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Abstract— The present paper investigate the dynamic analysis for the 

torsional vibration of shafts subjected to various harmonic twisting 

moments. The governing torsional vibration equation and related 

boundary conditions for the shafts are derived using Hamilton’s 

variational principle. The exact closed-form solutions for the shafts 

having a cantilevered and simply supported boundary conditions and 

under various harmonic torsional loads are determined. The closed form 

solution is consequently used to develop a family of exact shape 

functions which exactly satisfy the exact homogeneous solution of the 

governing torsional equation. A super-convergent two-noded finite beam 

element is then formulated based on the exact shape functions. The 

proposed beam element developed involves no special discretization 

errors normally encountered in conventional finite element formulations 

and provide results in excellent agreement with a minimal number of 

degrees of freedom. The present solutions are shown to successfully 

capture the static and steady state dynamic responses of shafts. Both 

solutions are also able to predict the natural torsional frequencies and 

related mode-shapes of the shafts. The validity and the accuracy of the 

present exact closed-form and finite beam element solutions are 

achieved throughout the numerical examples presented and compared 

with well-established ABAQUS finite beam solution and other exact 

solution. 

 

Keywords— Exact finite element, closed form solution, torsional 

response, harmonic torsional loading, steady state response  

I. INTRODUCTION AND OBJECTIVE 

Shafts and beams of circular cross-sections are important 
structural elements of rotating and non-rotating machines and 
systems, mainly used to transmit torque and rotation. These 
shafts are often idealized as simple rotating and non-rotating 
beam models such as helicopter blades, aircraft rotary wings 
and gas turbine blades, etc. In such applications, these shafts 
are subjected to dynamic torsional loadings caused by 
machinery, environmental shocks, and dynamic exciting 
torque as repeated harmonic twisting moments in the long 
range duration, Therefore, the torsional vibration of shafts 
under harmonic torsional cyclic loading produce stresses 
reversal that affect the structural machine integrity and the 
life of components and then are prone to fatigue failure. 
Under harmonic twisting moments, the steady state dynamic 
component of the total response is sustained for a long time 
and is thus of great importance in fatigue design of such 
shafts. While the transient component of total response which 
is introduced only at the beginning of the excitation tends to 
dampen out quickly and is thus of a very little importance in 
assessing the fatigue life of the shaft. Thus, the objective of 
this paper is to develop an exact closed form solution and 
accurate and efficient finite element solution which captures 
and isolates the steady state torsional dynamic response of 
shafts subjected to general harmonic twisting moments. The 
present solutions developed in this study are also capable 
accurately to capture the quasi-static response and predict the 
eigen-frequencies and eigen-modes of the shaft.  

II. LITERATURE REVIEW 
  

Several studies have been conducted on the exact solution 
and finite element for torsional vibration analysis of shafts 
under various dynamic loads and boundary conditions. 
Among them, [1] derived the exact expressions for torsional 
frequencies and mode shapes for the free torsional vibrations 
of circular shafts and piping systems constrained by 
unsymmetrical torsional springs and carrying multiple 
unequal rotational masses at arbitrary locations on the shaft. 
Reference [2] developed a boundary element solution for the 
general linear elastic non-uniform torsion problem of 
homogeneous or composite prismatic bars of arbitrary cross 
section subjected to various twisting moment and linear 
torsional boundary conditions. In machinery systems, 
torsional vibration problems are important research topic of 
rotor-shaft systems. Therefore, a lot of researchers have 
studied the free vibration frequencies of rotating shafts and 
beams. Rotating shaft is differed from the non-rotating one in 
having an additional centrifugal force and Coriolis effects on 
its dynamic behavior. For instance, [3] derived the finite 
element stiffness and mass matrices for both open and closed 
section shafts, based on the solution of the static equations, 
and thus obtained an approximate solution for the natural 
frequencies. Reference [4] introduced the classical Euler-
Bernoulli beam theory to present an analytical solution to 
investigate the vibrational behavior of a beam rotating with 
constant speed about its longitudinal axis for all boundary 
conditions. Reference [5] presented an analytical solution for 
free flexural vibration of a spinning finite Timoshenko beam 
subjected to a moving load for the general boundary 
conditions. Their formulation accounts for the rotary inertia 
and shear deformation effects. Reference [6] studied the 
dynamic response of a rotating shaft subject to axial force and 
moving loads is analyzed by using Timoshenko beam theory 
and the assumed mode method. Reference [7] presented an 
analytical approach to study the torsional vibrations of the 
drive shafts and mechanisms. Reference [8] studied the free 
vibrations and stability of internally damped rotating shafts 
with general boundary conditions. Reference [9] derived the 
exact governing equations for linear vibration of a rotating 
Timoshenko beam by using d’Alembert principle and the 
virtual work principle. Based on the assumptions that the 
beam is linear elastic and the steady state axial strain is small, 
the formulation is captured the effect of Coriolis force on the 
natural frequency of the rotating Timoshenko beam. 
Reference [10] investigated the free vibrations analysis of a 
rotating shaft with nonlinearities in curvature and inertia.  

Moreover, the finite element method is used for the 
torsional vibration analysis of solid and hollow shafts and 
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beams in determining the natural frequencies and mode 
shapes. This includes the work of [11] developed a finite 
element solution for determining the free vibration 
characteristics of rotating uniform Timoshenko beams. His 
formulation incorporated the effects of shear deformation and 
rotary inertia on the natural frequencies of the rotating beams. 
Reference [12] derived explicit expressions for the finite 
element mass and stiffness matrices using consistent mass 
formulation for the vibration of a rotating tapered beam. 
Reference [13] developed a three nodal C° Timoshenko finite 
beam element to evaluate the natural whirling speeds of a 
rotating shaft with various end boundary conditions. 
Reference [14] presented a simple spinning composite shaft 
model based on a first-order shear deformable beam theory. 
The finite element model is used to analyze the critical 
speeds, natural frequencies and related mode shapes of the 
composite shaft system. A feature common to the above finite 
element studies is use of approximate shape functions 
involving spatial discretization errors, and thus requiring fine 
meshes to converge to the actual solution. In contrast, the 
present study avoids discretization errors by formulating 
exact shape functions which exactly satisfy the homogeneous 
solution of the dynamic governing torsional equation. 
Another commonality between the above studies is the fact 
they focus on extracting the free vibration characteristics 
including predicting the natural frequencies and mode shapes. 
In contrast, the present solution aims at directly extracting the 
steady state torsional dynamic response without the need to 
extracting the natural frequencies and mode shapes. 

III. KINEMATICS FUNCTIONS 

A straight uniform circular closed cross-section beam of 
length L has is shown in Fig. (1). The shaft is referenced to a 

right-handed rectangular coordinates system ( , , )X Y Z , 

where the axis X is the longitudinal axis of the 

beam, Y and Z are the principal axes of the cross-section. The 
present theoretical formulation is based on the following 
main assumptions: 

1. The formulation is applicable to shafts having circular 
solid/hollow cross-sections, 

2. Cross-section is assumed to remain perfectly rigid in its 
own plane throughout deformation,  

3. The material is assumed to remain linearly elastic 
throughout deformation, 

4. Displacements, strains and rotations are assumed small, 
and 

5. Damping is neglected in the formulation.  
6. The formulation is captured only the steady state dynamic 

response.  
 

 According to the assumptions described above, the 
displacement functions of an arbitrary point 

( , , )p x y z located on the shaft cross-section, as shown in 

Figure (1), can be expressed as: 

         , 0pu x t                            (1) 

                   , sin ( , )pv x t r z x t                      (2) 

                   , cos ( , )pw x t r y x t                         (3) 

 

in which ( , )pu x t , ( , )pv x t  and ( , )pw x t are the 

longitudinal, lateral and transverse displacements of 

point ( , , )p x y z along the principle axes ( , , )X Y Z , ( , )x t  is 

the torsional displacement, and ,y z  are the coordinates of 

point p along the principal axes. 
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Fig.1:  Coordinate system and displacements 

 

Strain-Displacement Relations 

Based on the assumption of small displacements, the 

non-zero shear strains are given by:  

   
p p

xy

v u
z z

x y x


 

  
   

  
                  (4) 

     
p p

xz

w u
y y

x z x


 

  
   

  
                       (5)                    

Torsional Displacement Function 

The shaft is assumed to be subjected to harmonic torsion; 

(i) distributed twisting moment ( , ) ( ) i t
x xm x t m x e  acting 

along the shaft axis, and (ii) concentrated twisting moments 

( , ) ( ) i t
e x eM x t M x e  at the shaft  both ends (i.e., 

0,e L ), as shown in Fig. (1). The harmonic twisting 

moments can be written by:  

                  , , , , i t
x x e x x em x t M x t m x M x e           (6) 

 

where   is the frequency of the applied twisting moments,  

1i   is the value of the imaginary, ( , )xm x t  is the 

harmonic distributed torsion, ( , )x eM x t is the concentrated 

harmonic twisting moment applied at both ends of the given 

shaft. Under the effect of the applied harmonic twisting 

moments, the angular displacement  x,t  is assumed to be 

harmonic, i.e., 

                      i t
xx,t x e                            (7) 
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in which  x x  represents the space function of the steady 

state torsional response. In line with the main objective of 

this paper focusing on steady state response, the torsional 

displacement function postulated in equation (7) neglect the 

transient component of the response.  

IV. TORSIONAL VIBRATION EQUATION  

The variational form of the Hamiltonian functional H is 

taken to be stationary, i.e.,  
 

    
 

   

2

1

1 2

0

, , 0

t

t
H T U W dt

for x t x t

 

 

   

 

         (8)  

 
in which the integration is performed between arbitrary time 

limits 1t and 2t , where T is the variation of kinetic energy, 

defined by:  
 

      
0

L

p p p p p pA
T u u v v w w dAdx                 (9) 

 
U is the variation of internal strain energy, defined by: 

 

           
0

L

xy xy xz xzA
U G G dAdx                 (10) 

  
and W is the variation of the virtual work done for the shaft 

subjected to given applied torsions, given as: 

         
0

, , , ,x x x x

L

e
W m x t x t dx M x t x t  


         (11) 

where  is the density of the shaft material, and G is the 

modulus of rigidity of the shaft. 

 From Equations (1-7) and by substituting into energy 

expressions (9-11), the resulting equations into Hamilton’s 

equation (8), performing integration by parts, the governing 

equation for torsional vibration and related boundary 

conditions of shafts under harmonic twisting moments are 

given in terms of variable x as: 
 

           2
x x xx x m xGJ J                (12)  

 
and the boundary conditions are: 

           
0

0
L

x x    or     
0 0

L L

x xx xGJ M            (13) 

where J is the torsional coefficient defined by; 

  
2 2( )z y A

J I I y z dA    .      

V. GENERAL EXACT CLOSED FORM SOLUTION 

The general exact closed form solution  x x of equation 

(12) consists of two parts, homogeneous solution  xh x and 

particular solution  xp x .  

 
 
 
 

Exact Homogeneous Solution for Torsional Displacement 

The exact homogeneous solution of the torsional equation 
is obtained by (a) setting the right hand side of the equation 

(12) equal to zero, i.e.,   0xm x  , and (b) assuming the 

torsional displacement to take the following exponential 
form: 

          m xi
xh ix A e                       (14) 

From equation (14) by substituting into homogeneous form of 
equation (12), the exact homogeneous solution for torsional 
displacement is written in matrix form as:  

     11 2
1 2 2 11 2

2 2 1

( )
m x m x

xh

A
x e e E x A

A


 


 
  

 
   (15) 

where 1,2m i G   , 1 2
1 2 1 2

( )
m x m x

E x e e
 
 , 

1 2 1 21 2
A A A


 are unknown integration constants.  

Equation (15) governs the steady state dynamic solution for 
torsional vibration of shafts under harmonic twisting 
moments.  

Particular Solution for Torsional Displacement 

For a shaft subjected to harmonic distributed twisting 

moment   i t i t
x xm x e =m e 

, the corresponding particular 

solution  p x for the governing torsional vibration equation 

(12) is obtained by:   

     2
xp xx m J                                 (16) 

The complete steady state exact solution for torsional 
vibration response is obtained by adding the homogeneous 
solution (15) to the particular solution (16), gives:  

         1 2

1 22 12

m x m x x
x

J

m
x e e A



 
    

 
           (17) 

Equation (17) represents the complete steady state solution 
for torsional vibration of shafts under harmonic torsional 

loading, where the integration constants  
2 1

A


can be 

determined from the relevant boundary conditions of the 
problem.  

Exact Solutions for Cantilevered and Simply-supported Shafts 
under Harmonic Torsion 

Shafts having cantilevered and simply-supported 
boundary conditions subjected to harmonic twisting moments 
are shown in Fig (2). The boundary conditions of the 
cantilevered shaft at both ends are given as:  

0
( ) 0x x
x


  and   ( )xx L Lx x

x MG xJ
 

   

while for simply-supported shaft are given by: 

 
0 0

( ) ( ) 0x xx L
x x 

 
  . 
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Fig. (2): Shafts with cantilevered and simply-supported boundary conditions 
under harmonic torsions 

 
Substituting the above boundary conditions into equation 
(17), the general exact closed form solutions governing the 
torsional steady state dynamic responses for cantilevered and 
simply-supported shafts under harmonic twisting moments 
are represented, respectively, by the following relations:  

 
 

1

1 2
1 21 2 1 2 2

2

2

2

2 1

1 1

x

m x m x
xc m L m L

x

x

J

GJ

m

x e e
Le m e

J

Mm

m














 
 

   
   

   
  

 











         

(18)  

 
2

2

1

1 2

1 21 2
2

2

2

2 1

1 1

x

m x m x
xs m L m L

x

x

J

J

J

m

x e e
me e

m
















 
 

   
    

    
 
 

 
 



 






        
    (19)    

 

VI. FINITE ELEMENT FORMULATION 

In this section, a new two-noded finite beam element is 
developed for dynamic torsional analysis of structural 
members with circular cross-sections under various harmonic 
twisting moments. Figure (3) shows the proposed two-noded 
finite beam element with two degrees of freedom per 
element. A family of exact shape functions which exactly 
satisfy the homogeneous solution of the dynamic torsional 
equation is employed to formulate the exact stiffness and 
mass matrices and the load potential vector.    

Formulating Exact Torsional Shape Functions 
To relate the exact homogeneous solution of the torsional 

displacement function  xh x to the nodal torsional 

displacements N


, the vector of integration constants 

 
2 1

A


is expressed in terms of the nodal torsional 

displacements 1 21 1N x x  
 
 by imposing the 

conditions   10xh x  and   2xh xL   (Fig. 3), yielding: 

  

 
 

 

 

 
     

1
1

1 2

1 1
1 2 2 2

0

0

xh
N

xh L

E
A G A

E L










 
 

  
  
  

 
  
  

  (20) 

where 1 21 1N x x  
 
 is the vector of the nodal 

torsional displacements. 

From equation (20) and by substituting into equation (17), 
the following expression is obtained as: 

                             
11 2xh Nx H x 


                    (21) 

Z

X

eL

Node 1

Node 2

Two-noded Beam element

φx1 

 

Fig. (3): A proposed two-noded finite beam element  

in which    
1

1 21 2
( )H x E x G



 
 is the matrix of exact 

shape functions for the steady state dynamic torsional 
response. It is noted that the exact shape functions obtained in 
equation (21) exactly satisfy the exact homogeneous solution 
of the governing torsional equation. The exact shape 
functions developed in this study are depends on the length of 
the beam element, the properties of the cross-section and the 
exciting frequency of the torsional loading. 

Matrix Formulation for Torsional Response 

By using equations (1-7) with torsional displacement 

equation (15), and by substituting into the energy expressions 

(9-11), the following variations of energy expressions are 

given in terms of nodal torsional displacement as: 

      2

0 12 1 1 2 N

L

N H x H xT J dx  
  

    (22)   

           
120 1 1 2N N

L
H HGJ dxx xU  

  
     (23) 

         1 2 1 21 10 0

LL

x N x NW m x H x dx M x H x  
  

  
          (24) 
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From equations (22-24), by substituting into variational form 
of Hamilton’s principle equation (8), leads to typical finite 
beam element model as:  

       2

1 1e e N eK M F
  

 
  

 
 

                (25) 

where the beam element stiffness matrix  eK


is given by: 

                   
0 2 1 1 2e

L
K HGJ dxx H x

  
              (26) 

The mass stiffness matrix  eM


of the beam element is: 

                 2

0 2 1 1 2e

L
M H x H xJ x d

  
         (27) 

The potential energy load vector  
1eF


of the element is: 

               
1 1 10 0

LL

e x xF m x H x dx M x H x
  

  
     (28) 

The above expressions for stiffness, mass and potential load 
vector formulated for two-noded finite beam element using 
the exact torsional shape functions developed to investigate 
the steady state dynamic torsional response of shafts under 
various harmonic torsional loadings.  

VII. NUMERICAL EXAMPLES AND DISCUSSIONS   

The present solutions (exact closed form and finite beam 

element solutions) developed in this paper governing the 

torsional vibration of shafts under various harmonic twisting 

moments can be used to capture the following analyses: 

 The steady state dynamic response for the shafts with 
solid and hollow cross-sections and under harmonic 

twisting moment at exciting frequency  , 
 The quasi-static response for the shafts under harmonic 

twisting moments by using very low exciting frequency  
compared to the first torsional natural frequency of the 
shaft, 

 Extracting the natural torsional frequencies and related 
mode shapes of the shaft under harmonic twisting 
moments.  

To demonstrate the validity, accuracy and applicability of 
the exact closed form solution and finite beam element 
formulation developed, three examples are presented in this 
study. These examples investigate the torsional vibration of 
the shaft under various harmonic twisting moments and 
various boundary conditions. The present finite beam element 
developed is based on the exact torsional shapes functions 
which exactly satisfy the homogeneous form of the governing 
torsional vibration equation of the shaft. Due to this 
treatment, the mesh discretization errors induced in the 
classical finite element solutions using polynomial 
interpolation shape functions are eliminated. As a result, it is 
observed that, the results obtained based on a single finite 
beam element exactly matched with the corresponding results 
based on the exact closed-form solutions developed in this 
study up to five significant digits. The numerical nodal results 
obtained from the present finite beam element are compared 
with the established finite beam element Abaqus and exact 

solutions available in the literature. In the finite element 
Abaqus model, a two-noded B31 beam element having six 
degrees of freedom per element (i.e., three translations and 
three rotations) is used for comparison. 

Example (1): Cantilever Hollow Shaft under Concentrated 
Harmonic Twisting Moment 

A 3000mm cantilever hollow shaft subjected to a 

concentrated harmonic twisting moment 12.0 i t
xM e kNm  

applied at the free end of the cantilever is shown in Fig. (4). 
The shaft has an outer diameter of 100mm and inner diameter 
of 80mm and made of steel material with the following 
properties: the modulus of elasticity 200E GPa , shear 

modulus 70G GPa  and the density 37800 /kg m  . The 

purpose of this example is to assess the accuracy and validity 
of the results obtained from the present finite element 
formulation. It is required to investigate the following:  

(1) The static torsional response of the shaft using very low 

exciting frequency 10.01 , where the first natural 

frequency of the given shaft is 1 261.7Hz  , 

(2) The dynamic response of the shaft under harmonic torsion 

at exciting frequency 11.40 . 
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Fig. (4): A cantilever hollow shaft under end harmonic twisting moment 

In the Abaqus finite element model, the shaft is divided into 
80 beam B31 element along the longitudinal axis of the shaft. 
In other words, the model has 486 degrees of freedom in 
order to achieve the required accuracy in this example. In 
constraint, the results obtained from the present finite element 
developed use only one two-noded beam element with two 
degree of freedom to attain the exact solution results.   

Static Torsional Response 
In order to approach the static response, the exciting 
frequency should be taken significantly lower than the first 
natural frequency of the cantilever hollow shaft. The static 

results for maximum torsional displacement max 2( )x x   of 

the shaft under harmonic torsional loading at exciting 

frequency  1Ω 0.01  are given in Table I. It is observed that 

the results for the nodal torsional displacement 2x obtained 

from the present finite element based on one two-noded beam 
element (i.e., 2 dof) provide excellent agreement with Abaqus 
finite element model based on 80 beam B31 elements (i.e., 
486 dof). The present finite element formulation based on 
exact shape functions demonstrated that the new two-noded 
beam element provides excellent agreement with present 
exact closed form solution and Abaqus beam model by 
keeping the number of degrees of freedom a minimum. 
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Dynamic Torsional Response 

The maximum steady state torsional displacement 2 (at 

the cantilever free end) of the cantilever shaft under the given 

harmonic twisting moment 12.0 i t
xM e kNm with exciting 

frequency 11.40 366.4Hz  is provided in Table I. The 

maximum torsional displacement results based on the 
formulations developed in this study are compared with those 
based on Abaqus finite beam B31 element solution. The 
torsional displacement results obtained from the present exact 
solution and finite element formulation using a single beam 
element with 2 dof are found exactly identical to Abaqus 
beam model based on 80 beam elements with 486 dof in 
order to achieve the solution accuracy.   

 

Table I: Static and dynamic results for cantilever hollow shaft under end 
harmonic torsion 

TYPE OF 

RESPONSE 
Variable 

Present FE 
(2 dof) 

Abaqus FE 
(486 dof) 

Exact 
Solution 

Static 

10.01   maxx (10-3 rad) 80.74 80.75 80.74 

Dynamic 

11.40   maxx (10-3rad) -50.53 -50.53 -50.53 

 

Example (2): Cantilever Shaft under Distributed Torsion 

A 4000mm cantilever shaft having solid cross-section of 
radius 40mm subjected to uniform distributed harmonic 

twisting moment ( , ) 4000 i tm x t e Nm  is considered as 

shown in Fig. 5. The material of the cantilever is made from 
steel with the following mechanical properties; modulus of 

elasticity 200E GPa , modulus of rigidity 70G GPa , 

and the material density 37850 /kg m  . The objective of 

this example is to: 

(1) Extract the natural torsional frequencies from the dynamic 
response of the cantilever shaft under the given harmonic 
torsion, and 

(2) Determine the steady state torsional mode shapes of the 
cantilever shaft corresponded to the natural torsional 
frequencies. 

The cantilever shaft in this example is modelled in Abaqus 
finite element using 100 beam B31 elements with six degrees 
of freedom per node along the longitudinal axis of the shaft, 
i.e., a total of 606 degrees of freedom is used in order to yield 
the accuracy of this problem. While the present finite element 
uses a single two-noded beam element with 2 dof to approach 
the corresponding results obtained from exact closed form 
solution. 

O

L=4000mm

Z

X

mx=4.0eiΩt kNm/m 

80mm
 

Fig. 5: A cantilever shaft under harmonic distributed twisting moment 

Extracting of Natural Torsional Frequencies 
Under the given harmonic torsional loading, the natural 

torsional frequencies are extracted from the multiple steady 
state torsional dynamic analyses in which the exciting 

frequency  of the torsional loading varying from nearly 
zero to 1600Hz. Fig. 6 shows the results for the nodal 

(maximum) torsional displacement 2 at the cantilever end 

against the forcing frequency . The torsional natural 
frequencies are determined at the peaks of the torsional 
displacement-frequency diagram as observed in Fig. 6. Peaks 
on the diagram indicate the resonance and are then identify 
the torsional natural frequencies of the given cantilever shaft.  
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Fig. 6: Natural torsional frequencies of the cantilever under harmonic torsion 
 

The first four torsional natural frequencies extracted from the 
steady state dynamic responses at the peaks are given in 
Table II. The values of the torsional natural frequencies 
obtained from the finite beam element developed in this study 
using a single two-noded beam element (2 dof) are presented 
and compared with the corresponding results obtained from 
the exact closed form solution developed and Abaqus 
solution using 100 beam B31 element (606 dof). It is noted 
from the results that, the present finite beam element solution 
with a minimum degrees of freedom exhibit excellent 
agreement when compared with other solutions, the exact 
closed-form solution and Abaqus finite beam B31 element 
model having a large number of degrees of freedom. Thus, 
the present finite beam element model is able to capture the 
eigen-frequencies of the given cantilever shaft.  

Table II: Natural torsional frequencies (in Hz) for the cantilever shaft  

under harmonic twisting moment  

Present FE 

(2 dof) 

Abaqus FE 

(606 dof) 

Exact 

Solution 
Number 

195.6 195.6 195.6 1 

586.9 586.7 586.9 2 

978.2 978.0 978.2 3 

1369.5 1369.3 1369.6 4 
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Steady State Torsional Mode Shapes 
The first five steady state torsional mode shapes for the 

dynamic vibration response of the cantilever shaft under the 

given distributed harmonic torsion  

( ) 4000 i t
xm x,t e Nm   is shown in Fig. 6. The normalized 

steady state torsional modes 2 xmax( )  obtained using the 

present finite beam element are plotted for the first four 

torsional exciting frequencies:  

1 195.6Hz  , 2 586.9Hz  , 3 978.2Hz   and  

4 1369.5Hz  , respectively. 
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Fig. 7: Normalized torsional mode shapes for cantilever shaft under 
harmonic distributed torsion 

Example (3): Clamped-Clamped Shaft – Verification of The 
Present Finite Beam Element  

This example is presented to exhibit the ability of the 
present finite element developed in the paper to achieve the 
required accuracy for the static and dynamic responses for the 
given problem by comparing the present results with those 
based on the Abaqus finite beam model solution. A clamped-
clamped shaft under various concentrated and distributed 
harmonic twisting moments is considered as shown in Fig. 8.  
The shaft has a circular solid cross-section of radius 50mm  

and 8000mm span, while the mechanical material properties 

are given as: 210E GPa , 72G GPa  and 37850 /kg m . 

It is required to assess the efficiency and accuracy of the 
present finite element formulation in evaluating the nodal 

torsional degrees of freedom ( for 1,2,3,4,5)xi i  for the 

following analyses: 

(i) The static torsional analysis of the clamped-clamped shaft 
under the given harmonic twisting moments at very low 
exciting frequency in order to capture the static response.  
 

(ii) The torsional dynamic analysis of the clamped-clamped 
shaft under the given harmonic twisting moments at 
exciting frequency 50Hz .  

 
 

 

Fig. 7: A clamped-clamped shaft under various harmonic twisting moments 

In order to establish the validity and accuracy of the 
present finite element based on two-noded beam element, the 
nodal degrees of freedom results for static torsional response 
and steady state torsional dynamic response are obtained and 
compared against the results based on established Abaqus 
finite beam element. Under the present finite element 
solution, only four two-noded beam elements with a total of 5 
degrees of freedom are used while in Abaqus finite element 
model, the shaft is consisted of two-hundred two-noded beam 
B31 elements with a total of 1206 degrees of freedom along 
the shaft longitudinal axis to achieve the convergence. 

Static Torsional Response  

The static results for the nodal torsional displacement 

(for 1,2,3,4,5)xi i  are plotted against the shaft longitudinal 

axis x as illustrated in Fig. 8a, in which the static torsional 

response is approached by using a very small exciting 
frequency  . The static results shows that, the nodal 

torsional degrees of freedom obtained from the present finite 
beam element formulation having 5 degrees of freedom 
coincide on the corresponding results obtained from Abaqus 
beam model having 1206 dof and then provide an excellent 
agreement.  

Dynamic Torsional Response  

Fig. 7b shows the nodal degrees of freedom results for the 
steady state torsional response plotted against the shaft 
coordinate axis x . It is observed that, the developed finite 

beam element results based on four two-noded beam 
elements with 5 degrees of freedom shows again an excellent 
agreement with those results based on Abaqus finite element 
model using 200 beam B31 elements with 1206 degrees of 
freedom. This is a natural outcome of the fact that the present 
finite beam element formulation is based on the exact shape 
functions which exactly satisfy the homogeneous solution of 
the governing torsional vibration equation. This treatment 
eliminates the discretization errors occurred in the 
conventional finite element formulations which based on 
approximate interpolation shape functions. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS090300

Vol. 5 Issue 09, September-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 314



-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

N
o

d
al

 T
o

rs
io

n
al

 d
is

p
la

ce
m

en
t 

φ
i
(r

ad
)

Shaft axis  x (m)

Abaqus Solution

Present FE Solution

(b)

0.000

0.004

0.008

0.012

0.016

0.020

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

N
o

d
al

 T
o

rs
io

n
al

 d
is

p
la

ce
m

en
t 

φ
i

(r
ad

)

Shaft axis x (m)

Abaqus Solution

Present FE Solution

(a)
 

 

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

N
o

d
al

 T
o

rs
io

n
al

 d
is

p
la

ce
m

en
t 

φ
i
(r

ad
)

Shaft axis  x (m)

Abaqus Solution

Present FE Solution

(b)

0.000

0.004

0.008

0.012

0.016

0.020

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

N
o

d
al

 T
o

rs
io

n
al

 d
is

p
la

ce
m

en
t 

φ
i

(r
ad

)

Shaft axis x (m)

Abaqus Solution

Present FE Solution

(a)

 

Fig. 8: Nodal torsional displacements for Static and dynamic responses of 
clamped-clamped shaft under various harmonic torsions 

 

VIII. SUMMARY AND CONCLUSION   
From the numerical results conducted throughout this   

study, the following concluding remarks are made: 
 The dynamic equation of motion for torsional vibration 

and related boundary conditions for shafts under various 
harmonic twisting moments are derived via Hamilton’s 
principle.  

 Exact closed-form solutions of steady state torsional 
response of shafts are obtained for cantilever and simply-
supported shafts.   

 The exact closed-form solution derived is successfully 
used to formulate a family of exact shape functions 
which based on the homogeneous solution of the 
governing torsional equation.  

 The exact shape functions are used to formulate a super-
convergent finite beam element for the shafts. The 
proposed beam element has a two nodes and two degrees 
of freedom. 

 The present exact closed form solution and finite element 
formulation developed in this study are able to efficiently 
capture the quasi-static and steady state response of 
beams under harmonic torsional loading. It is also 
capable of extracting the eigen-frequencies and eigen-
modes. 

 The new beam element involves no discretization errors 
and generally provides excellent results compared with 
Abaqus finite element solution while keeping the number 
of degrees of freedom a minimum. 

 Comparison with established Abaqus finite beam 
element and exact solutions available in the literature 
demonstrates the validity and accuracy of the present 
exact closed form solution and finite element 
formulation. 
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