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Abstract  
 

      This paper presents a new approach to estimate the 

formant frequency of the speech signal by using the 

linear predictive coder(LPC) method and Wavelet 

Transform. LPC filtering is used to obtain an estimate 

of vocal tract impulse response which is free from 

periodicity. Thus linear prediction of the resulting vocal 

tract impulse response is expected to be free from 

variations of fundamental frequencies. In this paper a 

detail study on the prospects of LPC prediction is 

shown as a formant tracking tool especially for any 

male speech voice signal to obtain accurate estimation.  

The solutions obtained by the current method are 

guaranteed to be stable which makes it superior for 

many speech analysis applications. Further wavelet 

transform is applied to denoise the signal and formant 

frequency of denoised signal is calculated. 

Keywords: Linear prediction, Autocorrelation, 

cepstrum, Fundamental frequency effect, wavelet 

transform. 

 

1. Introduction  

    Wavelet Transforms, in particular the Continuous 

Wavelet Transform (CWT), expand the signal in terms 

of wavelet functions which are localized in both time 

and frequency. Thus the Wavelet Transform (WT) of a 

signal may be represented in terms of both time and 

frequency. For reconstruction of the signals from its 

discrete samples the Continuous Wavelet Transform is 

sampled with Nyquist criteria. In wavelet analysis the 

use of a fully scalable modulated window solves the 

signal cutting problem. As the matter of fact, the 

wavelet series is simply a sampled version of the 

Continuous Wavelet Transform (CWT), and the 

information it provides is highly redundant as far as the 

reconstruction of the signal is concerned. This 

redundancy on the other hand, requires a significant 

amount of computation time and resources.  

    The Discrete Wavelet Transform (DWT) [7], on the 

other hand, provides sufficient information both for 

analysis and synthesis of the original signal with a 

reduction in computation time. The Continuous 

Wavelet Transform (CWT) was computed by changing 

the scale of the analysis window, shifting the window 

in time, multiplied by the signal, and integrated over all 

times. In the discrete case, filters of different cutoff 

frequencies are used to analyze the signal at different 

scales. The signal is passed through a series of high 

pass filters to analyze the high frequencies, and it is 

passed through a series of low pass filters to analyze 

the low frequencies. 

    It is well known to any scientist and engineer who 

work with a real world data that signals do not exist 

without noise, which may be negligible (i.e. high SNR) 

under certain conditions. However, there are many 

cases in which the noise corrupts the signals in a 

significant manner, and it must be removed from the 

data in order to proceed with further data analysis. The 

process of noise removal is generally referred to as 

signal denoising or simply denoising. Although the 

term "signal denoising" is general, it is usually devoted 

to the recovery of a digital signal that has been 

contaminated by additive white Gaussian noise 

(AWGN), The optimization criterion according to 

which the performance of a denoising algorithm is 

measured is usually taken to be mean squared error 

(MSE)-based, between the original signal (if exists) and 

its reconstructed version. This common criterion is 

used mostly due its computational simplicity. 

Moreover, it usually leads to expressions which can be 

dealt with analytically. However, this criterion may be 

inappropriate for some tasks in which the criterion is 

perceptual quality driven, though perceptual quality 

assessment itself is a difficult problem, especially in the 

absence of the original signal. 

 

   Formant frequencies are the principal analytical 

features in speech processing. This is because they are 

clearly related to the articulator act and the perception 

of speech . Formant information is used extensively in 
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coding, analysis/synthesis applications, and recognition 

of speech .Linear predictive analysis [8] is one of the 

most powerful techniques to extract formant 

frequencies. The importance of this method lies in its 

ability to provide accurate estimates and its relative 

speed of computation The basic formulation of the 

linear prediction seeks to find an optimal fit to the 

envelope of the speech spectrum. Since the source of 

voiced speech is of a quasi-periodic nature with spiky 

excitations, those impulsive periodic innovations 

sometimes result in inaccuracy in spectrum estimation, 

especially, in case of high-pitched speech. In this paper, 

we briefly illustrate the cause of inaccuracy of formant 

frequency estimation in case of pitch-asynchronous 

autocorrelation method and propose a solution based on 

LPC filtering .In the conventional autocorrelation 

method  when a finite segment is extracted over 

multiple pitch periods, the obtained autocorrelation 

sequence is actually an „„aliased‟‟  version of the true 

autocorrelation of vocal tract system impulse response. 

This is because the replica of autocorrelation of vocal 

tract impulse response is repeated periodically with the 

periodicity equivalent to pitch period, which overlaps 

and distorts the underlying autocorrelation of the 

speech waveform. As the pitch period of high-pitched 

speech is small, the periodic replicas cause „„aliasing‟‟ 

of the autocorrelation sequence.  

 

     This paper organizes as follows: section-2 shows the 

mathematical calculation of  LPC  and  section-3   

Shows the  explanation of wavelet transform in section-

4 the results followed by conclusion and reference.   

 

2. LPC (Linear Predictive Coder) 

 
     LPC system which is predicting from the previous 

samples used for identification  of numerical values of  

frequencies. In this section, the LPC method is 

described for formant estimation that is implemented 

using a set of digital resonators. Each resonator 

represents a formant in a segment in the frequency 

domain. The spectrum is divided into segments such 

that only one formant resides in each segment. 

 

     The linear prediction problem can be stated as 

finding the coefficients which result in the prediction of 

the samples q(n) in terms of past samples q(n-k). 
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Where SA  is the signal sample 

The linear equation(5) can be expressed in the matrix 

form as 

ssSS
raR                                                             (8)                                                                                                               

Where aRSS  is a p × p autocorrelation matrix, ssr  is a 

p×1 autocorrelation vector and  „ a ‟ is a p×1 vector of 

the model. 
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The above equation can be solved by using Levinson-

Durbin algorithm recursively as  
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The next step to solve for the coefficients 

 )2(),1( 22 aa  of the second order predictor and 
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expressing the solutions in the terms of )1(1a . The two 

equations are obtained from equation (6) as  

)2()0()2()1()1(

)1()1()2()0()1(
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By using the solution in equation (10) to eliminate 

)1(SSR , we obtain the solution 
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Similarly all the parameters can be calculated 

recursively. 

So ''a  can be written as  paaaa ..........., 21   

Now the difference equation from (4) can be written as  
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Where '' p  is the number of poles or the order of the 

filter and )(0 ZS  is the predicted value. 

Choosing the order of the predictor and finding the 

roots of the parameter „ a ‟ greater than 0.01  

we will have frequency greater than zero hertz. 

samples ofnumber 

frequency sampling
PorderPredictor o 

 
The parameter „ a ‟ is obtained from the LPC 

predictor[7]. 

 oA PSlpca ,  

Calculating the roots R0 of parameter „ a ‟ and the 

frequency content is given by  
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Where FS=Sampling frequency 

 
Fig.1 Autocorrelation function of the speech signal “ I 

LIKE DIGITAL SIGNAL PROCESSING”. 

 

    Figure-1 shows a means to estimate fundamental 

frequency from the waveform directly is to use 

autocorrelation.  The autocorrelation function for a  

signal shows how well the waveform shape correlates 

with itself at a range of different delays.  The 

autocorrelation approach works best when the signal is 

of low, regular pitch and when the spectral content of 

the signal is not changing too rapidly.  The 

autocorrelation method is prone to pitch halving errors 

where a delay of two pitch periods is chosen by 

mistake.   

 

    we can see that the autocorrelation function peaks at 

zero delay and at delays corresponding to  1 period,  

2 periods, etc.  We can estimate the fundamental 

frequency by looking for a peak in the delay interval 

corresponding to the normal pitch range in speech, say 

2ms(=500Hz) and 20ms (=50Hz). 

   

   Linear prediction models the signal as if it were 

generated by a signal of minimum energy being passed 

through a purely-recursive IIR filter. 

 

3. Wavelet Transform 
 

     In this section, the wavelet transform and its 

implementation for discrete signals are reviewed 

briefly. This review is not intended by any means to be 

rigorous, and its sole purpose is to describe the tools. A 

wavelet is a wave-like oscillation with an amplitude 

that starts out at zero, increases, and then decreases 

back to zero. Unlike the sines used in Fourier transform 

for decomposition of a signal, wavelets are generally 

much more concentrated in time. They usually provide 
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an analysis of the signal which is localized in both time 

and frequency, whereas Fourier transform is localized 

only in frequency.  

 

      In particular, the Wavelet Transform (WT) known 

as the “Mathematical Microscope” in engineering 

allows the changing spectral composition of a 

nonstationary signal to be measured and presented in 

the form of a time-frequency map and thus, it is 

suggested as an effective tool for non stationary signal 

analysis. It was first introduced by Morlet (Morlet et al. 

[1982]) in describing the Continuous Wavelet 

Transform (CWT) using Morlet wavelets. 

 

      In CWT  any time series can be decomposed into a 

series of dilations and compressions of a mother 

wavelet denoted as  tw . The advantage of this view is 

that high frequencies can be localized to a smaller time 

interval than low frequencies. The Continuous Wavelet 

Transform (CWT) of  tx  is given by (Rioul and 

Vetterli [1991]). 

     dtttxbaw ba







 ,,                                     (13) 

Where  tx is any square integrable function, “a” is the 

dilation parameter, “b” is the translation parameter and  

)(
,

t
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  is the dilation and translation (asterisk (*) 

denotes the complex conjugate)  of the mother wavelet 

defined as 
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      The signal  tx can be reconstructed from the 

continuous wavelet transform provided the mother 

wavelet satisfies the admissibility condition, 
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where      is the Fourier Transform of   t . 

The reconstructed signal  tx  is given as 
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A wavelet is a continuous time signal that satisfies the 

following properties 

  0
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Where  t  is defined as the mother wavelet. 

The Continuous Wavelet Transform (CWT) is two 

dimensional. It is obtained by the inner product of the 

signal and dilations and translations of the mother 

wavelet.  

 CWT is represented as a time scale plot, where 

scale is the inverse of frequency. At a low 

scale (high frequency), CWT offers high time 

resolution and at higher scales (lower 

frequencies) CWT gives high frequency 

resolution.  

 The interpretations of the time scale 

representations produced by the Wavelet 

Transform (WT) require the knowledge of the 

type of the mother wavelet.  

 Thus the visual analysis of the wavelet 

transform is intricate. Direct reading of the 

frequency of the signal as well as its frequency 

components from the time scale plot is 

difficult. 

Wavelet Transform uses a flexible movable window 

and is designed to have 

 Poor frequency resolution and good time 

resolution at high frequencies.  

 Poor time resolution and good frequency 

resolution at low frequencies.  

 CWT can be practically computed by using 

analytical equations, integrals but fail in 

discrete case. 

The Discrete Wavelet Transform (DWT), provides 

sufficient information both for analysis and synthesis of 

the original signal, with a significant reduction in the 

computation time. Discrete Wavelet Transform [63] 

was discovered by Daubechies (Daubechies [1990]). 

The Discrete Wavelet Transform (DWT) is a linear 

transformation performed on a time series. Effectively, 

the DWT is nothing but a system of filters.   
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4. Results and conclusion 

 

Fig-2:Noisy  speech signal ; “ PATTNAIK”, Using 

LP Filter. 

Formant 1 Frequency 629.0, 

Formant 2 Frequency 1495.8 

Formant 3 Frequency 2441.0 

Formant 4 Frequency 3358.0 

 
Fig-3:  Denoising of signal; “  PATTNAIK”. Using 

LP Filter 
 

Formant 1 Frequency 615.5 

Formant 2 Frequency 1376.1 

Formant 3 Frequency 2412.8 

Formant 4 Frequency 3494.8 

 

 
 

Fig-4: Denoising of signal; “  PATTNAIK” by using 

“symlet” wavelet 
Formant 1 Frequency 152.7 

Formant 2 Frequency 2041.6 

Formant 3 Frequency 3080.5 

Formant 4 Frequency 4050.4 

 

 
 

Fig-5: Denoising of signal; “  PATTNAIK” by using 

“coif3” wavelet 
Formant 1 Frequency 147.7 

Formant 2 Frequency 1999.8 

Formant 3 Frequency 3088.1 

Formant 4 Frequency 4058.7 
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Fig-6:  Denoising of signal; “  PATTNAIK” by using 

“db4” wavelet 
Formant 1 Frequency 448.8 

Formant 2 Frequency 2085.2 

Formant 3 Frequency 3096.2 

Formant 4 Frequency 4055.8 

 

Conclusion  
 

     Although the WT (Wavelet Transform) is also 

restricted by Heisenberg uncertainty principle, the 

window in WT can be adjusted. In the WT (Wavelet 

Transform), the mother wavelet can be stretched 

according to frequency to provide reasonable window, 

a long time window is used in low frequency and a 

short time window is used in high frequency. This 

time-frequency analysis which fully reflects the thought 

of multiresolution analysis is in accordance with the 

features of time varying non stationary 

signals.Estimation of formant frequencies is generally 

more difficult than estimation of fundamental 

frequency.  The problem is that formant frequencies are 

properties of the vocal tract system and need to be 

inferred from the speech signal rather than just 

measured.  The spectral shape of the vocal tract 

excitation strongly influences the observed spectral 

envelope, such that we cannot guarantee that all vocal 

tract resonances will cause peaks in the observed 

spectral envelope, nor that all peaks in the spectral 

envelope are caused by vocal tract resonances. To find 

the formant frequencies from the filter, we need to find 

the locations of the resonances that make up the filter.  

This involves treating the filter coefficients as a 

polynomial and solving for the roots of the 

polynomial. Practically, it is indeed very difficult to 

obtain a speech analysis. We, however, expect from the 

discussion that the proposed technique can be applied 

to analyze speech data when the conventional model of 

linear prediction is only an approximation to speech 

signal uttered by female and children speakers. Though 

the method is intended for analyzing high-pitched 

speech signal, the results demonstrate that it can also be 

used for analyzing typical male speech with better 

accuracy. Formant frequency estimation shows the 

frequency of vocal tract of male and female voice 

signals. The above estimation  can be done through 

wavelet transform. The above result shows different 

formant frequency and its comparison.  

 

References 

 

[1] F. S. Chen, “Wavelet Transform In Signal 

Processing Theory And Applications”, National 

Defense Publication of China, 1998. 

[2]  I. Daubachies, “Ten Lectures On Wavelets”, 

Philadelphia, PA: SIAM, 1992. 

[3] S. Mallat, “ A Wavelet Tour Of Signal Processing”, 

London,U.K.:Academic,1998. 

[4] Ingrid Daubechies, “The Wavelet Transform, 

Time–Frequency Localization and Signal 

Analysis”, IEEE Trans. On Information Theory, 

Vol.36, No.5, pp.961–1005, 1990. 

[5] P. Rakovi,  E. Sejdic, L.J. Stankovi  and J. Jiang, 

“Time–Frequency Signal Processing Approaches 

with Applications to Heart Sound Analysis”, 

Computers in Cardiology, Vol.33, pp.197–200, 

2006. 

[6] B. S. Atal and S. L. Hanauer, „„Speech analysis and 

synthesis by linear prediction of the speech wave,‟‟ 

J. Acoust. Soc. Am.,50, 637–655 (1971). 

[7] J. Makhoul, „„Linear prediction: A tutorial review,‟‟ 

Proc.IEEE, 63, 561–580 (1975). 

[8] A. K. Krishnamurthy and D. G. Childers, „„Two-

channel speech analysis,‟‟ IEEE Trans. Acoust. 

Speech Signal Process.,34, 730–743 (1986). 

[9] M. Yanagida and O. Kakusho, „„A weighted linear 

prediction analysis of speech signals by using the 

Given‟s reduction,‟‟Digital Signal Processing, M. 

H. Hamza, Ed., IASTED Int. Symp. Appl. Signal 

Processing and Digital Filtering, Paris,pp. 129–132 

(1985). 

[10] C. H. Lee, „„On robust linear prediction 

of speech,‟‟ IEEE Trans. Acoust. Speech Signal 

Process., 36, 642–650 (1988). 

 
 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.5

0

0.5

1

1.5
Voice signal "pattnaik"

NO. OF SAMPLES

A
m

p
li
tu

d
e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1
Denoised signal by "db4" wavelet

NO. OF SAMPLES

A
m

p
li
tu

d
e

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T


