
Evolutionary Program Based Synthesis of

Systolic Array

P. Mohamed Faizulla

1
,

1
Student Dept.of VLSI Design and Embedded

Systems,
VTU Extension Centre @United Technologies,

Bangalore- 560 022, India.

 Dr. V. Venkateswarlu
2

2
H.O.D,Dept.of VLSI Design and Embedded Systems,

VTU Extension Centre @United Technologies,
 Bangalore-560 022,India.

Abstract:

This paper gives design of

“Evolutionary program based synthesis of systolic architecture for

3-Tap FIR filter, 2*2 Matrix-Matrix multiplication, convolution

and correlation of two discrete sequences”. Results indicate that

evolutionary approach is the best search method that can be

adopted on systolic architectures as it was inferred from literature

survey. In most general terms, evolution can be described as a

two–step iterative process, consisting of random variation followed

by selection. In this project strategy of Gaussian

perturbation

having ten competitions, thousand

trails and varying populations

is choosen as the designs are relatively simple. For this each design

is represented in Dependency Graph (DG) from design algorithm

(for example FIR equation). This DG is further transformed to

Space –Time representation after the application of linear

mapping technique. The transformation is done based on three

vectors viz., Projection Vector, Processor Vector and

scheduling

Vector. The design concept is at

system level; hence the

terminology used in the project to some extent requires knowledge

of advances in computer architecture and also knowledge of

multiple disciplines. Only four typical designs are considered;

further it can be extended to other design as well in specific to DSP

designs. Each MATLAB program written is verified manually for

all possible test cases. Results are reported with errors

encountered. In future it is expected that evolutionary based

concepts are the real contributors for next generation architecture

level design.

Index terms:-

Evolutionary Computation,

Systolic Architecture,
Dependency Graph (DG), Signal Flow Graph (SFG), Projection
Vector(d), Processor Vector (P), Scheduling vector (S) , Reduce
Dependency Graph (RDG), Regular Iterative Algorithm (RIA).

I. INTRODUCTION

Until recently, computation-intensive tasks were handled
by high performance supercomputers, including pipelined
computers, array processor and multiprocessor systems. The
development of these computer systems has involved a through

exploration of parallel computing, efficient programming, and
resource optimization. However, the general-purpose nature of
these machines has led to complicated system organization and
severe system overheads.

A

new approach to design (in particular

Optimization) called as ―Evolution Computation‖

is just at the
budding state and promising the full potential to deal with

complicated system organization. Evolution is an optimizing

process that can be simulated using the computer or other
devices and put to good engineering purpose. Methods of

Evolution computing include Evolution Programming,
Evolution strategy and Genetic Algorithms. At present the most

promising architecture design approach seems to be systolic

architecture design and perhaps will continue to be in future. A
systolic system is a network of processors which rhythmically

compute and pass data through the system. A number of

systolic architectures can be designed for any given regular
iterative algorithm using linear mapping or projection

techniques. The present work under taken is Evolutionary
Program based synthesis of Systolic architecture design which

is expected to boost the future initiatives based on Evolutionary

Computation.

A. Evolutionary Computation

Evolutionary computation has started to receive significant
attention during the last decade, although the origins can be
traced back to the late 1950‘s.The most significant advantage of
using evolutionary search lies in the gain of flexibility and
adaptability to the task at hand, in combination with robust
performance (although this depends on the problem class) &
global search characteristics. In fact, evolutionary computation
should be understood as a general adaptable concept for
problem solving, especially well suited for solving

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070782

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1106

difficult optimization problems, rather than a collection of
related and ready-to-use algorithms. [11]

Evolutionary programming was introduced by Fogel.
The approach was to evolve finite state machine (FSM) to

predict events on the basis of former observations. An FSM is
an abstract machine which transforms a sequence of input
symbols into a sequence of output symbols. The transformation
depends on a finite set of states and a finite set of state

transition rules [1]. Evolutionary algorithms generally operated
directly on the real values to be optimized, in contrast with
genetic algorithms which usually operate on a separately coded
transformation of the objective variables for more information
refer [1] [2][10][11][13].

B.High-Level Syntheis

High-level synthesis is concerned with the design and
implementation of circuits from a behavioral description
subject to a set of goals and constraints. Two main tasks
performed in high level synthesis, scheduling and mapping.

Scheduling assigns operations to clock cycles and resources
allocation or mapping is concerned with assigning operations
and variables to hardware. During allocation, registers are
allocated to store variables, operations assigned to functional

units, and connections which are multiplexers, busses, or a
combination of both, are used for interconnection. The behavior
of a circuit can be specified using a high-level hardware
description language, and it should be translated into a suitable
intermediate format, e.g. a flow graph [3].

C. Systolic Processors

Systolic processors [5] are a new class of pipelined array
architectures [6]. ” A systolic system is a network of processors

which rhythmically compute and pass data through the
system”.

The basic principle of a systolic architecture, a systolic
array in particular is illustrated in Figure1a & 1b,which is
obtained by replacing a single processing element with an array
of PEs or cells. A higher computation throughput can be
achieved without increasing memory bandwidth. The function
of the memory in the diagram is analogous to that of heart; it

―pulses‖ data (instead of blood) through that array of cells.
The crux of this approach is to ensure that once a data item is
brought out from the memory it can be used effectively at each
cell it passes while being

―pumped‖ from cell to cell along the array. This is wide class
of compute-bound computations where multiple operations are
performed on each data item in a repetitive manner.

II.DESIGN OF SYSTOLIC ARCHITECTURE BASED
ON EVOLUTIONARY PROGRAM

Algorithm to Hardware Mapping

Figure-2: Algorithm to Hardware Mapping.

.

Algorithm Compilation: converts algorithm to graph-based

representation.

High-Level Synthesis: converts graph to data path (space) and control

(time) to
HDL.

HDL (Hardware Description Language) Synthesis: convert

behavioral or RTL
HDL (VHDL, Verilog) to netlist of gates and flip/flops.

Partitioning, Mapping, Placing, Routing: A netlist to a given

architecture
Partitioning is required if the design doesn‘t fit.

Configuration Generation: Equivalent to code generation of

compiler.

Dependence Graph Capturing: -

n-D Dependence

Graph
(DG) is obtained from a compiler or user. Space-Time

Mapping:-n-D is mapped to

k-D signal

flow graph (SFG) and
(n-k)-D time schedule, 1<= k

< n.

SFG Optimization: -k-D
SFG is optimized mostly by

human designer.

IR Generation: -Intermediate Representation (IR) e.g.

VHDL,
Verilog HDL.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070782

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1107

Vertically Integrated VLSI System Design

Figure-3: Top-down design integration

The array processors design involves a very broad

spectrum of disciplines, including algorithm analysis,
parallelism extractions, array architectures, programming
techniques, functional primitives, structural primitives and
numerical performance of DSP algorithms [4] [7].

A. General Design Flow of Array Processors

A dependence graph (DG) provides a useful first step

toward a stationary answer. In deriving an array processor, a
series of intermediate design levels are involved. They are
creating a (1) DG design,(2)mapping the DG onto a signal flow
graph (SFG)array and (3) deriving a systolic array form the
SFG [7].
Stage 1: DG Design for a given problem, a suitable algorithm
described in terms of a certain convenient expression is
identified. A recursive algorithm may be easily transformed to a
DG by tracing the associated space-time index space and using
proper arcs to display the dependencies in the index space.
Stage 2: SFG Design The expression primarily consists of
processing nodes, communication edges, and delays. A simple
(although not the only)way of mapping a DG onto an SFG
array is by means of projection, which assigns the operations of
all nodes along a line to a single PE. For example, the three-
dimensional index space of a DG may be projected onto a two –
dimensional SFG array.

Stage 3: Array Processor Design The SFG obtained in stage 2
can then be mapped to an SIMD, systolic array, wave front
array, or even an MIMD machine. For example, to convert an
SFG array into a systolic array, a cut-set based systolization
(retiming) procedure may be adopted.

B. Systolic Array Design Methodology

Systolic architecture is designed by using linear mapping

techniques on regular dependency graph [7] [8]. The edge in
dependency graphs represents precedence constraints. A
dependency graph (DG) is said to be regular if the presence of
edge in a certain direction at any node in the DG represents
presence of edge in the same direction at all nodes in the DG.

Definitions:

Projection vector (also called iteration vector) d=

Processor space vector, p
T

 = (p1 p2) .Any node with index I
T
=

(i, j) would be executed by processor;

p
T
I = (p1 p2)

Scheduling vector, s

T
 = (s1 s2). Any node with index I would

be executed at time, s
T
I.

Hardware Utilization Efficiency, HUE = ..

This is because two tasks executed by the same processor are

spaced |S
T
d| time units apart.

Feasible constraints

A number of systolic architectures can be designed for a
given problem by selecting different projection, processor space
and scheduling vectors. These vectors must satisfy the
feasibility constraints derived below.

a. Processor space vector and projection vector
must be orthogonal to each other. If points A and B

differ by the projection vector, i.e., IA-IB
is same as d, then must be executed by the same

processor, in other words, P
T

IA= P
T
IB. This leads to

P
T

 (IA-IB) =0 => P
T
d =0.

b. If A and B are mapped to the same processor,
then they cannot be executed at the same time, i.e.,

S
T
IA ≠S

T
IB, i.e., S

T
d≠0.

c. Edge mapping: If an edge e exists in the space

representation or DG, then an edge P
T
e is introduced

in the systolic array with S
T
e delays.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070782

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1108

C. Selection of scheduling vector

For any specified projection vector, processor space vector
and scheduling vector, the systolic array can be designed using
linear mapping technique. The method of selecting feasible
scheduling vectors using scheduling inequalities is described.

Based on the selected scheduling vector S
T

, the projection

vector and the processor space vector P
T

 can be selected

accordingly to equations P
T

d =0 and S
T

d≠0. . Hence the
desired systolic array can be obtained.

D. Selection of S
T

 based on scheduling inequalities

Selection of S
T

 based on scheduling inequalities:

For a dependence relation X →Y,

 X: Ix= → Y: Iy= ---------- (1)

Where, Ix and Iy are the indices of node X and Y respectively.

The scheduling inequality for this dependence is given by,

Sy ≥Sx + Tx --------------------------- (2)

Where Tx is the computation time of node X. The scheduling

equations can be classified into the following two types:

1. Linear scheduling,

Where

Sx = s
T

 Ix = (s1 s2)

- (3)

Sy = s
T

 Iy = (s1 s2) ---

--- (4)

2. Affine Scheduling,

Where

Sx = s
T

 Ix + γx= (s1 s2) ---------------

+

γ

x (5)

Sy = s
T

 Iy + γy = (s1 s2) + γy ----------------- (6)

Using the forgoing definition, we can rewrite the scheduling
equation for affine scheduling as

s
T

 Ix + γy ≥s
T

 Ix + γx + Tx ------------------------ (7)

Note that the scheduling equation for linear scheduling can be
obtained by setting γx and γy equal to zero.
Define the edge from node X to node Y as ex-y= Iy-Ix. Then the
scheduling inequality for an edge is described
as follows.

S
T

 ex-y+ γy- γx ≥Tx. -------------------------------- (8)

Therefore, one scheduling inequalities can be obtained for
each fundamental edge in the dependency graph and the

scheduling vector S
T

 can be obtained by solving these
inequalities. Hence the selection of scheduling vector consists
of 2 steps.

1. Capture all the fundamental edges. The reduced dependence
graph (RDG) is used to capture the fundamental edges and the
regular iteration algorithm (RIA) description of the
corresponding problem is used to construct RDGs [8].

2. Construct the scheduling inequalities according to S
T

 ex-y+

γy- γx ≥Tx. and solve them for feasible S
T
.

RIA Description

The Regular Iterative Algorithm (RIA) is introduced and
the method for construction Reduced Dependency Graphs
(RDGs) using RIA is illustrated.

a. The RIA is in standard input RIA form if the indexes

of the inputs are the same for all equations.

b. The RIA is in standard output RIA form if all output
indices, i.e. indices on the left side, are the same [8].

E.Basic Steps in Algorithms [2]

The present effort focuses on the use of evolutionary
algorithms for real-valued function optimization, without loss
of generality attention is restricted to only function
minimization. The basic steps of algorithm are given as follows:

1. The problem is defined as finding the real-

valued n dimensional vector x that is

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070782

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1109

associated with the external of a functional F(x): R

n
 —> R.

Without loss of generality, let the procedure be implemented as
a minimization process.

y (n) =w0*x (n) +w1*x (n-1) +w2*x (n-2) -----(9)

Where x (n), y (n) and (w0, w1, w2) are the inputs, output

and co-efficients of the filter respectively at time n. The above
equation defines a finite impulse response

2. An initial population of parent vectors, xi, (FIR) filter. The unit samples of the FIR filter lasts for a
i = 1, . . . , P, is selected at random from a feasible
range in each dimension. The distribution of initial
trials is typically uniform.

3. An offspring vector, x’i, i = 1, . . . , P, is created from

each parent xi by adding a Gaussian random variable
with zero mean
and preselected standard deviation to each component
of xi.

4. Selection then determines which of these

vectors to maintain by comparing the errors F (xi) and

F (x’ i), i= 1. . . P. The P vectors that possess the least
error become
the new parents for the next generation. In other words

F (xi) and F (x’ i) is evaluated against ten other
randomly chosen solutions from the population. For
each comparison, a ‗win‘ is assigned if the solution‘s
score is less than or equal to that of its opponent.

5. The process of generating new trials and selecting
those with least error continues until a sufficient
solution is reached or the available computation is
exhausted. In other words, if the P solutions with the
greatest number of wins are retained to be parents of
the next generation.

In this model, each component of a trial solution is viewed

as a behavioral trait, not as a gene. A genetic source for these
phenotypic traits is presumed, but the nature of the linkage is
not detailed. It is assumed that whatever genetic
transformations occur, the result change.

In each behavioral trait will follow a Gaussian distribution

with zero mean difference and some standard deviation.
Specific genetic alterations can affect many phenotypic
characteristics due to pleiotropy and polygeny. It is therefore
appropriate to simultaneously vary all of the components of a
parent in the creation of a new offspring [1][2][3][14].

F.Design of Systolic Architecture for 3 –Tap FIR

Filter[8][12][15][18].

Consider a 3-tap FIR linear filter equation

finite time dependent on the number of filter coefficients. A
filter design involves determining these coefficients to obtain
the desired frequency response. The filter considered here is a
special case of the general filter called as Moving Average
Filter (MA). The output sequence can be obtained as a
convolution
(*) of the input sequence and the impulse response of the filter
[7].

Dependency Graph for 3-Tap FIR Filter

Here DG has 3 fundamental edges: input moving upward

represented by an edge in [0 1]
T

 direction, coefficients moving

toward the right represented by an edge in[1, 0]
T

 direction, and

results moving in[1, -1]
T

 direction. Since all nodes in the DG
contain the same three edges, this DG is regular

Figure-4: space representation for FIR filter

Nodes co-ordinates (i, j) of FIR filter is shown below

(0, 0) (0, 1) (0, 2)
(1, 0) (1, 1) (1, 2)
(2, 0) (2, 1) (2, 2)
(3, 0) (3, 1) (3, 2)
(4, 0) (4, 1) (4, 2)

Table-1: Node coordinates obtain from figure-4

FIR filter design-1a (broadcast Inputs, move results,
weights stay)

The systolic design-1 is derived by selecting the

projection vector, processor vector and scheduling
vector as follows

Projection vector d= 1 0

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070782

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1110

Processor vector P

T
= [0, 1]

Scheduling vector S
T
= [1, 0]

Checking of systolic array P

T
d= [0, 1]* 1

=0
0

S

T
d= [1, 0]* 1 =1 0

Result----


 possible with selected vectors

FIR Filter Design-1A Node Mapping to Processor

Any node with index I

T
= (i, j) is mapped to processor

P

T
= [0, 1]* i = i j

Therefore, all nodes on a horizontal line are mapped to the

same processor any node with index I
T
= (i, j) is executed at

time.

 S

T
= [1, 0]* i =i

 j

Since

 S
T
d = [1, 0] * 1 =1

 0
Then

HUE = =1

Edge Mapping For FIR Filter Design-1A

The 3 fundamental edges corresponding to weight,
inputs and result can be mapped to corresponding edges in the
systolic array accordingly to table-2

e
T

P
T
 e

S
T
 e

 Wt(1, 0) 0 1

i/p (0,1)

1

0

Result(1,1)

-1

1

Table-2: Edge Mapping for FIR Filter Design1A

III.SYSTOLIC ARRAY DIAGRAM FOR FIR

FILTER DESIGN 1A
The block diagram of design-1 systolic array is then

constructed as shown in figure-5 the low level implementation

of this architecture is shown in figure-7

Figure-5: for Design 1A

A. Space-Time Representation for Fir Filter
Design-1a

The space-time representation of design-1A is shown in
figure-6. From which we can see that the incoming x value is
available at all the processors at the same time. Specifically, the
input data is ―broadcast‖ to the processors, similarly, the weights,

w appear at the processors at the same spatial coordinates. Thus wi

values ―stay‖, and the output, yi appears at the processor at

different space and time. Hence the outputs ―moves‖

Figure-6: space-time representation of Design-1A

FIR Filter Design-1A Low Level Design Diagram

Figure-7: Low Level Design of Design-1A

Note: Same procedure is also applicable for
convolution[4][5][17] and correlation[8][16] or any other
design.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070782

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1111

IV.DESIGN OF SYSTOLIC ARCHITECTURE
FOR 2*2 MATRIX- MATRIX

MULTIPLICATION.

The dependency graph (DG) for designing the systolic

array for matrix-matrix multiplication corresponds to a three
dimensional (3D) space representation linear projection is used
to design 2D systolic architecture array[4] [9] [14].

Given 2 matrices A and B, we can denote their

product as C=A*B, where A, B and C are n*n matrices for n=2
we have,

C11C12 a11a12 b11b12
C21C22 a21a22 b21b22

C11=a11 b11+a12 b21----------------- (a)
C12=a11 b12+a12 b22----------------- (b)
C21=a21 b11+a22 b21----------------- (c)
C22=a21 b12+a22 b22----------------- (d)

These equations can be represented in Space-
Representation [9] shown in figure-8

Figure-8: For Space-Representation of matrix multiplication

The iteration in standard output RIA form is as follows:

a (i,j,k) = a(i,j-1,k)

b (i,j,k) = b(i-1,j,k)

c (i,j,k) = c(i,j,k-1) + a(i,j,k) b(i,j,k)

The corresponding RDG (Reduce dependency graph)

of matrix product computation is shown in figure-9.

Figure-9: RDG of matrix product computation

Through RDG is difficult to make out projection vector
and processor vector. And those will found by using scheduling
inequality techniques. With the help of evolutionary
programming projection vector and processor vector will be
generated.

V.CONCLUSION
The present work undertaken has been successful for the

designs considered. Results obtained (MATLAB coding)

indicate that evolutionary computation (program) based
synthesis of designs considered on systolic architecture are the

best optimum results. The design of the DGs and proper
selection of the 3 vectors (projection vector, processor vector

and scheduling vector) are made in order to achieve an optimal

systolic design. This project addressed the systolic architecture
design methodology based on Evolutionary Programming.

Systolic architecture designed for given regular iterative

algorithms using linear mapping or projection techniques. The
methodology is illustrated using FIR filter, matrix-matrix

multiplication, convolution and correlation as examples. The
MATLAB coding is done for all the designs considered,

designs have been verified manually for all possible test cases.

FUTURE WORK

Always there is desired to get the chip module for the

particular algorithm at present as well as in future, to do this,
technologies like nano technology has very good scope to

implement the systolic architectures based on Evolutionary
Programming. Complex problems on systolic architecture up to
certain extent can be implemented on FPGA in hardware
module. Implementation of systolic algorithms based on

Evolution Programming in ASIC for applications that require
high computation precision will be feasible. With further
developments in semiconductor industry and the inevitable
possibility of implementation of systolic algorithm will result in
increased demand for

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070782

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1112

efficient tools. Progress in Evolution Computation will
contribute a lot in future VLSI Design, as it is still at initial
stages.

ACKNOWLEDGEMENT

The author wishes to acknowledge Dr. Manoj Kumar

(planet i technologies, Bangalore), Prof. Dr. Venkateswarlu (H.
O. D, UTL, Bangalore) for their valuable contribution to this
work.

REFERENCES

[1] Thomas Back, Ulrich Hammel, and Hans-Paul schwerel

‖Evolutionary Computation:-Comments on History and
Current Status,‖
IEEE Transactions on evolutionary computation, vol.1
no.1, April 1997

[2] N.Saravanan, David b. Forgel, Kevin M.
Nelson ―A comparison of methods for self-adpatation in
evolutionary algorithms,‖
Elsevier science Ireland ltd, Biosystems vol.30 pp.157-166.
1995

[3] Soheil Aminzadeh ―using genetic algorithm for High-level
sysnthesis,‖ available on http://ece.ut.ac.ir.

[4] S. Y. Kung ―VLSI Array Processor,‖ IEEE
ASSP Magazine. July 1985.

[5] H. T. Kung ―Why systolic architectures?‖ IEEE computer
magazine, vol-15, pp-37-45. Jan 1982.

[6] Bernard Chazelle ―Computational Geometry on
a systolic Chip,‖ IEEE tans on computers, vol.c-33, no.9,
sept 1984

[7]S. Y. Kung, VLSI Array processor. Prentice
Hall, 1988.

[8]Keshab K. Parhi. VLSI Digital Signal

Procrssing System Design and
Implementation, john Wiley & sons inc-1999. [9] Halil
Snopce, Lavdrim Elimazi. ―Reducing the
Number of Processing elements in systolic array for matrix
multiplication using linear transformation matrix,‖
Procedings of ICCCC.
Vol.III, PP 486-490,2008

[10]David B. Fogel, ―What is evolutionary computation?,‖
IEEE SPECTRUM pp.26-31. Feb-2000.

[11]Chang Wook Ahn, Advances in Evolutionary

Algorithms. Springer-Verlag Berlin

Heidelberg 2006

[12]V.Visvanathan. Nibeita Mohanty. S.

Ramanathan ―An Area-Efficient systolic

architecture for Real-Time VLSI Finate

Impuse Response Filters,‖ 6
th

 international

conference on VLSI Design. pp.166-171. jan 1993.
[13] William M. Spears, Kenneth A. De Jong, Thomas Back.

David B. Fogel, Hugo de Garis, ―An Overview of
Evolutionary Computation,‖ proceedings of European
Conference on Machine Learning. 1993

[14] I. Z. Milovanovic, E. I. Milovanovic, B. M.
Rangjelovic, I. C. Jovanovic ―Matrix multiplication
on bidirectional linear systolic arrays,‖ mathematics subject
classification Filomat 17(2003), pp.135-141.

[15]Mokhtar A. Aboelaze, De-Lei Lee, Benjamin W. Wah ―
Two-Dimensional Digital Filtering Using Constant-I/O
systolic Arrays,‖ proc.IEEE int‘l symp on circiuts and
systems, pp.255-258, 1993.

[16]L. J. Deutshch and C. R. Lahmeyer ― A systolic
Architecture for the correlation and accumulation of digital
sequences,‖ TDA progress report. 62-68 jan-mar 1986.

[17]Avtar Singh and S. Srinivasa, Digital Signal Processing,
cengage learning India Pvt Ltd, 2004.

[18]Surin Kittitornkun and Yu Hen Hu, Reconfigurable
Processor Array Synthesis, Department of Electrical and
Computer Engineering, UW-Madison, PDCAT June 30,
2001.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.org

Vol. 3 Issue 7, July - 2014

IJERTV3IS070782

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

1113

