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Abstract—Memory hierarchy design plays an important role 

in improving the performance of chip multiprocessor (CMP). 

The reason is that the performance of a CMP is strongly 

affected by the latency of fetching data from the memory 

system. Several organizations of the memory hierarchy have 

been explored to optimize this latency. In the memory hierarchy, 

data traversing is based on a cache coherence protocol which is 

the skeleton of the CMP's memory system. In this paper, we 

concentrate on exploring MOESI, a well-defined and popular 

cache coherence protocol in CMP. Our experiment is based on 

Splash-2 benchmark which is widely used in every publication 

regarding CMP design. The experiment results show that by 

rearrange the address range of the memory banks, L2 hit ratio 

could be improved up to 13,5 %. 

Keywords—Chip Multiprocessor; Memory Hierarchy; 

Coherence Protocol; MOESI; Memory Bank 

I. INTRODUCTION 

Nowadays, chip multiprocessor (CMP) is the main trend in 

designing the CPU for high performance devices. This 

originates from the fact that the single core chip reaches the 

limitation of execution speed because of the heat and power 

dissipation issues. Moreover, modern technologies support 

millions of transistors to be integrated in one chip which 

eases 

the design of multicore on chip in terms of area. In fact, 

several CMPS have been commercialized in the market [1], 

[2], [3], [4]. 

    In CMP chip, memory hierarchy design is a concern that 

takes a lot of effort of researchers. The memory organization, 

but not the CPU core, is the bottleneck in CMP design. Most 

of the memory systems have multiple levels of cache 

hierarchy. For instance, Intel’s commercial Ivy Bridge has 3 

levels of cache. These cache levels and the main memory 

need a coherence protocol in order to keep the memory 

consistent. For example, a L2 cache must ensure data 

consistency among L1 caches. Moreover, a good coherence 

protocol also helps the CMP to improve the performance in 

terms of memory access latency. To the best of our 

knowledge, MOESI [6] is the most widely used cache 

coherence protocol in CMP. In this paper, we first evaluate 

the CMP performance by using MOESI protocol. Then, by 

observing that the instruction and data cache have different 

ways of access model, we concentrate on optimizing the last 

level cache memory to adapt the difference and get better 

performance in terms of L2 hit ratio. Our idea is to interleave 

the address range of the memory banks and we show that, by 

simulation, the performance could improve up to 13,5% in 

comparison with a baseline model that arranges the memory 

address linearly. The experiment is carried out with 

Multi2Sim [5], an open source simulator for heterogeneous 

multiprocessor design. Splash-2 benchmark [17] is used as 

the workload in the experiment. In the experiment result, we 

focus on analyzing the cache miss latency because this 

parameter not only can determine the efficiency of the 

MOESI but also strongly affects the CMP performance. Our 

contribution in this work is (1) the statistical result of the 

CMP performance using MOESI protocol, (2) demonstration 

of the performance improvement by rearranging the address 

range of the memory banks. 

    The paper is structured as follows. Section II surveys some 

of the latest work on CMP’s cache organizations and 

coherence protocols. Section III presents the experiment 

method. Section IV gives and explains the result. And section 

V finalizes the paper. 

II. RELATED  WORK 

Several works have been carried out to improve the CMP’s 

performance by optimizing the on chip memory hierarchy. 

There are different aspects to look at in the memory hierarchy 

such as: the shared or private last level cache model, the 

cache coherence protocol, on-chip interconnection and so 

forth. While L1 cache is always private to the processor core, 

the L2 cache can be designed to be private or shared. Many 

research papers exploit the possibilities in designing the L2 

cache [7]. Shared last level cache has an advantage in 

comparison with private cache is that it dynamically allocates 

the overall cache space for all cores on chip. Thus, the last 

level cache space is better utilized and its miss ratio is 

therefore reduced. Shared last level cache (LLC), can be 

physically centralized or distributed with respect to the 

processor cores. In the first designs of CMP, researchers 

proposed the shared LLC organization to have uniform cache 

access time (UCA). Even though the UCA is simple for 

designing, it was soon replaced by non-uniform cache access 

(NUCA) techniques. With NUCA, nearer cache banks will 

provide lower access latencies than further banks with respect 

to the requesting core. NUCA was first proposed in [9]. The 

complexity of the interconnection network is the price to pay 

as using  NUCA. The latency for a bank access depends on 

its size and the network hops distance between the requesting 

core and the bank. Kim et al. [9] investigated a model with a 
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single core with a large L2 cache divided into multiple banks. 

They argued that a highly-banked cache structure with 

distributed cache controller is desirable in reducing the cache 

access latency. Two main techniques for NUCA were 

proposed in their paper are static UCA (S-NUCA) and 

dynamic UCA (D-NUCA). In S-NUCA, data is statically 

mapped into banks with the least significant bits determining 

the bank. S-NUCA is proven to have more advantages than 

UCA in [9] because of two reasons. Firstly, the banks have 

non-uniform access times and thus accesses to the nearer 

bank to the requesting core incur lower latency. Secondly, 

different banks can be accessed 

simultaneously which helps to reduce the contention. The D-

NUCA further improves the performance of S-NUCA by 

dynamically mapping data into different LLC banks. In other 

words, frequently accessed data are placed in closer banks 

while less used data are cached in farther banks. The D-

NUCA leads to the data management policies issues. The key 

issues in data management for D-NUCA are (1) how the data 

are mapped to banks and which banks a specific data can be 

reside, (2) how to search a cache line as quick as possible in a 

large cache with multiple banks and (3) how and when to 

migrate the data between banks of the cache. D-NUCA is 

widely exploited in several researches [10], [11], [12]. To the 

best of our knowledge, there is no research paper that refers 

the way in which the entire memory address range is divided 

into different memory banks. In this paper we show that the 

L2 hit ratio can be improved up to 13,5% by interleaving the 

memory address range between different memory banks. To 

ensure a consistent view of memory between all processor 

cores, a cache coherence protocol needs to be implemented in 

CMP. Two main parts of a coherence mechanism are: (1) a 

storage that holds the data sharing information and (2) a set 

of protocols to keep the consistency of the data using the 

information in (1). One essential information of the data 

sharing is their status. The status of the cached copies of any 

data block is usually kept by attaching the state to each cache 

data block. The minimum states that a coherence protocol 

must have are: (1) the invalid (I) state which indicates that the 

cache block is not holding the valid data; (2) the shared (S) 

means that the cache block is shared by one or more other 

processor caches in the system, it also means that this block 

can only be read from (not written to) and it is holding the 

same data value with the memory; (3) the modified (M) to 

signify that the block is uniquely held. If a cache block is in 

M state, it must be written back to the memory before being 

evicted. This simple coherence protocol is therefore named as 

three-state MSI protocol. 

    More sophisticated protocols employed more cache block 

states to reduce the coherence traffic and the latency of 

fetching a data block. Some popular protocols are MESI, 

MOSI, MOESI [13]. MOESI is considered to be the most 

complex protocol which encompasses all the possible states 

commonly used in other protocols. The O is added to 

describe a dirty and shared block. This state helps to reduce 

the coherence traffic because a block in M state doesn’t need 

to write back the data when it receives a read request and just 

changes to O state instead. On the other hand, state E is 

implemented to signify a clean and exclusive block. A block 

can change to M state without the need of notifying the lower 

evel cache/memory. Besides, when a block in state E is 

evicted, it doesn’t need to write back the data because the 

data is clean. Based on research papers, it seems that MOESI 

is better in terms of performance comparing with MESI, 

MOSI. Anyway, there is no evidence that prove it. 

    Depends on the interconnection, there are two major cache 

coherence protocols: bus-based and directory-based. 

Directory-based is desirable for big number of cores on chip 

using scalable interconnection such as mesh. The directory-

based protocol breaks the broadcast coherence message as in 

bus-based into point-to-point messages that only involve 

appropriate nodes in the interconnection network. In more 

detail, the sharing information is logically centralized into a 

directory. The directory is usually co-located with the data 

block in the memory and each of its entry corresponds to one 

memory address. The entry keeps essential information to 

track the memory block’s current sharers and their read/write 

privileges. The directory-based mechanism dramatically 

reduces the coherence traffic in comparison with bus-based. 

Moreover, it allows coherence messages to traverse over the 

dedicated and fast channels on the interconnection network 

rather than a single shared bus as in the bus-based 

mechanism. In this paper, we choose the MOESI and 

directory-based coherence protocol for the sake of the 

performance and the scalability [8]. 

    The simulator used in this research is Multi2Sim. It models 

an event-driven memory hierarchy which uses MOESI as the 

coherence protocol between caches from different processor 

cores. It also supports multi-level cache organization as well  

as directories for caches and main memory. The simulator is 

written purely in C language which is more simple to read 

and modify the code in comparison with GEM5 [16]. Other 

well known simulators for this research are CACTI [14] and 

Simics [15]. But CACTI solely builds the cache model which 

costs users more effort to run the simulator with benchmarks 

while Simics is mainly for commercial usage. 

 

III. METHODOLOGY 

We use Multi2sim to run and simulate the operation of CMP, 

focusing on memory hierarchy. Multi2sim is a simulation 

framework written in C for heterogeneous computing. It 

provides an easy way to design, configure, launch the CMP 

for research purpose on heterogeneous system. This 

framework allows creating the CMP by using INI files. We 

can intercede to the main memory, cache, internal network  

from these files. In the first experiment, we use INI files such 

as memory configuration and network configuration to 

generate a CMP given in Fig. 1. 

Fig. 1. The CMP architecture used for experiment. 
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    The CMP composes 4 processor cores, 4 L1 cache 

modules, 2 L2 cache modules and a main memory module. 

Each L2 cache is shared for 2 L1 cache modules, but is 

private from the main memory viewpoint. We also create 4 

threads for our four-core CMP. The detail configuration of 

this system is shown in TABLE I. 

TABLE I.  Configuration of CMP in detail 

 

  We use a ring network to connect all modules of main 

memory. This helps L2 private caches can access directly to 

every memory banks in the ring. The MOESI protocol is used 

in this CMP design to keep data consistent between L1 

caches of processor cores. 

    The experiment is run with Splash-2 benchmark. This 

benchmark contains 11 applications that solve 11 computing 

problems such as: N-Body, Cholesky factorization, FFT, etc. 

These are the most classical problems in parallel computing 

theory. As we know, the main application field of CMP is 

solving the complexity problem by parallel computing. That 

is the reason we choose this benchmark to evaluate MOESI 

protocol in CMP performance. We run 11 applications and 

record the L1 and L2 hit ratio. The result is reported in Fig. 2. 

As we can see, the average hit ratio of L1 is very high, over 

98% for L1-Data and 99% for L1-Instruction. When it comes 

to L2, this number is lower, about 77%. These are relevant  

 

Fig. 2. The average of hit ratio in L1 and L2 cache. 

 

results  because L1 cache contains the most likely to used 

data and instructions. L2 hit ratio is less than L1 but also 

acceptable because L2 is one level lower and processor core 

can proceed with other processing tasks that do not need to 

wait for the data from L2. Besides, in this configuration, L2 

effective size is limited by its private characteristic. With this 

result, we can agree that Multi2sim simulator and the MOESI 

protocol work correctly. More importantly, we divide the 

main memory into 4 equal banks. Each bank preserves a 

continuously range of memory address. This method of 

separating bank is considered as the baseline for the next 

experiment which shows the improvement of L2 hit ratio by 

interleaving the bank’s address range. 

    In the second experiment, the main memory in this model 

is separated into 4 banks by interleaving the memory address 

range. There are 32 bits to index memory bytes, but we do 

not use all of them. When using interleaving to divide the 

main memory, a memory bank is a set of equal smaller range, 

if the interleaving ranges are too small, it’s not efficient for 

memory access pattern because of its locality of reference. 

Thus, we choose the smallest range is 1 KB, this means that 

we have 22 bits to index a range. On the other hand, we have 

4 memory banks, and also, we need to employ a pair of bits 

to locate the memory bank which contains the block. In 

theory, we can use any pair for this task, but we use 2 

consecutive bits within the 22 index bits for our experiment. 

This approach, which is called interleaved address memory 

bank, helps us to spread the data and instructions into every 

memory bank. Fig. 3 illustrates the cases of dividing memory 

address into banks. There are 21 pairs of consecutive bits in 

22 index bits. So that we can divide the main memory by 21 

difference ways based on these pairs of bits. Our purpose, 

finally, is identifying which pair is the best choice, and how 

much it improves the hit ratio in L2. Firstly, We run the 

model in Fig. 1 for 21 cases using a benchmark from Splash-

2 and get the L2 hit ratio of each case. We randomly choose 

the Sparse Cholesky Factorization problem. After getting the 

result, we determine the best pair for interleaving. Next, we 

run all remaining benchmarks in Splash-2 with that pair and 

compare the result 

Fig. 3. Memory partitions using difference pair of bits 
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Fig. 4. The hit ratios in L2 based on using difference pairs of bits to partition 

main memory when launching Cholesky factorization 

with the based line. After that, we compute the improvement 

when using interleaved banks versus linear range banks 

model. This design is an inclusive cache design so that the 

directories in 4 main memory banks limit the number of 

cache blocks in all cache modules level 1 and level 2. If the 

directories are full, cache blocks in the directories are evicted 

and therefore the corresponding blocks in L1 and L2 caches 

are also evicted. Thus, we predict that dividing the main 

memory banks into 4 linear address range banks should give 

the lower performance than that when interleaving the 

address range into banks. 

IV. EXPERIMENT  RESULTS 

Fig. 4 shows 2 important information after running Cholesky 

factorization. We see that the hit ratio interestingly reaches 

the highest value when we use the ninth pair of bits for 

partitioning. Besides, when the interleaving size is too large, 

hit ratio is a constant. 

    First, we present why the hit ratio in L2 is a constant when 

the size of interleave is large. Because the size of the 

application is limited, when the pair of bits is high, or the 

range is large enough, the application code fits within one 

bank. Actually, the hit ratio is not a constant due to some 

objective reason such as hardware, other programs ..., but it 

fluctuates around a number with an amplitude. This 

amplitude  

is very small, so we can not recognize its appearance. 

    Secondly, the hit ratio reaches the maximum value when 

we use the ninth pair of bits corresponding with the range of 

each interleaved bank is 256 KB. The reason for this it that 

L2 is a unified cache for both instruction and data. Besides, 

CMP is running 4 threads in parallel. By interleaving the 

memory address range, the instruction and data of 

applications are distributed equally into 4 directories of main 

memory banks. This mechanism of memory banking should 

help the directories efficiently store the cache block with 

regarding its limited capacity. Moreover, when a cache block 

in the directory is evicted, it is high potential that the block 

will not be accessed again in upper level caches. 

 

 

 

 

 

 

 

Fig. 5. The hit ratios in L2 when using interleaving 256 KB with base 

line in comparison 

    In Fig 5, the above line present the hit ratio when using 

interleave 256 KB, the other is base line. The average 

improvement is 7% and up to 13.5% in the best case. So, we 

can make the conclusion for these experiments that using 

interleaving method is the good choice. 

V. CONCLUSION 

The paper explores the MOESI protocol used in CMP. Based 

on the different characteristic of instruction and data cache 

block, we reorganize the memory bank by interleaving the 

address range between the banks. And the experiment result 

shows that by interleaving 256 KB between 4 memory banks, 

the L2 hit ration of the CMP improves up to 13,5% compared 

with the baseline model in which the memory address is 

divided into 4 continuous address ranges. This result should  

be applicable for other different workloads. Depends on the 

size of the workload, the interleaving coefficient might 

change 

accordingly to achieve the best L2 hit ratio. 
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