different kinds of context information and enables the

change of these policies at runtime.

1. Introduction
A key principle in software engineering, proposed by

Dijkstra named separation of concerns. This principle is

applied when a complex problem with different concerns is

properly identified, address separately and finally the

respective solutions are integrated to produce the final

result there by used for controlling the complexity of the

application.

This principle has been followed by access control

system architecture which is traditionally based on a model

named abstract reference monitor proposed by Anderson

[].Obviously it separates the security logic (access control

logic) from the main logic of the application. This model

implementation has been difficult, because access control is

a crosscutting concern i.e., security requirement that

crosscuts the application requirement.

In order to separate these crosscutting concerns a new

methodology AOP is introduced. The figure 1 shows the

process of AOP implementation in java. It introduces a new

modularization unit called aspects which crosscut the

modules. The aspect weaver is the process of producing the

final system by integrating the core and crosscutting

modules.

The AOP was implemented in a language called AspectJ.

This method is well suited for providing the security in the

case access control system. Access control is the process of

preventing the resources from unauthorized access.

However, current access control solutions using these

techniques have typically not been reusable or generic.

Figure 1: Java based AOP implementation

To overcome this issue we propose the framework called

AOJAC (Aspect Oriented Java Access Control) using

spring framework and AspectJ language. It is especially

designed for the java application. The framework allowing

it to address some of the problems found in the application

of industry standards such as JAAS (Java Authentication

and Authorization Service). It also uses the concepts of

AOP to separate the crosscutting concern and java5

annotations to specify the application’s protected objects

and their access control requirements.

A few important AOP notions are:

 Join point-A well identifiable place in the execution

of the program. For example, calling a method or

assigning a value to a member in an object. Since

Enhancement of Java Access Control using Spring with AOP and AspectJ

K
.
Vinod

Kumar

1
, Dr. A. P. Siva Kumar

2
, K.Thyagarajan

3

1 Department of CSE, JNTUA, India, cse.
2Assistant Professor, Department of CSE, JNTUA, Anantapur, India,
3Associate Professor, Department of CSE, SVCET, Chittoor, India,

3665

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101155

they are the places where the crosscutting actions

are taken in.

 Pointcut – it is a program construct which selects

join points and collects the information at those

points.

 Advice – execution of code at join points selected

by the pointcut.

The remainder of this paper is structured as follows.

Section II presents the access control models and shows the

design of access control architectures. Section III describes

the demerits of JAAS when added to user-centric access

control model in Java language. Section IV introduces the

AOJAC framework concepts and an algorithm which

describes how the protected object is being accessed by

unauthorized people. Section V presents a case study to

demonstrate the proposed framework while section VI

concludes the paper.

2. Access Control
Access control, which assures the protection of resource

against unauthorized access, is a security service. It

includes the concepts of access control models and

representation of access control architecture.

2.1. Concepts
The definition of an access control policy is indicated by

the development of an access control system and its

enforcement through appropriate security mechanisms.

Access control models [],[] represent formally the access

control policies, expressed through specific access control

languages like Ponder, Security Policy Language (SPL) and

extensible Access Control Markup Language (XACML).

 Generally, there are two access control models:

i. Mandatory access Control (MAC) model: This model

used in systems were rigorous access control is very

important are the one in which access rules can

change over time, system-wide, usually fixed and

hence users cannot influence them.

ii. Discretionary access control (DAC) model: It gives

the owner of the protected object and the

permission needed to access the right in determines

the access control policy for that object. This

system has the ability to act or decide according to

the user judgment and is capable of granting access

to that protected object to other users.

Generally, a discretionary access control policy stated by a

set of authorizations in turn defined as a tuple (s,m,o,pred)

defines that subject may legitimately use the access mode m

which represent a specific operation performed over the

object or an abstract access mode used to access the

protected object o if the predicate pred is true in the context

of the access related to a set of specific operations. Instead

of simple one, the access mode has the advantage to

decrease the number of permissions within the system as it

is associated to a set of operations.

The use of predicates augments the expressiveness of the

authorizations, supporting a more fine-grained control of

authorizations.

RBAC was proposed a model basing on the MAC and DAC

models. This model was well received, since the notion of

roles fits well to the common notion of function in

organizations. RBAC models associate authorizations to

roles performed by subjects. RBAC authorization (r, m, o,

pred) states that a subject performing a role can legally

allow accessing the protected object based on the given

mode whenever the predicate is true. Since subjects are not

directly associated with access modes, but indirectly

through the role or roles they perform, the management of

individual privileges in the system is often only a matter of

assigning the appropriate roles to each subject.

2.2. Access Control System Architecture
Access control system architectures which traditionally

bases on the abstract reference monitor proposed by

Anderson [], intercepts all access attempts from subjects to

the protected objects. Conceptually, a reference monitor

has two main functions:

 A decider, responsible for evaluating the legitimacy

of the accesses,

 An enforcer, responsible for intercepting all access

attempts and enforces the decision that was taken.

According to this model, all access attempts are

intercepted by the enforcer, which asks the decider to

determine the legitimacy of the access, searching the

authorizations database.

To avoid scattering enforcer code throughout the

application, many techniques addressing the problem of

scattered concerns have been used, such as design patterns,

particularly the proxy pattern, meta-level or reflexive

architectures, and, more recently, AOP, in which our work

fits.

3. Access Control in JAVA
The access control model is used to prevent the resources

like files from unauthorized access to the Java application.

It is a code centric model because the subject is defined

within this model according to the code origin. Once JAAS

was added to the J2SE (Java 2 Platform Standard Edition)

Development kit (JDK), and hence its core became a part

with version 1.4. JAAS added a new access control model

3666

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101155

to the Java language called user-centric model. Besides

users can be subjects, protected objects can also be specific

application resources, i.e., specific application

functionalities.

In JAAs, class subject is used to represent a user

authenticated in a given system. A subject being an

aggregation of principal represents different entities which

derives its authority form the subject. JAAS supports

RBAC model, suppose for e.g., a principal may be a

username, the name of a group to which she is associated, or

a role that she performs.

JAAS does not support the features like allowance of

making changes to access control policies during run time,

predicates which limits the expressiveness of its

authorization and finally does not allow the separation

between the implementation code and application logic.

While trying to protect specific objects, in the place of

access control an enforcer function should be placed

explicitly in the application.

4. AOJAC framework
In this section we introduce AOJAC, an access control

framework for Java applications that uses the abstract

reference monitor suggested by Anderson. It is reusable and

supports authorizations with domain specific information.

4.1. Access Control Model
Basically an authorization is defined as a tuple (s, m, o,

pred) where in s is subject, m is access mode, o is protected

object and pred is predicate.

If predicate is true based on the access mode, subject or

user allows accessing the protected object and thus helps to

meet the requirements of access control for java

application. Conceptually, the entities of tuple are

described below:

 Subject- the framework is not restricted to particular

kind of subjects, i.e., subjects may be users,

groups or roles, etc

 Access modes: abstract access mode grants the

permission to the subjects which perform their

related operations over the protected objects. This

process is followed by access control model.

 Protected Objects: the framework aims to protect

the data members and member functions in an

object. The operations performed over the data

members are either set or get the values while in

member function the method is to be executed.

 Predicate- basically, predicates are used to increase

the authorizations expressiveness, defining

fine-grained permissions and providing more

restriction to their application.

This can be used in different ways, such as:

 User characteristics: name, date of birth,

gender and nationality of a user etc.

 Object characteristics

 Some other external conditions: scope and

localization of access, relation between

entities.

Basing on this, authorization is classified into two tuples: (s,

m, pred) and (m, op, po). The first tuple defines the subject

has access mode only if the predicate is true and hence

called authorization. The second tuple defines if the subject

has access mode, it allows performing operations on

protected object and hence called access control

requirement.

4.2. Algorithm
Following steps describes how protected objects is being

accessed by authorized people

1. Whenever the subject attempts an access over

protected object, immediately the enforcer

intercepts the access.

2. The enforcer collects the information, particularly

the one the decider wants i.e.,

a. The subject

b. The protected object and its usage context like

the method, the arguments related to the

invocation of the method.

c. The abstract access modes required to access

the protected object and other architectural

meta-information that the enforcer may need.

3. The decider collects the required information to

evaluate whether the access is legal or not.

4. In order to check the status of access legitimacy, the

decider search in access control policy which are

placed externally from the code (e.g., in JAAS

policy files or XACML)

5. The status of step 4 is returned to the enforcer.

6. Based on the decider status, the enforcer takes in the

corresponding action which are prescribed below:

a. If the access is legal, the access proceeds.

b. An exception is thrown in the case of access is

denied.

5. Case Study: A Web Application
To demonstrate AOJAC framework let’s take a small

web application. Here users are the controllers. User can

create the notes, important things can be written there. By

default they have their own permission to their notes. If any

dynamic changes are needed, change in the code is

mandatory. Conversely, in the first case of unknown

number of users an aspect method can be used. For

example, when a user wants write permission to his note

3667

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101155

dynamically; an aspect gets invoked automatically then he

could be able to access that resource (note) in the write

mode. Our application runs on few permissions and they

are: NO, READ, WRITE, MANAGE and AUTH.

Permission Description

NONE No access.

READ The user can only read the entries in

the note but cannot modify, create or

delete entries.

WRITE Users can read and write entries in

their notes.

MANAGE User can read and write entries in his

note. Additionally it includes deleting

a “note”.

AUTH User can read, write, and delete a note

and additionally manage permissions

for a note

In the case of known number of users, we will know

where the permission exchanges occurred in the code so we

can pre-plan the code. But in the case of new entry in the

application, it is difficult to identify where the permission

exchanges takes place. This will increase code complexity

especially when we deal with the raw code.

If it is pre-planned ,there is no problem in case of

complexity (that is if number of customers we have is

known, then who issues the permission and who requests

that permission will be known).But whenever a new user is

generated then the code complexity will be increased

because we don’t know which user issues permission to

which user. To overcome this issue dynamic control is

needed. Suppose, if a user wants to assign the permission to

another user to his resource during execution time without

making any changes in the code; this is possible by using an

aspect model which uses annotations and hence based on

given condition it is invoked automatically.

Consider an example for managing notebook in an

application, it allows users to add and remove their personal

note and we can add important things in their notebook.

Additionally it avails users to share single notes with other

users. If any user needs any resource (note) to access, we

need to check whether that user has the authority to access

that resource. This could be done by using access control

mechanism. To perform access control permissions

automatically, we can place AOJAC annotations in their

relevant place in the source code.

These annotations can be controlled by managers, they

are:

 Access manager: it acts like an interface between the

authorization decisions and the authorization

providers. For each and every permission check, we

can add @secure and @filter annotations and its

related methods are defined on access manager

interface. The object itself contains instance methods

for creating and deleting notebook entries. For

instance-level permission check we can use @secure

and @filter annotation.

 @secure annotation: It can be applied at argument

level as well as method level. In parameter level,

whenever an object is passed as an argument

during invocation of method, this annotation

makes the permission check. In method level,

whenever corresponding method is invoked this

annotation checks the permission.

 @filter annotation: This checks if a requestor has

read access to objects returning from method

invocation else corresponding object is removed

from the result. This can also be applied on

multiple objects like arrays and collections.

 Authentication manager: this manager controls whenever

an unauthorized user tries to access the resource. It

includes @Authorizationserviceprovider is annotated

with access manager interface.

 Crypto manager: @Encrypt annotations are recognized

by the AOJAC when they are kept on the member of

objects which are annotated with @secure.

By using these managers, we can control the policies during

the execution time.

6. CONCLUSION
This proposed framework inspired by a proposal of

Laddad [1] is used to modularize JAAS (Java

Authentication and Authorization Service) client code

using AOP. The framework was implemented in the AOP

Language called AspectJ. The framework consists of two

layers, which omits the problems like reducing the visibility

of aspects, avoiding the pointcut and advice loops because

in the first layer controlling the spring transaction takes

place and in the second layer which dynamically

exchanging the policies between the multiple users takes

place. The proposed method is mainly focused on getting

control over dynamic control during runtime. It also

incorporated the AOP concepts which add the advantage of

separation the crosscutting concerns. We built a small web

application to demonstrate the process of dynamic control

during the execution time.

3668

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101155

REFERENCES:
[1] Ramnivas Laddad. AspectJ in Action. Manning,

Greenwich, Connecticut, 2003.(AspectJ in action)
[2] Anderson, J. P., Computer Security Technology Planning

Study. Technical Report ESDTR- 73-51, Air Force

Electronic Systems Division, Hanscom AFB, Bedford,

MA, 1972. (Also available as Vol. I, DITCAD-758206.

Vol. II DITCAD-772806).- abstract reference monitor

[3] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access

control model supporting periodicity constraints and

temporal reasoning. ACM Transactions on Database

Systems, 23(3):231–285, September 1998.

[4] G. Ahn and R. Sandhu. The RSL99 language for role-based

separation of duty constraints. In Proc. of the fourth ACM

Workshop on Role-based Access Control, pages 43–54,

Fairfax, VA, USA, October 1999. –(2,3 access control

models)

[5] McGraw, Gary. Software Security: Building Security In.

Boston, MA: Addison-Wesley Professional, 2006 (ISBN

0-321-35670-5).(security software engineering)

[6] Baumeister, Z. and K. Knapp, “Aspect-Oriented Modeling

of Access Control in Web Applications”. In Workshop on

Aspect Oriented Modeling (AOM’05), 2005.

[7] R. Bodkin, "Enterprise Security Aspects", In AOSD Tech.

for Application-Level Security (AOSDSEC'04), 2004.

[8] Chargi, A., and M. Mezini, “Using Aspects for Security

Engineering of Web Service Compositions”, In Proc. IEEE

Int’l Conf. on Web Services (ICWS’05), pp. 59-66, 2005.

[9] Devanabu, P. and S. Stubblebine, "Software Engineering

for Security: A Roadmap", In Proc. Conf. Future of

Software Eng., ICSE'00, Special Volume, pp. 227-239,

2000.

[10] Kiczales, G. et. al., "Aspect-Oriented Programming", In

Proc. European Conference on Object-Oriented

Programming (ECOOP'97), 1997.

[11] Kiczales, G. et. al., "Overview of AspectJ", In Proc.

European Conference on Object-Oriented Programming

(ECOOP'01), 2001.

[12] Rosenhainer, L., "Identifying Crosscutting Concerns in

Requirements Specifications", In Early Aspects 2004:

Aspect-Oriented Requirements Eng. and Architecture

Design Workshop, pp. 49-58, 2004.

[13] Ray, I., France, R., Li, N. and G. Georg, "An Aspect- Based

Approach to Modeling Access Control Concerns", Journal

of Info. and Software Tech., 46(9), July 2004, pages

575-587.

[14] Viega, J., Bloch, J.T., and P. Chandra, "Applying Aspect-

Oriented Programming to Security", In Cutter IT Journal,

14(2):31-31, 2001.

[15] B. De Win, B. Vanhaute, and B. De Decker. How

aspect-oriented programming can help to build secure

software. Informatica (Ljubl.), 2002.

3669

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101155

