
Exploiting Dynamic Resource Allocation for
Efficient Parallel Data Processing in the Cloud

G.SIREESHA*, L.BHARATHI**

*(Department of Computer Science, AME,JNTU, PALWANCHA,INDIA

** (Asst prof in Department of Computer Science, AME,JNTU,PALWANCHA,INDIA

ABSTRACT
In recent years ad-hoc parallel data processing has

emerged to be one of the killer applications for

Infrastructure-as-a-Service (IaaS) clouds. Major Cloud

computing companies have started to integrate

frameworks for parallel data processing in their product

portfolio, making it easy for customers to access these

services and to deploy their programs. In this paper we

discuss the opportunities and challenges for efficient

parallel data processing in clouds and present our

research project Nephele. Nephele is the first data

processing framework to explicitly exploit the dynamic

resource allocation offered by today’s IaaS clouds for

both, task scheduling and execution. Particular tasks of a

processing job can be assigned to different types of

virtual machines which are automatically instantiated

and terminated during the job execution. Based on this

new framework, we perform extended evaluations of

MapReduce-inspired processing jobs on an IaaS cloud

system and compare the results to the popular data

processing framework Hadoop.

Keywords – Many-Task Computing, High-Throughput

Computing, Loosely Coupled Applications, Cloud

Computing

I. INTRODUCTION

Today a growing number of companies have to process huge

amounts of data in a cost-efficient manner. Classic

representatives for these companies are operators of Internet

search engines, like Google, Yahoo, or Microsoft. The vast

amount of data they have to deal with every day has made

traditional database solutions prohibitively expensive.

Instead, these companies have popularized an architectural

paradigm based on a large number of commodity servers.

Problems like processing rawled documents or regenerating

a web index are split into several independent subtasks,

distributed among the available nodes, and computed in

parallel.In order to simplify the development of distributed

applications on top of such architectures, many of these

companies have also built customized data processing

frameworks. Examples are Google’s MapReduce,

Microsoft’s Dryad , or Yahoo!’s Map-Reduce-Merge .They

can be classified by terms like high throughput computing

(HTC) or many-task computing (MTC), depending on the

amount of data and the number of tasks involved in the

computation [20]. Although these systems differ in design,

their programming models share similar objectives, namely

hiding the hassle of parallel programming, fault tolerance,

and execution optimizations from the developer. Developers

can typically continue to write sequential programs. The

processing framework then takes care of distributing the

program among the available nodes and executes each

instance of the program on the appropriate fragment of data.

In this paper we want to discuss the particular challenges

and opportunities for efficient parallel data processing in

clouds and present Nephele, a new processing framework

explicitly designed for cloud environments.Most notably,

Nephele is the first data processing framework to include the

possibility of dynamically allocating deallocating different

compute resources from a cloud in its scheduling and during

job execution. This paper is an extended version of It

includes further details on scheduling strategies and

extended experimental results.

DESIGNING & IMPLEMENTATION

Based on the challenges and opportunities outlined in the

previous section we have designed Nephele, a new data

processing framework for cloud environments. Nephele

takes up many ideas of previous processing frameworks but

refines them to better match the dynamic and opaque nature

of a cloud.

Architecture
Nephele’s architecture follows a classic master-worker

pattern as illustrated in

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org

Fig. Structural overview of Nephele running in an

Infrastructure-as-a-Service (IaaS) cloud

Before submitting a Nephele compute job, a user must

start a VM in the cloud which runs the so called Job

Manager (JM). The Job Manager receives the client’s jobs,

is responsible for scheduling them, and coordinates their

execution. It is capable of communicating with the interface

the cloud operator provides to control the instantiation of

VMs. We call this interface the Cloud Controller. By means

of the Cloud Controller the Job Manager can allocate or

deallocate VMs according to the current job execution

phase. We will comply with common Cloud computing

terminology and refer to these VMs as instances for the

remainder of this paper. The term instance type will be used

to differentiate between VMs with different hardware

characteristics. E.g., the instance type “m1.small” could

denote VMs with one CPU core, one GB of RAM, and a

128 GB disk while the instance type “c1.xlarge” could refer

to machines with 8 CPU cores, 18 GB RAM, and a 512 GB

disk. The actual execution of tasks which a Nephele job

consists of is carried out by a set of instances. Each instance

runs a so-called Task Manager (TM). A Task Manager

receives one or more tasks from the Job Manager at a time,

executes them, and after that informs the Job Manager about

their completion or possible errors. Unless a job is submitted

to the Job Manager, we expect the set of instances (and

hence the set of Task Managers) to be empty. Upon job

reception the Job Manager then decides, depending on the

job’s particular tasks, how many and what type of instances

the job should be executed on, and when the respective

instances must be allocated/deallocated to ensure a

continuous but cost-efficient processing. Our current

strategies for these decisions are highlighted at the end of

this section. The newly allocated instances boot up with a

previously compiled VM image. The image is configured to

automatically start a Task Manager and register it with the

Job Manager. Once all the necessary Task Managers have

successfully contacted the Job Manager, it triggers the

execution of the scheduled job.Initially, the VM images

used to boot up the Task Managers are blank and do not

contain any of the data the Nephele job is supposed to

operate on. As a result, we expect the cloud to offer

persistent storage . This persistent storage is supposed to

store the job’s input data and eventually receive its output

data. It must be accessible for both the Job Manager as well

as for the set of Task Managers, even if they are connected

by a private or virtual network.

.

III Problem Definition

Similar to Microsoft’s Dryad , jobs in Nephele are expressed

as a directed acyclic graph (DAG). Each vertex in the graph

represents a task of the overall processing job, the graph’s

edges define the communication flow between these tasks.

We also decided to use DAGs to describe processing jobs

for two major reasons:

The first reason is that DAGs allow tasks to have multiple

input and multiple output edges. This tremendously

simplifies the implementation of classic data combining

functions like, e.g., join operations .

Second and more importantly, though, the DAG’s edges

explicitly model the communication paths of the processing

job. As long as the particular tasks only exchange data

through these designated communication edges, Nephele

can always keep track of what instance might still require

data from what other instances and which instance can

potentially be shut down and deallocated.

Defining a Nephele job comprises three mandatory steps:

First, the user must write the program code for each task of

his processing job or select it from an external library.

Second, the task program must be assigned to a vertex.

Finally, the vertices must be connected by edges to define

the communication paths of the job. asks are expected to

contain sequential code and process so-called records, the

primary data unit in Nephele. Programmers can define

arbitrary types of records. From a programmer’s perspective

records enter and leave the task program through input or

output gates. Those input and output gates can be considered

endpoints of the DAG’s edges which are defined in the

following step. Regular tasks (i.e. tasks which are later

assigned to inner vertices of the DAG) must have at least

one or more input and output gates. Contrary to that, tasks

which either represent the source or the sink of the data flow

must not have input or output gates, respectively.

IV INDENTATIONS

Modules:

NETWORK MODULE

 Server - Client computing or networking is a distributed

application architecture that partitions tasks or workloads

between service providers (servers) and service requesters,

called clients. Often clients and servers operate over a

computer network on separate hardware. A server machine

is a high-performance host that is running one or more

server programs which share its resources with clients. A

client also shares any of its resources; Clients therefore

initiate communication sessions with servers which await

(listen to) incoming requests.

LBS SERVICES

 In particular, users are reluctant to use LBSs, since

revealing their position may link to their identity. Even

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org

though a user may create a fake ID to access the service, her

location alone may disclose her actual identity. Linking a

position to an individual is possible by various means, such

as publicly available information city maps. When a user u

wishes to pose a query, she sends her location to a trusted

server, the anonymizer through a secure connection (SSL).

The latter obfuscates her location, replacing it with an

anonymizing spatial region (ASR) that encloses u. The ASR

is then forwarded to the LS. Ignoring where exactly u is, the

LS retrieves (and reports to the AZ) a candidate set (CS) that

is guaranteed to contain the query results for any possible

user location inside the ASR. The AZ receives the CS and

reports to u the subset of candidates that corresponds to her

original query.

SYSTEM MODEL:

 The ASR construction at the anonymization process

abides by the user’s privacy requirements. Particularly,

specified an anonymity degree K by u, the ASR satisfies two

properties: (i) it contains u and at least another K * 1 users,

and (ii) even if the LS knew the exact locations of all users

in the system.

 We propose an edge ordering anonymization

approach for users in road networks, which guarantees K-

anonymity under the strict reciprocity requirement

(described later).

 We identify the crucial concept of border nodes, an

important indicator of the CS size and of the query

processing cost at the LS.

 We consider various edge orderings, and

qualitatively assess their query performance based on border

nodes.

 We design efficient query processing mechanisms

that exploit existing network database infrastructure, and

guarantee CS inclusiveness and minimality. Furthermore,

they apply to various network storage schemes.

 We devise batch execution techniques for

anonymous queries that significantly reduce the overhead of

the LS by computation sharing.

SCHEDULED TASK:

 Recently, considerable research interest has focused on

preventing identity inference in location-based services.

Proposing spatial cloaking techniques. In the following, we

describe existing techniques for ASR computation (at the

AZ) and query processing (at the LS). At the end, we cover

alternative location privacy approaches and discuss why

they are inappropriate to our problem setting. This offers

privacy protection in the sense that the actual user position u

cannot be distinguished from others in the ASR, even when

malicious LS is equipped/advanced enough to possess all

user locations. This spatial K-anonymity model is most

widely used in location privacy research/applications, even

though alternative models are emerging.

QUERY PROCESSING:

 Processing is based on implementation of the theorem

uses (network-based) search operations as off the shelf

building blocks. Thus, the NAP query evaluation

methodology is readily deployable on existing systems, and

can be easily adapted to different network storage schemes.

In this case, the queries are evaluated in a batch. we propose

the network-based anonymization and processing (NAP)

framework, the first system for K- anonymous query

processing in road networks. NAP relies on a global user

ordering and bucketization that satisfies reciprocity and

guarantees K-anonymity. We identify the ordering

characteristics that affect subsequent processing, and

qualitatively compare alternatives. Then, we propose query

evaluation techniques that exploit these characteristics. In

addition to user privacy, NAP achieves low computational

and communication costs, and quick responses overall. It is

readily deployable, requiring only basic network operations.

.

V DIAGRAMS

ARCHITECTURE

DATAFLOW DIAGRAM

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org

SEQUENCE DIAGRAM

USE CASE DIAGRAM

CONCLUSION

In this paper we have discussed the challenges and

opportunities for efficient parallel data processing in cloud

environments and presented Nephele, the first data

processing framework to exploit the dynamic resource

provisioning offered by today’s IaaS clouds. We have

described Nephele’s basic architecture and presented a

performance comparison to the well-established data

processing framework Hadoop. The performance evaluation

gives a first impression on how the ability to assign specific

virtual machine types to specific tasks of a processing job,

as well as the possibility to automatically allocate/deallocate

virtual machines in the course of a job execution, can help to

improve the overall resource utilization and, consequently,

reduce the processing cost. With a framework like Nephele

at hand, there are a variety of open research issues, which

we plan to address for future work. In particular, we are

interested in improving Nephele’s ability to adapt to

resource overload or underutilization during the job

execution automatically. Our current profiling approach

builds a valuable basis for this, however, at the moment the

system still requires a reasonable amount of user

annotations. In general, we think our work represents an

important contribution to the growing field of Cloud

computing services and points out exciting new

opportunities in the field of parallel data processing.

REFERENCES

[1] Amazon Web Services LLC. Amazon Elastic Compute

Cloud (Amazon EC2). http://aws.amazon.com/ec2/, 2009.

[2]Amazon Web Services LLC. Amazon Elastic

MapReduce. http: //aws.amazon.com/elasticmapreduce/,

2009.

[3] AmazonWeb Services LLC. Amazon Simple Storage

Service. http: //aws.amazon.com/s3/, 2009.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

4www.ijert.org

[4] D. Battr´e, S. Ewen, F. Hueske, O. Kao, V. Markl, and

D. Warneke. Nephele/PACTs: A Programming Model and

Execution Framework for Web-Scale Analytical Processing.

In SoCC ’10: Proceedings of the ACM Symposium on

Cloud Computing 2010, pages, New York, NY, USA, 2010.

AC.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D.

Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and Efficient

Parallel Processing of Massive Data Sets. Proc. VLDB

Endow., 1(2):1265–1276, 2008.

[6] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.

Map-Reduce-Merge: Simplified Relational Data Processing

on Large Clusters. In SIGMOD ’07: Proceedings of the

2007 ACM SIGMOD international conference on

Management of data, pages 1029–1040,New York, NY,

USA, 2007. ACM.

[7] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King,

and Y. Tsang. Maximum Likelihood Network Topology

Identification from Edge-Based Unicast Measurements.

SIGMETRICS Perform. Eval. Rev., 30(1):11–20, 2002.

[8] R. Davoli. VDE: Virtual Distributed Ethernet. Testbeds

and Research Infrastructures for the Development of

Networks & Communities, International Conference on,

0:213–220, 2005.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In OSDI’04: Proceedings of

the 6th conference on Symposium on Opearting Systems

Design & Implementation,Berkeley, CA, USA, 2004.

USENIX Association.

[10] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.

Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A.

Laity, J. C. Jacob, and D. S. Katz. Pegasus: A Framework

for Mapping Complex Scientific Workflows onto

Distributed Systems. Sci. Program., 13(3):219–237, 2005.

[11] T. Dornemann, E. Juhnke, and B. Freisleben. On-

Demand Resource Provisioning for BPEL Workflows Using

Amazon’s Elastic Compute Cloud. In CCGRID ’09:

Proceedings of the 2009 9
th

 IEEE/ACM International

Symposium on Cluster Computing and the Grid, pages 140–

147, Washington, DC, USA, 2009. IEEE Computer Society.

[12] I. Foster and C. Kesselman. Globus: A Metacomputing

Infrastructure Toolkit. Intl. Journal of Supercomputer

Applications,, 1997.

[13] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S.

Tuecke. Condor- G: A Computation Management Agent for

Multi-Institutional Grids. Cluster Computing, 5(3):237–246,

2002.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.

Dryad: Distributed Data-Parallel Programs from Sequential

Building Blocks. In EuroSys ’07: Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer

Systems 2007, pages 59–72, New York, NY, USA, 2007.

ACM.

[15] A. Kivity. kvm: the Linux Virtual Machine Monitor. In

OLS ’07: The 2007 Ottawa Linux Symposium, pages 225–

230, July 2007.

[16] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.

Soman, L. Youseff, and D. Zagorodnov. Eucalyptus: A

Technical Report on an Elastic Utility Computing

Architecture Linking Your Programs to Useful Systems.

Technical report, University of California, Santa Barbara,

2008.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.

Tomkins. Pig Latin: A Not-So-Foreign Language for Data

Processing. In SIGMOD ’08: Proceedings of the 2008 ACM

SIGMOD international conference on Management of data,

pages 1099–1110, New York, NY, USA, 2008. ACM.

[18] O. O’Malley and A. C. Murthy. Winning a 60 Second

Dash with a Yellow Elephant. Technical report, Yahoo!,

2009. [19] R. Pike, S. Dorward, R. Griesemer, and S.

Quinlan. Interpreting the Data: Parallel Analysis with

Sawzall. Sci. Program., 2005.

[20] I. Raicu, I. Foster, and Y. Zhao. Many-Task Computing

for Grids and Supercomputers. In Many-Task Computing on

Grids and Supercomputers, 2008. MTAGS 2008. Workshop

on, pages 1–11, Nov. 2008.

[21] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M.

Wilde. Falkon: a Fast and Light-weight tasK executiON

framework. In SC ’07: Proceedings of the 2007 ACM/IEEE

conference on Supercomputing,, New York, NY, USA,

2007. ACM.

[22] L. Ramakrishnan, C. Koelbel, Y.-S. Kee, R. Wolski, D.

Nurmi, D. Gannon, G. Obertelli, A. YarKhan, A. Mandal, T.

M. Huang, K. Thyagaraja, and D. Zagorodnov. VGrADS:

Enabling e-Science Workflows on Grids and Clouds with

Fault Tolerance. In SC ’09: Proceedings of the Conference

on High Performance Computing Networking, Storage and

Analysis, pages 1–12, New York, NY, USA, 2009. ACM.

[23] R. Russell. virtio: Towards a De-Facto Standard for

Virtual I/O Devices. SIGOPS Oper. Syst. Rev., 42(5):95–

103, 2008.

[24] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil.

LEO - DB2’s LEarning Optimizer. In VLDB ’01:

Proceedings of the 27
th

 International Conference on Very

Large Data Bases,San Francisco, CA, USA, 2001. Morgan

Kaufmann Publishers Inc.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

5www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

6www.ijert.org

