

ESRSA Publication © 2012 http://www.ijert.org

Estimating Congestion Window with Misbehaving Client using Proposed FACK

Ramesh K

P.G. Department of Computer Science,

Karnataka University, Dharwad, Karnataka

Abstract: Detect and fix a misbehaving TCP

implementation/client that is trying to get more than its

fair share of bandwidth by artificially acknowledging

not received packets in order to advance the senders

window and thus obtain better bandwidth. This papers

talks on the method which relays on the RTT estimate

to detect if the receiver is misbehaving and if so

proposes a solution to punish the misbehaving client.

SACK provides the mechanism to recover

multiple packet loss with cumulative acknowledgement.

Though the SACK helps in recovery of multiple packet

loss, but it’s not designed to address congestion issues.

FACK uses the information from SACK to inject packet

into network more precisely during congestion

recovery. The core of FACK congestion algorithm is

the information on the forward-most data held by the

receiver. This information is gathered from the receiver

produced ACK. So in case of DOS (misbehaving client)

where the client intentionally sends the FACK for the

packet it is not received. Which increase the FACK

window and number of packet injection into the

network by the sender which intern result in the

congestion and client will be getting more than fair

share of bandwidth We introduce some checks at the

sender based on RTT to control this kind of behavior

and punish the clients.

1. Introduction
TCP/IP is the ubiquitous Internet protocol that forms an

integral part of the communications infrastructure. It

has many parameters that help provide guaranteed

reliability, congestion control, rapid data flow increase

to utilize available bandwidth among other features.

However, some of these features can be abused by

unscrupulous clients to usurp more than their fair share

of bandwidth to the detriment of other clients.

Described is one of these scenarios and propose a

solution to prevent abusers from exploiting TCP

features to get more than their fair share of bandwidth.

TCP operates using a sliding window protocol

where data to the left of the window has been

acknowledged and data to the right of the window has

not been sent yet. The window is the region of interest

for the sender and as the receiver ACKs the data in that

region, the window moves to the right and more data is

sent. Otherwise, the sender may have to retransmit the

data if the ACK has not been received within a certain

time limit (a function of the estimated round trip time

from the sender to receiver).

2. SACK and FACK
With the cumulative acknowledgment scheme used by

TCP, the sender can only learn about a single lost

packet per round trip time. This is a great limitation in

the case of multiple losses in a window of data, its

consequence being poor performance. Through the

Selective Acknowledgment (SACK) mechanism the

data receiver informs the sender about all the segments

that have arrived successfully, so the sender only needs

to retransmit only segments that have actually been lost.

The Forward Acknowledgment (FACK) algorithm is

designed to be used with the SACK option. FACK uses

the additional information provided by SACK to keep
an explicit count of the total number of bytes of data

outstanding in the network. The FACK option provides

an improvement in performance in the case of multiple

losses in a single window of data and reduces the

overall burstiness of TCP.

3. FACK Design Goals
Under single segment losses, Reno implements the ideal

congestion control principles set forth above. However

in the case of multiple losses, Reno fails to meet the

ideal principles because it lacks a sufficiently accurate

estimate of the data outstanding in the network, at

precisely the time when it is needed most.

The requisite network state information can be
obtained with accurate knowledge about the forward-

most data held by the receiver. By forward-most, we

mean the correctly received data with the highest

sequence number. This is the origin of the name

\forward acknowledgment." The goal of the FACK

algorithm is to perform precise congestion control

during recovery by keeping an accurate estimate of the

amount of data outstanding in the network. In doing so,

FACK attempts to preserve TCP’s Self-clock and

reduce the overall burstiness of TCP.

4. The FACK Algorithm
The FACK algorithm uses the additional information

provided by the SACK option to keep an explicit

measure of the total number of bytes of data

outstanding in the network. In contrast, Reno and

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

1www.ijert.org

ESRSA Publication © 2012 http://www.ijert.org

Reno+SACK both attempt to estimate this by assuming

that each duplicate ACK received represents one

segment which has left the network. The FACK

algorithm is able to do this in a straightforward way by
introducing two new state variables, snd:fack and

retran_data. Also, the sender must retain information on

data blocks held by the receiver, which is required in

order to use SACK information to correctly retransmit

data. In addition to what is needed to control data

retransmission, information on retransmitted segments

must be kept in order to accurately determine when they

have left the network.

At the core of the FACK congestion control

algorithm is a new TCP state variable in the data

sender. This new variable, snd:fack, is updated to
correct the forward-most data held by the receiver. In

non-recovery states, the snd:fack variable is updated

from the acknowledgment number in the TCP header

and is the same as snd:una. During recovery (while the

receiver holds non-contiguous data) the sender

continues to update snd:una from the acknowledgment

number in the TCP header, but utilizes information

contained in TCP SACK options 6 to update snd:fack.

When a SACK block is received which acknowledges

data with a higher sequence number than the current

value of snd:fack, snd:fack is updated to re ect the

highest sequence number known to have been received
plus one.

Sender algorithms that address reliable

transport continue to use the existing state variable

snd:una. Sender algorithms that address congestion

management are altered to use snd:fack, which provides

a more accurate view for the state of the network.

We do need awnd to be the data sender’s

estimate of the actual quantity of data outstanding in the

network. Assuming that all unacknowledged segments

have left the network:

awnd = snd:nxt -- snd:fack (1)

During recovery, data which is retransmitted

must also be included in the computation of awnd. The

sender computes a new variable, retran_data, correcting

the quantity of outstanding retransmitted data in the

network. Each time a segment is retransmitted;

retran_data is increased by the segment’s size; when a

retransmitted segment is determined to have left the

network, retran_data is decreased by the segment’s size.

Therefore TCP’s estimate of the amount of data

outstanding in the network during recovery is given by:

awnd = snd:nxt-- snd:fack + retran data (2)

Using this measure of outstanding data, the

FACK congestion control algorithm can regulate the

amount of data outstanding in the network to be within

one MSS of the current value of cwnd:

While (awnd < cwnd)

 sendsomething();

The FACK congestion control algorithm does

not place special requirements on sendsomething(); the

algorithm implied by the SACK Internet-Draft is su
cient. Generally sendsomething() should choose to send

the oldest data first.

FACK derives its robustness from the

simplicity of updating its state variables: if

sendsomething() retransmits old data, it will increase

retran data; if it sends new data, it advances snd:nxt.

Correspondingly, ACKs which report new data at the

receiver either decrease retran data or advance snd:fack.

Furthermore, if the sender receives an ACK which

advances snd:fack beyond the value of snd:nxt at the
time a segment was retransmitted (and that

retransmitted segment is otherwise unaccounted for),

the sender knows that the segment which was

retransmitted has been lost.

5. The Problem

Consider the following scenario where a misbehaving

receiver (client) sends some forward ACK for some

data it has not received. At that point in time it may be

data that the sender may not have sent or the sender

may have just sent. Also, the client probably does not

care about the data (or is willing to take the chance of

losing it just so that it can increase its bandwidth more

rapidly than others) since it is willing to falsely

acknowledge it. However, the sender on receiving the

ACK will increase the window size (thus the

bandwidth) and may even get a skewed (reduced)

estimate of the RTT(round trip time) which will force it

to transmit faster for this client and will unfairly impact

others (produce more congestion while unfairly giving

an advantage to this client).

We propose a solution to detect and fix a

misbehaving TCP implementation/client that is trying to

get more than its fair share of bandwidth by artificially

acknowledging not received packets in order to advance

the sender's window and thus obtain better bandwidth.

This invention relies on the RTT estimate to detect if

the receiver is misbehaving and if so proposes a

solution to punish the misbehaving client.

6. Our Solution
Proposed is the following solution to solve this

problem. After receiving an ACK for a packet, the

sender measures the RTT (round-trip-time) for it. If the

RTT is below a certain threshold (abnormally low RTT-

this can be based on the average RTT for example) the

following steps are taken:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

2www.ijert.org

ESRSA Publication © 2012 http://www.ijert.org

1) The first time this occurs, it may be an anomaly to

ignore but mark that this happened so that if it happens

again, it is a sign that some client may be abusing and

the server can then take remedying action. Also this

value will not be used in computing the new estimated

RTT so there isn't a skewed estimate.

2) Set a user-tunable threshold for the number of times

this will be allowed to happen and if this threshold is

crossed remedying action is taken.

3) If threshold is exceeded, punish the client by

reducing its bandwidth. This can be done by a) not

increasing the window size OR b) by increasing the

window size only after the sender's RTT estimate has

expired.

4) If client continues to abuse repeatedly, the server

administrator may wish to block access to the abusive

client. If so, capability to blacklist this client is provided

and discontinues service to this client if so desired.

By taking these (and other possible) measures the

TCP sender can prevent unfair clients from prematurely

ramping up their window sizes and hence unfairly

deriving more bandwidth through false ACKing.

7. Proposed FACK Algorithm
FACK is entirely new algorithm which uses additional

information provided by the SACK to calculate total

number of outstanding data on the network. It

introduces two new variable ‘snd.fack’ and

‘retran_data’ to help in estimating number of packets to

be injected in to network.

In TCP implementation ‘snd.una’ holds the

sequence number of first byte of unacknowledged data

and ‘snd.nxt holds the sequence number of first byte of

unsent data. In non-recovery states, the snd.fack is

updated from the acknowledgement number in the tcp

header and is same as snd.una. During recovery when

receiver holds non-contiguous data sender continue to

update snd.una from the acknowledgement number but

utilizes information contained in TCP SACK to update

the snd.fack.

During recovery snd.fack reflect the highest sequence

number updated from the SACK plus one. Now to

calculate actual data outstanding in the network is

Outstanding data = last acknowledge data sequence –

highest sequence number at SACK+ 1

 i,e ownd = snd.nxt – snd.fack ------------------ (1) .

During recovery retransmitted data also should

be considered as they are already injected into network

 ownd = snd.nxt – snd.fack + retran_data --------- (2).

Using these measurements FACK can regulate

the amount of data to be injected in to the network

nearly as below.

While (ownd < cwnd)

 {

 if (retransmit time out)

 retransmit data

 retran_data =+ retransmit data

 else if (send new data)

 snd.nxt =+ newdata size

 }

In the similar way, if the new SACK received which

either decrease the retran_data or advance the snd.fack.

So snd.fack and retran_data variable are

controlled by the SACK data provided by the receiver.

If a receiver is designed for DOS and not care about the

packet it receives. It can falsely advance snd.fack by

acknowledging the packet it have not received yet or

the packet which is not sent yet, which results in false

calculation of outstanding data in the network(lesser

than the actual). Below we discuss the different cases

and propose the solution for the same.

8. Test Cases
Case 1: If the acknowledgement received for the packet

which is less than snd.nxt

 If (RTT < = avgRTT/2) *1

 {

- Mark this event

- Do not use this RTT value for
avgRTT calculation

 Counter=+1

If (counter > usr specified limit)

*2

 {

 wait till RTT => avgRTT then

calculate ownd *3

 }

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

3www.ijert.org

ESRSA Publication © 2012 http://www.ijert.org

 Case 2: If the acknowledgment is received for the

packet which is not yet sent.

If (snd.fack > snd.nxt)

 {

- Mark this event

- Do not use this RTT value for

avgRTT calculation

 ` Counter=+1

If (counter > usr specified limit) *2

 {

 wait till RTT => avgRTT then calculate ownd *3

 }

 }

*1 Though the RTT can be attacked but one cannot

make it half of its real value as in real at least one way

communication time cannot be intruded.

*2 User can set the threshold for number of time this

type of even can be allowed.

*3 wait until avg RTT for this action then calculate the

ownd as specified at formula 2.

9. Conclusion
The proposed FACK algorithm (test cases) detect and

fix a misbehaving TCP implementation/client that is

trying to get more than its fair share of bandwidth by

artificially acknowledging not received packets in order

to advance the sender's window and thus obtain better

bandwidth. This invention relies on the RTT estimate to

detect if the receiver is misbehaving and if so proposes

a solution to punish the misbehaving client. This paper

has some of the advantages compared to that already

existed FACK algorithm.

It helps in recognizing the misbehaving clients and

punish them with user specified way and also helps in

calculating exact number if outstanding data in the

network there by not letting to increase congestion

during congestion time.

References
1. Sally Floyd and Kevin Fall. Promoting the use

of end-to-end congestion control in the

Internet. IEEE/ACM Transactions on

Networking, August 1999.

2. Sally Floyd. TCP and successive fast

retransmits.
http://www.aciri.org/floyd/papers/fastretrans.p

s,May 1995.

3. Reza Rejaie, Mark Handley, and Deborah

Estrin.R

4. AP: An end-to-end rate-based congestion

control mechanism for real-time streams in the

Internet. In INFOCOM '99.

5. Scott Shenker. Making greed work in

networks: A game-theoretic analysis of switch

service disciplines. In SIGCOMM '94, pages

47–57, August 1994.
6. Je C. Mogul. Observing TCP Dynamics in

Real Networks. Proceedings of ACM

SIGCOMM 92, pages 305{317, October 1992.

7. J. Postel. Transmission Control Protocol,

September 1981. Request for Comments

793.[Ste94]

8. W. Stevens. TCP/IP Illustrated, volume 1.

Addison-Wesley, Reading MA, 1994.

9. W. Richard Stevens. TCP Slow Start,

Congestion Avoidance, Fast Retransmit, and

Fast Recovery Algorithms, March 1996.
Currently an Internet Draft: draft-stevens-

tcpca-spec-01.txt.[tcp95]

10. Minutes of the tcp x meeting at the 34th IETF,

in Dallas TX, December 1995. Obtain via:

http://www.ietf.cnri.reston.va.us/proceedings/9

5dec/tsv/tcplw.html. [ZSC91]

11. Lixia Zhang, Scott Shenker, and David D.

Clark. Observations on the Dynamics of a

Congestion Control Algorithm: The Effects of

Two-Way Transmission. Proceedings of ACM

SIGCOMM91, pages 133{148, 1991
12. Van Jacobson. Congestion Avoidance and

Control. Proceedings of ACM SIGCOMM ’88,

August 1988.[Jac90]

13. Van L. Jacobson. Fast Retransmit. Message to

the end2end-interest mailing list, April

1990.[Jac95]

14. Van Jacobson, July 1995. Private

Communication.[JB88]

15. V. Jacobson and R. Braden. TCP extensions

for long-delay paths, October 1988. Request

for Comments 1072

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

4www.ijert.org

