
P0

P1

·
·

Pn

(a) One-dimensional processor template

 P0 P1 P2 P3

 P0 P1 P2 P4 P5 P6 P7

 P0 P1 P3 P4 P5 P8 P9 P10 P11

P0 P2 P3 P6 P7 P8 P12 P13 P14 P15

(b) Square processor template with 1, 4, 9, and 16 processors.

 P0 P1 P2 P3

P0 P1 P2 P4 P5 P6 P7

P3 P4 P5 P8 P9 P10 P11

(c) Two-dimensional general processor templates with 6 and 12

processors.

Evaluation Performancre of Multiplication two

N×N Matrices using Different Number of

Processors

Osamah Yaseen Fadhil

Dept. Computer engineering

Eastern

Mediterranean University, Baquba, Iraq

Abstract— Most parallel matrix multiplication algorithms use

matrix decomposition based on the number of processors

available. These include the systolic algorithm, Cannon's

algorithm, Fox and Otto's algorithm, PUMMA (Parallel

Universal Matrix Multiplication), SUMMA (Scalable Universal

Matrix Multiplication), and DIMMA (Distribution Independent

Matrix Multiplication). Each of these algorithms uses the

matrices decomposed into sub-matrices. During execution, a

processor calculates a partial result using the sub-matrices it

currently has access to. It successively performs the same

calculation on new sub-matrices, adding the new results to the

previous. When all multiplication is complete, the root processor

assembles the partial results and generates the complete matrix.

In this paper, a program was designed to measure efficacy,

speedup and other evaluation elements with Multiplication of two

N*N matrices using different number of processors.

Keywords—.NET Remoting;Server Process; client Process;

Sequential Time; Speedup;

XI. INTRODUCTION

Matrix multiplication is commonly used in the areas of
graph theory, numerical algorithms, digital control, and signal
processing. Multiplication of large matrices requires a lot of
computation time as its complexity is O(n3), where n is the
dimension of the matrix. Because most current applications
require higher computational throughputs, many researchers
have tried to improve the performance of matrix
multiplication. Even with improvements such as Strassen's
algorithm for sequential matrix multiplication, performance is
limited. For this reason, parallel approaches have been
examined for decades. In this paper, Evaluation of
Multiplication of two N*N matrices was done with (2, 4, 6, 8)
number of processors [1].

XII. ALGORITHM FOR MATRIX MULTIPLICATION

(TASK FORMULATION)

A. Matrix Decomposition for Parallel Algorithm

To implement the matrix multiplication, the A and B
matrices are decomposed into several submatrices. Four
methods of matrix decomposition will be used in this study:
one-dimensional decomposition, two-dimensional square
decomposition, and two-dimensional general decomposition,
and two-dimensional scattered decomposition. These are
described below. One-dimensional decomposition: Here, the
matrix is horizontally decomposed as shown in Fig 1-a. The

ith processor holds ith Asub and Bsub and communicates them
to two neighbor processors, i.e., to the (i-1) th and (i+1) th
processors. The 0th processor and (n-1)th processor
communicate with each other as in a ring topology.

 Two-dimensional square decomposition: Here, the matrix
is decomposed into square processor template as shown in Fig
1-b. Since a maximum of 16 processors will be used for this
study, 1, 4, 9 and 16 processor templates are used. Each
processor communicates with its four neighbors, i.e., north,
south, west and east of itself as in a two dimensional torus.
Two-dimensional general decomposition: Here the matrix is
decomposed into two-dimensional processor template. This
decomposition allows the square processor templates as well
as 2 × 3, and 3 × 4 with 6 and 12 processors respectively. Each
processor communicates with its four neighbors just as square
decomposition. Fig 1-c shows 2 × 3, and 3 × 4 processor
templates. Two-dimensional scattered decomposition: Here,
the matrix is divided into several sets of blocks. Each set of
blocks contains as many elements as the number of
processors, and every element in a set of blocks is scattered
according to the two-dimensional processor templates. The
two-dimensional processor templates contain 2 × 2, 2 × 3, 3 ×
3, 3 × 4, and 4 × 4 structures for 4, 6, 9, 12, and 16 processors,
respectively. Fig 1-d shows an example of a 6 × 6 matrix
distributed onto a 2 × 3 processor template[1].

2002

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052033

International Journal of Engineering Research & Technology (IJERT)

Fig 1. Matrix decomposition

XIII. DESCRIPTION OF PARALLEL FACILITIES

Distributed Component Object Model (DCOM) and Dot Net
Remoting are popular distributed technologies introduced by
Microsoft. Both of these technologies enable inter-process
communication across application domains. DCOM was the
newer version of Network OLE, and was designed to work on
multiple network protocols, including HTTP.

Dot Net Remoting is a new technology introduced with the
Microsoft Dot Net Framework. It not only adds the features
that were missing in DCOM (as listed below) but is a
completely new and flexible architecture that allows users to
customize solutions according to the problems at hand.
Differences between the two technologies are as follows in
Table 1[2].

TABLE.1 Differences between Distributed Component Object Model
(DCOM) and Dot Net Remoting technologies

Features Dot Net Remoting

Protocol

support
Uses TCP or SOAP, depending on the problem.

Firewall

support

Uses HTTP protocol for remoting to work

easily across firewalls.

Cross-

platform
Supports cross-platform communication.

Maintainabi

lity

Easy deployment either through XML-based

configuration files or programmatically; easy
maintenance with configuration files.

Object
invocation

Client request will fail if the remoting server is

not already started, and if the remoting
component is not hosted in Internet Information

Server.

Security
Security depends on the host of the Dot Net

Remoting Object, for example, IIS.

Features Dot Net Remoting

A. .NET Remoting with Visual Basic:

 .NET Remoting Technology enables application
communication. It is a generic system for different
applications to communicate with one another. .NET objects
are exposed to remote processes on the network. .NET
Remoting allows interprocess communication on the same
computer, on the same network, or even across separate

networks. Remote objects are accessed through Channels.
Channels physically transport the messages to and from
remote objects. There are two existing channels TcpChannel
and HttpChannel in .NET Remoting. Distributed computing is
an integral part of almost every software development. (Before
.Net Remoting, DCOM was the most used method of
developing distributed application on Microsoft platform.) The
two processes can exist on the same computer or on two
computers connected by a LAN or the internet. We have used
VISUAL BASIC Programming Language and .NET libraries
for .NET Remoting[3].

As Fig.2 shows, when client calls a method, client sends
request through the channel to the server. Then client receives
the response sent by the server process. In .Net Remoting, a
remote call to an object on a machine across network is
transparent to the client application.

Fig 2. .NET Remoting System

B.. Singleton Objects

We need to create a server object that will act as a listener to
accept remote object requests. For array multiplication, we
used the TCP/IP channel. We created an instance of the
channel for use by clients at a specific port. We used Singleton
object where there is only one instance of the object is used
for all clients. First client that reaches to the server creates the
object on the server and all other clients use the same object.
Singleton objects are those objects that service multiple clients
and hence share data between client requests. They are useful
in cases in which data needs to be shared explicitly between
clients.

V. DESCRIPTION OF THE MATRIX MULTIPLICATION
PROGRAM:

A. Server Process

In the main process on the server, we define the array size N,
as seen in fig 4. The values for the arrays are entered one by
one or in case of large number it will be created serially from
one to end of value. All the information regarding matrices A,
B and C are stored in the remote object created on the server
process. We need to run the server process to assign tasks to
the other processes. There is only one server process. As soon

P0 P1 P2 P0 P1 P2

P3 P4 P5 P3 P4 P5

P0 P1 P2 P0 P1 P2

P3 P4 P5 P3 P4 P5

P0 P1 P2 P0 P1 P2

P3 P4 P5 P3 P4 P5

(d) Two-dimensional scattered decomposition of 6 6 array

2003

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052033

International Journal of Engineering Research & Technology (IJERT)

as we see “Server started” message, client processes on the
network start execution in parallel for array multiplication[4].

B. Client process

In our developed program, each client process copies its share
of the columns on array B and all elements of array A
(broadcasting of aik) in the remote object to its object. Each
client process does its share(columns) of array multiplication.
Each client process updates its share of array C in the remote
object. Server process shows the final state of array C. As seen
fig 5, Client process above has computed third column of
array C because the server computed first and second
columns[4].

VI.CHARACTERISTICS ESTIMATION

The program has been tested for many different values and

under different conditions, with different kinds of processors.

But in general we have taken the slowest time i.e. the times

here are for the slowest processor that we have used.

A. Order of algorithm using "big O":

The formulated algorithm consisted of three nested loops,

these loops calculates the two matrix multiplication. So, in this

case the algorithm will be of the order of O(N
3
). The serial

part of the program does not count so much in the program as

these three loops so even if we add the serial part it will be the

in the same order, i.e. does not change so much.

1) Results of One Processor:

We have started our experiments with different sizes of the

arrays but with one processor. These results can be seen in

Table 2.

Table 2. Time for one processor.

Test # Array size Test Time

1 10 8

2 25 23

3 50 66

4 100 201.8

We have said above that the algorithm is in the order of O(N
3
),

so to increase the array size from 10 to 25 , we have doubled

the size of the array so the time when the size is 5 should be

multiplied by 2.5
3
 to get the theoretical results when the size

of the array is 25. So for an array size of 50 the time should be

multiplied by 5
3
 and so on for the rest of the tests. The table 3

shows the theoretical results and the tests results:

Table 3. Theoretical and tests values for one processor.

Test # Array size

Theoretical

time Test Time

1 10 8 8

2 25 125 23

3 50 1000 66

4 100 8000 201.8

A closer examination of the above results one can see that the

values of test results are less than the theoretical results. This

is shows that not all the program is working under the order of

O(N
3
), because some parts of the program are done in the

order of O(N
2
). This confirms our result of estimating the

order of the algorithm of O(N
3
).

2) Testing With More than One Processor:

We have noted the measurements tests for up to 8 processors,

even though the program can run on any number of processors

the user like. So its free to choose the array size and the

number of processors the users like.

a) Results of Two Processors:

The test results when only two processors are working are

shown in table 4. These results are measured in seconds.

Table 4. Time for two processors.

Test # Array size Test Time

1 10 7

2 25 19

3 50 40

4 100 121

b) Results of four Processors:

The test results when only four processors are working are

shown in table 5. These results are measured in seconds.

Table 5. Time for four processors.

Test # Array size Test Time

1 10 6

2 25 15

3 50 24

4 100 108

c) Results of six Processors:

The test results when only six processors are working are

shown in table 6. These results are measured in seconds.

Table 6 Time for six processors.

Test # Array size Test Time

1 10 5

2 25 12

3 50 18

4 100 98

2004

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052033

International Journal of Engineering Research & Technology (IJERT)

d) Results of eight Processors:

The test results when only eight processors are working are

shown in table 7. These results are measured in seconds.

Table 7. Time for eight processors.

Test # Array size Test Time

1 10 4

2 25 9

3 50 14

4 100 79

B. Fraction of Sequential Part:

Using Amdahl's law we have obtained the following results

for the above measurements, by using the following formula

[5] (1):

 F= ((Tp- (T1/p)))/ (T1*(1-1/p)) (1)

The times found in table (8) are the sequential times for all the

tests we have conducted above and these times have been

measured in seconds to be consistent with all the

measurements we have got so far.

Table 8. Sequential Time for (2, 4, 6, 8) processors.

array

size
2 4 6 8

10 0.1875 0.375 0.381944 0.328125

25 0.163043478 0.301630435 0.295894 0.233016

50 0.053030303 0.085227273 0.088384 0.076231

100 0.049801784 0.213887512 0.265802 0.233167

C. Dependence of Sequential Time:

We have calculated the sequential time for every measurement

we have made. From table 8, one can see that when the

number of processors increases the sequential time decreases a

very small amount and this is natural when we have a number

of processors.

So one can conclude that the dependence of the f(N) is linearly

dependent on the problem size, so one can say that its in the

order of O(k), where k is constant.

D. Speedup:

Having measured the times for T1 , T2 , T3 , T4 , and T5 we have

calculated the speedup for the different values we have got

using the formula (2):

Speedup = (T1 / Tp) (2)

Where, Tp is the time of parallel processing using P processors

[5]. The results obtained are tabulated in table 9

TABLE 9 Speedup Data

Array

size
1 2 4 6 8

10 8 1.142857 1.3333333 1.6 2

25 23 1.210526 1.5333333 1.916666 2.555555

50 66 1.65 2.75 3.666666 4.714285

100 201.8 1.667769 1.8685185 2.059183 2.554430

Fig (3) below shows the variation of speedup with different number of

processors i.e. from 2 to 8.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 6 8

Number of Processors

S
p

e
e
d

u
p

array size 10

array size 25

array size 50

array size 100

Fig 3. Show Speedup for different numbers of Processors.

E. Efficiency:

Having measured the times for T1 , T2 , T4 , T6 , and T8 we have

calculated the efficiency for the different values we have got,

using the formula (3):

Efficiency = (Speedup / P) (3)

Where P is the number of processors used. The results

obtained are tabulated in table 10 [5].

Table 10. Efficiency data.

Array

size
1 2 4 6 8

10 10.74 0.571429 0.333333333 0.26666667 0.25

25 91.34 0.605263 0.383333333 0.31944444 0.31944444

50 196.48 0.825 0.6875 0.61111111 0.58928571

100 607.1 0.833884 0.46712963 0.34319728 0.3193038

Fig (4) below shows the variation of efficiency with different number of

processors i.e. from 2 to 8.

2005

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052033

International Journal of Engineering Research & Technology (IJERT)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8

Number of Processors

E
ff

ic
ie

n
cy

array size 10

array size 25

array size 50

array size 100

Fig4 Show the efficiency for different number of Processors.

Fig (5) below shown the time for 100 x 100 Matrix

Multiplications with different number of processors i.e. from 2

to 8.

0

20

40

60

80

100

120

140

2 4 6 8

Number of processors

m
il

li
s
e
c
o

n
d

s

Fig 5. Shows Time for 100 x 100 Matrix Multiplications.

.

VI. CONCLUSIONS:

Consolation has been drawn, that from fig. 5 shown the

performance of our program. As when we increase the number

of processors the time for multiplying 100 x 100 array has

decrease of about 2.5 times which can be reflected in the

Speedup diagram in Fig. 3. The order of the algorithm in the

"big O" notation is O(N
3
). The program is scalable, which

means that when increase the number of processors we have a

reasonable speedup and a good efficiency. The program can

handle large dimensions of arrays. The program is a user

friendly as the user can decide the size of his array and the

number of processors he/she wants to multiply that array on.

REFERENCES

[1] G. H. Golub and C.F. Van Loan, "Matrix Computations", 3rd Ed, The

Johns Hopkins University Press, 1996.
[2] R.Stephens,"Visual Basic 2008 Programmer’s preference (Programmer to

Programmer)", WROX Publishing, First Edition (2008).

[3] Michael Halvorson, "Microsoft Visual Basic 2008 Step by Step", first
edition 2008.

[4] J. M. Ortega, "Introduction to Parallel and Vector Solution of Linear

Systems", Plenum Press, 1988.
[5] J. M. Ortega and C. H. Romine, "The ijk forms of factorization methods II:

parallel systems", Parallel Computing 7:149-162, 1988.

2006

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052033

International Journal of Engineering Research & Technology (IJERT)

