
  

  

 

 

  
 

                       

Exact Solution for the Flow of Oldroyd-B Fluid Between Coaxial Cylinders 

 

 

Vatsala Mathur, Kavita Khandelwal 

Department of Mathematics 

Malaviya National Institute of Technology, Jaipur-302017 

 

 

  

Abstract  
 

This paper deals with unsteady unidirectional transient 

flow of Oldroyd-B fluid between two infinitely long co-

axial circular cylinders. At time t=0
+
, the motion is 

produced by a constant pressure gradient & the inner 

cylinder start moving along its axis of symmetry with 

the constant velocity. The velocity field of the flow of 

fluid with fractional derivative is obtained by using 

Hankel and Laplace transforms. The obtained result is 

presented in terms of the generalized G-functions. Key 

difference this paper brings from previous work is that 

in this case inner cylinder is moving with constant 

velocity. The influence of different values of 

parameters, constants and fractional coefficients on the 

velocity field is also analyzed using graphical 

illustration. 
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1. Introduction  

 
Fluids are generally classified based on their 

rheological properties. The simplest classification is 

Newtonian fluid. These fluids are represented using 

Navier-Stokes theory. The fluids which do not obey 

Newton’s law of viscosity )  (
dy

dv
  , are described 

as non- Newtonian fluids. Examples of such fluids are 

blood, saliva, semen, lava, gums, slurries, emulsions, 

synovial fluid, butter, cheese, jam, ketchup, soup, 

mayonnaise etc. These fluids have complex molecular 

structure with non-linear viscoelastic behavior. To 

study non- Newtonian fluids, many models have been 

used. Out of these, differential type [1] and rate type [2] 

have received most of the attention. 

Tong [3] used constitutive relation for the flow 

of non-Newtonian fluid with fractional derivative in an 

annular pipe as follows 

(1)                    ),,()1()1( trvrtrt    

where   is tangential tension,   is the viscosity, v is 

the velocity,  and 
r  are relaxation and retardation 

times respectively. 

The starting point of the fractional derivative 

model of non-Newtonian fluid is usually a classical 

differential equation being modified by replacing the 

time derivative of an integer order by the so-called 

Riemann–Liouville fractional calculus operator [4]. 

Using fractional approach, the constitutive relation of 

the generalized Oldroyd-B fluid can be written as 

(2)             ),,()1()1( trvDD rtrt   
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where 

tD  and 


tD  are fractional operators and are 

defined as [5]   
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where ).(  is the Gamma function. When 1  , 

eq. (2) simplified as eq. (1). 

For non-Newtonian fluids, the first exact 

solution corresponding to motions of Oldroyd-B fluids 

in cylindrical domains seem to be those of Waters & 

King [6]. Fetecau [7] worked on unsteady 

unidirectional transient flows of an Oldroyd-B fluid in 

unbounded domains which geometrically are 

axisymmetric pipe-like. He used the theorem of Steklov 

to obtain exact solutions for flows satisfying no-slip 

boundary conditions. The unsteady rotational flow of a 

generalized second grade fluid through a circular 

cylinder has been considered by Kamran [8]. Exact 

solutions for the velocity field and the shear stress 

corresponding to the unsteady flows of a generalized 

Oldroyd-B fluid in an infinite circular cylinder subject 

to a longitudinal time dependent shear stress have been 

obtained by Rubbab [9]. M. Kamran [10] concluded 

unsteady linearly accelerating flow of a fractional 

second grade fluid through a circular cylinder. Various 

other studies have been done recently on non-

Newtonian fluids [11-17]. 

The aim of this paper is to study the flow of 

Oldroyd-B fluid with fractional derivative between two 

coaxial cylinders. The solution is obtained by using 

Hankel and Laplace transform. At time 
 0t a 

constant pressure gradient applied and the inner 

cylinder moves with constant velocity & the outer 

cylinder held fixed. The obtained result is presented in 

terms of the generalized G functions.  

 

2. Governing equations 

 
We consider the unsteady flow of an incompressible 

Oldroyd-B fluid in coaxial cylinders. Further, following 

assumptions are considered during this mathematical 

study. The fluid velocity at the direction of the pipe 

radius is assumed to be zero. The flows are assumed to 

be axisymmetric. The axial velocity is assumed to be 

only relevant to the cylinder radius. 

The equation of axial flow motion is 

                                          

(4)                             ,
1

z

p

rrt

v

















  

where   is the constant density of the fluid. 

Putting eq. (2) in eq. (4), we get 
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is the kinematical viscosity and 

z

p
A




 

 

is the constant pressure gradient that acts 

on the liquid in the z-direction. 

 

3. Flow through the annular region   
 

Let us consider an incompressible Oldroyd-B fluid in 

infinite coaxial circular cylinders. At time ,0t  fluid 

is assumed to be stationary. At time
 0t , a constant 

pressure gradient applied and the inner cylinder moves 

with constant velocity and the outer cylinder held fixed. 

Consider that the radius of inner and outer cylinders are 

1R  and )( 12 RR   respectively.  

The initial and boundary conditions are  

(6)              ,RR    ,0)0,(      ,0)0,( 21t  rrvrv                                                      

(7)            0,    t,0),(      ,),( 21  tRvftRv
 

where f  is constant. 

Making the change of unknown function 
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Putting eq. (8) in eq. (5), we obtain 
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Putting eq. (8) in eqs. (6) & (7), we obtain
  

                

(11)              ,0)0,(      ),()0,( t  rurVru  

                                 

(12)                      .0),(      ,),( 21  tRuftRu

  

The Hankel Transform method with respect to r is used 

and is defined as follows 
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The inverse Hankel Transform is 
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is the positive root of  .0),( 21 Rsn

 

Applying the Hankel transform in eq. (10), we obtain 

 

  (15)     ,
)1(

 )(2

)1(

)(2
                              

)1(

12
                              

2
),()1(

),(
)1(

22

2











































n

nr

n

n

r

ntrn

n

t

s

tsAg

s

tsAg

t
f

ftsuDs
t

tsu
D

 

where 

.1)}()()()({
2

)( 21102110
2









 nnnn

n
n sRYsRJsRJsRY

sR
sg



 

Applying the Hankel transform of eq. (11), we obtain 
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Applying Laplace transform of eq. (15) and using eq. 

(16), we obtain 
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Applying Inverse-Laplace transform of eq. (17) and 

taking into account the following result [18] 
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The expression of the velocity field can be written as   
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4. Results 

 
As shown in below diagrams, the velocity ),( trv  

given by eq. (20) has been drawn against r for different 

values of the time t , f and some other relevant 

parameters.  

Figure 1 is showing the time dependency on 

the fluid motion. It can also be clearly seen that the 

velocity increases, when time increases. 
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Fig. 1: Profiles of the velocity v(r,t) given by 
eq. (20) for R1=0.3, R2=0.5, f=-3, ν=0.035, λ=12, 
λr=2.2, α=0.9, β=0.6, A=4 and different values 
of t. 

Figure 2 is showing the dependency of the 

kinematic viscosity  on the fluid motion. It can also 

be clearly seen that the velocity decreases, when 

kinematic viscosity increases. 
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Fig. 2: Profiles of the velocity v(r,t) given by 
eq. (20) for R1=0.3, R2=0.5, f=-3, t=6s, λ=9, λr=4, 
α=0.3, β=0.3, A=4 and different values of ν. 

 Figure 3 is showing the dependency of the 

relaxation time   on the fluid motion. It can also be 

clearly seen that the velocity decreases, when   

increases. 
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Fig. 3: Profiles of the velocity v(r,t) given by 
eq. (20) for R1=0.3, R2=0.5, f=-3, t=5s,ν=0.04, 
λr=7,α=0.3, β=0.3, A=4 and different values of 
λ.

 
Figure 4 is showing the dependency of the 

retardation time 
r  on the fluid motion. It can also be 

clearly seen that the velocity increases, when 
r  

increases. 
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Fig. 4: Profiles of the velocity v(r,t) given by 
eq. (20) for R1=0.3, R2=0.5, f=-3,t=5s, ν=0.04, 
λ=8, α=0.3, β=0.9, A=4 and different values of 
λr. 

Figure 5 is showing the dependency of the 

fractional parameter   on the fluid motion. It can also 

be clearly seen that the velocity increases, when   

increases. 
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Fig. 5: Profiles of the velocity v(r,t) given by 
eq. (20) for R1=0.3, R2=0.5, f=-3, t=6s, ν=0.045, 
λ=25, λr=8, β=0.5, A=4 and different values of 
α. 

Figure 6 is showing the dependency of the 

fractional parameter   on the fluid motion. It can also 

be clearly seen that the velocity decreases, when   

increases. 
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Fig. 6: Profiles of the velocity v(r,t) given by 
eq. (20) for R1=0.3, R2=0.5, f=-3, t=6s,ν=0.04, 
λ=8, λr=5.5, α=1, A=4 and different values of β. 

Figure 7 is showing the dependency of f on the 

fluid motion. It can also be clearly seen that the 

velocity decreases, when f increases. 
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Fig. 7: Profiles of the velocity v(r,t) given by 
eq. (20) for R1=0.3, R2=0.5, t=5s, ν=0.045, λ=14, 
λr=2.8, α=0.8, β=0.5, A=4 and different values 
of f. 

Figure 8 is showing the dependency of A  on 

the fluid motion. It can also be clearly seen that the 

velocity increases, when A  increases. 
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Fig. 8: Profiles of the velocity v(r,t) given by 
eq. (20) for R1=0.3, R2=0.5, f=-3, t=5s,ν=0.04, 
λ=11,λr=2.5,α=0.9, β=0.6 and different values of 
A. 

In all of above, the root ns
 has been approximated 

by
)(2

)12(

12 RR

n



 
. 

 

5. Conclusions 

 
The main objective of this paper is to provide exact 

solution for the velocity field for Oldroyd-B fluid 

between two coaxial circular cylinders where inner 

cylinder is moving with constant velocity & the outer 

cylinder is fixed. This solution is obtained by using 

Hankel transform and Laplace transform methods and 

the result is presented in terms of generalized G 

functions. This solution satisfies the governing 

equation and all imposed initial and boundary 

conditions. The velocity field is also analyzed using 

graphical illustration for various parameters, constants 

and fractional coefficients. 
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