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ABSTRACT 
In recent years ad-hoc parallel data processing has 

emerged to be one of the killer applications for 

Infrastructure-as-a-Service (IaaS) clouds. Major Cloud 

computing companies have started to integrate 

frameworks for parallel data processing in their product 

portfolio, making it easy for customers to access these 

services and to deploy their programs. In this paper we 

discuss the opportunities and challenges for efficient 

parallel data processing in clouds and present our 

research project Nephele. Nephele is the first data 

processing framework to explicitly exploit the dynamic 

resource allocation offered by today’s IaaS clouds for 

both, task scheduling and execution. Particular tasks of a 

processing job can be assigned to different types of 

virtual machines which are automatically instantiated 

and terminated during the job execution. Based on this 

new framework, we perform extended evaluations of 

MapReduce-inspired processing jobs on an IaaS cloud 

system and compare the results to the popular data 

processing framework Hadoop. 

 

Keywords – Many-Task Computing, High-Throughput 
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I. INTRODUCTION 

Today a growing number of companies have to process huge 

amounts of data in a cost-efficient manner. Classic 

representatives for these companies are operators of Internet 

search engines, like Google, Yahoo, or Microsoft. The vast 

amount of data they have to deal with every day has made 

traditional database solutions prohibitively expensive. 

Instead, these companies have popularized an architectural 

paradigm based on a large number of commodity servers. 

Problems like processing  rawled documents or regenerating 

a web index are split into several independent subtasks, 

distributed among the available nodes, and computed in 

parallel.In order to simplify the development of distributed 

applications on top of such architectures, many of these 

companies have also built customized data processing 

frameworks. Examples are Google’s MapReduce, 

Microsoft’s Dryad , or Yahoo!’s Map-Reduce-Merge .They 

can be classified by terms like high throughput computing 

(HTC) or many-task computing (MTC), depending on the 

amount of data and the number of tasks involved in the 

computation [20]. Although these systems differ in design, 

their programming models share similar objectives, namely 

hiding the hassle of parallel programming, fault tolerance, 

and execution optimizations from the developer. Developers 

can typically continue to write sequential programs. The 

processing framework then takes care of distributing the 

program among the available nodes and executes each 

instance of the program on the appropriate fragment of data. 

 

In this paper we want to discuss the particular challenges 

and opportunities for efficient parallel data processing in 

clouds and present Nephele, a new processing framework 

explicitly designed for cloud environments.Most notably, 

Nephele is the first data processing framework to include the 

possibility of dynamically allocating deallocating different 

compute resources from a cloud in its scheduling and during 

job execution. This paper is an extended version of It 

includes further details on scheduling strategies and 

extended experimental results.  

 

DESIGNING & IMPLEMENTATION  

Based on the challenges and opportunities outlined in the 

previous section we have designed Nephele, a new data 

processing framework for cloud environments. Nephele 

takes up many ideas of previous processing frameworks but 

refines them to better match the dynamic and opaque nature 

of a cloud. 

 

Architecture 
Nephele’s architecture follows a classic master-worker 

pattern as illustrated in  
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Fig. Structural overview of Nephele running in an 

Infrastructure-as-a-Service (IaaS) cloud 

 

Before submitting a Nephele compute job, a user must 

start a VM in the cloud which runs the so called Job 

Manager (JM). The Job Manager receives the client’s jobs, 

is responsible for scheduling them, and coordinates their 

execution. It is capable of communicating with the interface 

the cloud operator provides to control the instantiation of 

VMs. We call this interface the Cloud Controller. By means 

of the Cloud Controller the Job Manager can allocate or 

deallocate VMs according to the current job execution 

phase. We will comply with common Cloud computing 

terminology and refer to these VMs as instances for the 

remainder of this paper. The term instance type will be used 

to differentiate between VMs with different hardware 

characteristics. E.g., the instance type “m1.small” could 

denote VMs with one CPU core, one GB of RAM, and a 

128 GB disk while the instance type “c1.xlarge” could refer 

to machines with 8 CPU cores, 18 GB RAM, and a 512 GB 

disk. The actual execution of tasks which a Nephele job 

consists of is carried out by a set of instances. Each instance 

runs a so-called Task Manager (TM). A Task Manager 

receives one or more tasks from the Job Manager at a time, 

executes them, and after that informs the Job Manager about 

their completion or possible errors. Unless a job is submitted 

to the Job Manager, we expect the set of instances (and 

hence the set of Task Managers) to be empty. Upon job 

reception the Job Manager then decides, depending on the 

job’s particular tasks, how many and what type of instances 

the job should be executed on, and when the respective 

instances must be allocated/deallocated to ensure a 

continuous but cost-efficient processing. Our current 

strategies for these decisions are highlighted at the end of 

this section. The newly allocated instances boot up with a 

previously compiled VM image. The image is configured to 

automatically start a Task Manager and register it with the 

Job Manager. Once all the necessary Task Managers have 

successfully contacted the Job Manager, it triggers the 

execution of the scheduled job.Initially, the VM images 

used to boot up the Task Managers are blank and do not 

contain any of the data the Nephele job is supposed to 

operate on. As a result, we expect the cloud to offer 

persistent storage . This persistent storage is supposed to 

store the job’s input data and eventually receive its output 

data. It must be accessible for both the Job Manager as well 

as for the set of Task Managers, even if they are connected 

by a private or virtual network. 

.  

III Problem Definition 
 

Similar to Microsoft’s Dryad , jobs in Nephele are expressed 

as a directed acyclic graph (DAG). Each vertex in the graph 

represents a task of the overall processing job, the graph’s 

edges define the communication flow between these tasks. 

We also decided to use DAGs to describe processing jobs 

for two major reasons: 

The first reason is that DAGs allow tasks to have multiple 

input and multiple output edges. This tremendously 

simplifies the implementation of classic data combining 

functions like, e.g., join operations .  

Second and more importantly, though, the DAG’s edges 

explicitly model the communication paths of the processing 

job. As long as the particular tasks only exchange data 

through these designated communication edges, Nephele 

can always keep track of what instance might still require 

data from what other instances and which instance can 

potentially be shut down and deallocated. 

Defining a Nephele job comprises three mandatory steps: 

First, the user must write the program code for each task of 

his processing job or select it from an external library. 

Second, the task program must be assigned to a vertex. 

Finally, the vertices must be connected by edges to define 

the communication paths of the job.  asks are expected to 

contain sequential code and process so-called records, the 

primary data unit in Nephele. Programmers can define 

arbitrary types of records. From a programmer’s perspective 

records enter and leave the task program through input or 

output gates. Those input and output gates can be considered 

endpoints of the DAG’s edges which are defined in the 

following step. Regular tasks (i.e. tasks which are later 

assigned to inner vertices of the DAG) must have at least 

one or more input and output gates. Contrary to that, tasks 

which either represent the source or the sink of the data flow 

must not have input or output gates, respectively. 

 

 

IV INDENTATIONS 

Modules: 

NETWORK MODULE 

      Server - Client computing or networking is a distributed 

application architecture that partitions tasks or workloads 

between service providers (servers) and service requesters, 

called clients. Often clients and servers operate over a 

computer network on separate hardware. A server machine 

is a high-performance host that is running one or more 

server programs which share its resources with clients. A 

client also shares any of its resources; Clients therefore 

initiate communication sessions with servers which await 

(listen to) incoming requests. 

LBS SERVICES 

      In particular, users are reluctant to use LBSs, since 

revealing their position may link to their identity. Even 
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though a user may create a fake ID to access the service, her 

location alone may disclose her actual identity. Linking a 

position to an individual is possible by various means, such 

as publicly available information city maps. When a user u 

wishes to pose a query, she sends her location to a trusted 

server, the anonymizer through a secure connection (SSL). 

The latter obfuscates her location, replacing it with an 

anonymizing spatial region (ASR) that encloses u. The ASR 

is then forwarded to the LS. Ignoring where exactly u is, the 

LS retrieves (and reports to the AZ) a candidate set (CS) that 

is guaranteed to contain the query results for any possible 

user location inside the ASR. The AZ receives the CS and 

reports to u the subset of candidates that corresponds to her 

original query.  

 

SYSTEM MODEL:  

      The ASR construction at the  anonymization process 

abides by the user’s privacy requirements. Particularly, 

specified an anonymity degree K by u, the ASR satisfies two 

properties: (i) it contains u and at least another K * 1 users, 

and (ii) even if the LS knew the exact locations of all users 

in the system.   

 We propose an edge ordering anonymization 

approach for users in road networks, which guarantees K-

anonymity under the strict reciprocity requirement 

(described later).  

 We identify the crucial concept of border nodes, an 

important indicator of the CS size and of the query 

processing cost at the LS.  

 We consider various edge orderings, and 

qualitatively assess their query performance based on border 

nodes.  

 We design efficient query processing mechanisms 

that exploit existing network database infrastructure, and 

guarantee CS inclusiveness and minimality. Furthermore, 

they apply to various network storage schemes.  

 We devise batch execution techniques for 

anonymous queries that significantly reduce the overhead of 

the LS by computation sharing.  

SCHEDULED TASK: 

      Recently, considerable research interest has focused on 

preventing identity inference in location-based services. 

Proposing spatial cloaking techniques. In the following, we 

describe existing techniques for ASR computation (at the 

AZ) and query processing (at the LS). At the end, we cover 

alternative location privacy approaches and discuss why 

they are inappropriate to our problem setting. This offers 

privacy protection in the sense that the actual user position u 

cannot be distinguished from others in the ASR, even when 

malicious LS is equipped/advanced enough to possess all 

user locations. This spatial K-anonymity model is most 

widely used in location privacy research/applications, even 

though alternative models are emerging.  

QUERY PROCESSING:  

      Processing is based on implementation of the theorem 

uses (network-based) search operations as off the shelf 

building blocks. Thus, the NAP query evaluation 

methodology is readily deployable on existing systems, and 

can be easily adapted to different network storage schemes. 

In this case, the queries are evaluated in a batch. we propose 

the network-based anonymization and processing (NAP) 

framework, the first system for K- anonymous query 

processing in road networks. NAP relies on a global user 

ordering and bucketization that satisfies reciprocity and 

guarantees K-anonymity. We identify the ordering 

characteristics that affect subsequent processing, and 

qualitatively compare alternatives. Then, we propose query 

evaluation techniques that exploit these characteristics. In 

addition to user privacy, NAP achieves low computational 

and communication costs, and quick responses overall. It is 

readily deployable, requiring only basic network operations.  

. 

V DIAGRAMS 

ARCHITECTURE

 

DATAFLOW DIAGRAM 
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SEQUENCE DIAGRAM 

 

USE CASE DIAGRAM 

 
 

CONCLUSION 

In this paper we have discussed the challenges and 

opportunities for efficient parallel data processing in cloud 

environments and presented Nephele, the first data 

processing framework to exploit the dynamic resource 

provisioning offered by today’s IaaS clouds. We have 

described Nephele’s basic architecture and presented a 

performance comparison to the well-established data 

processing framework Hadoop. The performance evaluation 

gives a first impression on how the ability to assign specific 

virtual machine types to specific tasks of a processing job, 

as well as the possibility to automatically allocate/deallocate 

virtual machines in the course of a job execution, can help to 

improve the overall resource utilization and, consequently, 

reduce the processing cost. With a framework like Nephele 

at hand, there are a variety of open research issues, which 

we plan to address for future work. In particular, we are 

interested in improving Nephele’s ability to adapt to 

resource overload or underutilization during the job 

execution automatically. Our current profiling approach 

builds a valuable basis for this, however, at the moment the 

system still requires a reasonable amount of user 

annotations. In general, we think our work represents an 

important contribution to the growing field of Cloud 

computing services and points out exciting new 

opportunities in the field of parallel data processing. 
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