
Exploring Cache Coherency Design for Chip

Multiprocessor using Multi2Sim

Vinh Ngo Quang and Hao Do

IC Design Research and Education Center,

 VNUHCM

Ho Chi Minh city, Vietnamese

Trang Hoang and Thanh Vu D.
University of Technology,

VNUHCM

Ho Chi Minh city, Vietnamese

Abstract—Memory hierarchy design plays an important role

in improving the performance of chip multiprocessor (CMP).

The reason is that the performance of a CMP is strongly

affected by the latency of fetching data from the memory

system. Several organizations of the memory hierarchy have

been explored to optimize this latency. In the memory hierarchy,

data traversing is based on a cache coherence protocol which is

the skeleton of the CMP's memory system. In this paper, we

concentrate on exploring MOESI, a well-defined and popular

cache coherence protocol in CMP. Our experiment is based on

Splash-2 benchmark which is widely used in every publication

regarding CMP design. The experiment results show that by

rearrange the address range of the memory banks, L2 hit ratio

could be improved up to 13,5 %.

Keywords—Chip Multiprocessor; Memory Hierarchy;

Coherence Protocol; MOESI; Memory Bank

I. INTRODUCTION

Nowadays, chip multiprocessor (CMP) is the main trend in

designing the CPU for high performance devices. This

originates from the fact that the single core chip reaches the

limitation of execution speed because of the heat and power

dissipation issues. Moreover, modern technologies support

millions of transistors to be integrated in one chip which

eases

the design of multicore on chip in terms of area. In fact,

several CMPS have been commercialized in the market [1],

[2], [3], [4].

 In CMP chip, memory hierarchy design is a concern that

takes a lot of effort of researchers. The memory organization,

but not the CPU core, is the bottleneck in CMP design. Most

of the memory systems have multiple levels of cache

hierarchy. For instance, Intel’s commercial Ivy Bridge has 3

levels of cache. These cache levels and the main memory

need a coherence protocol in order to keep the memory

consistent. For example, a L2 cache must ensure data

consistency among L1 caches. Moreover, a good coherence

protocol also helps the CMP to improve the performance in

terms of memory access latency. To the best of our

knowledge, MOESI [6] is the most widely used cache

coherence protocol in CMP. In this paper, we first evaluate

the CMP performance by using MOESI protocol. Then, by

observing that the instruction and data cache have different

ways of access model, we concentrate on optimizing the last

level cache memory to adapt the difference and get better

performance in terms of L2 hit ratio. Our idea is to interleave

the address range of the memory banks and we show that, by

simulation, the performance could improve up to 13,5% in

comparison with a baseline model that arranges the memory

address linearly. The experiment is carried out with

Multi2Sim [5], an open source simulator for heterogeneous

multiprocessor design. Splash-2 benchmark [17] is used as

the workload in the experiment. In the experiment result, we

focus on analyzing the cache miss latency because this

parameter not only can determine the efficiency of the

MOESI but also strongly affects the CMP performance. Our

contribution in this work is (1) the statistical result of the

CMP performance using MOESI protocol, (2) demonstration

of the performance improvement by rearranging the address

range of the memory banks.

 The paper is structured as follows. Section II surveys some

of the latest work on CMP’s cache organizations and

coherence protocols. Section III presents the experiment

method. Section IV gives and explains the result. And section

V finalizes the paper.

II. RELATED WORK

Several works have been carried out to improve the CMP’s

performance by optimizing the on chip memory hierarchy.

There are different aspects to look at in the memory hierarchy

such as: the shared or private last level cache model, the

cache coherence protocol, on-chip interconnection and so

forth. While L1 cache is always private to the processor core,

the L2 cache can be designed to be private or shared. Many

research papers exploit the possibilities in designing the L2

cache [7]. Shared last level cache has an advantage in

comparison with private cache is that it dynamically allocates

the overall cache space for all cores on chip. Thus, the last

level cache space is better utilized and its miss ratio is

therefore reduced. Shared last level cache (LLC), can be

physically centralized or distributed with respect to the

processor cores. In the first designs of CMP, researchers

proposed the shared LLC organization to have uniform cache

access time (UCA). Even though the UCA is simple for

designing, it was soon replaced by non-uniform cache access

(NUCA) techniques. With NUCA, nearer cache banks will

provide lower access latencies than further banks with respect

to the requesting core. NUCA was first proposed in [9]. The

complexity of the interconnection network is the price to pay

as using NUCA. The latency for a bank access depends on

its size and the network hops distance between the requesting

core and the bank. Kim et al. [9] investigated a model with a

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080547

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

775

single core with a large L2 cache divided into multiple banks.

They argued that a highly-banked cache structure with

distributed cache controller is desirable in reducing the cache

access latency. Two main techniques for NUCA were

proposed in their paper are static UCA (S-NUCA) and

dynamic UCA (D-NUCA). In S-NUCA, data is statically

mapped into banks with the least significant bits determining

the bank. S-NUCA is proven to have more advantages than

UCA in [9] because of two reasons. Firstly, the banks have

non-uniform access times and thus accesses to the nearer

bank to the requesting core incur lower latency. Secondly,

different banks can be accessed

simultaneously which helps to reduce the contention. The D-

NUCA further improves the performance of S-NUCA by

dynamically mapping data into different LLC banks. In other

words, frequently accessed data are placed in closer banks

while less used data are cached in farther banks. The D-

NUCA leads to the data management policies issues. The key

issues in data management for D-NUCA are (1) how the data

are mapped to banks and which banks a specific data can be

reside, (2) how to search a cache line as quick as possible in a

large cache with multiple banks and (3) how and when to

migrate the data between banks of the cache. D-NUCA is

widely exploited in several researches [10], [11], [12]. To the

best of our knowledge, there is no research paper that refers

the way in which the entire memory address range is divided

into different memory banks. In this paper we show that the

L2 hit ratio can be improved up to 13,5% by interleaving the

memory address range between different memory banks. To

ensure a consistent view of memory between all processor

cores, a cache coherence protocol needs to be implemented in

CMP. Two main parts of a coherence mechanism are: (1) a

storage that holds the data sharing information and (2) a set

of protocols to keep the consistency of the data using the

information in (1). One essential information of the data

sharing is their status. The status of the cached copies of any

data block is usually kept by attaching the state to each cache

data block. The minimum states that a coherence protocol

must have are: (1) the invalid (I) state which indicates that the

cache block is not holding the valid data; (2) the shared (S)

means that the cache block is shared by one or more other

processor caches in the system, it also means that this block

can only be read from (not written to) and it is holding the

same data value with the memory; (3) the modified (M) to

signify that the block is uniquely held. If a cache block is in

M state, it must be written back to the memory before being

evicted. This simple coherence protocol is therefore named as

three-state MSI protocol.

 More sophisticated protocols employed more cache block

states to reduce the coherence traffic and the latency of

fetching a data block. Some popular protocols are MESI,

MOSI, MOESI [13]. MOESI is considered to be the most

complex protocol which encompasses all the possible states

commonly used in other protocols. The O is added to

describe a dirty and shared block. This state helps to reduce

the coherence traffic because a block in M state doesn’t need

to write back the data when it receives a read request and just

changes to O state instead. On the other hand, state E is

implemented to signify a clean and exclusive block. A block

can change to M state without the need of notifying the lower

evel cache/memory. Besides, when a block in state E is

evicted, it doesn’t need to write back the data because the

data is clean. Based on research papers, it seems that MOESI

is better in terms of performance comparing with MESI,

MOSI. Anyway, there is no evidence that prove it.

 Depends on the interconnection, there are two major cache

coherence protocols: bus-based and directory-based.

Directory-based is desirable for big number of cores on chip

using scalable interconnection such as mesh. The directory-

based protocol breaks the broadcast coherence message as in

bus-based into point-to-point messages that only involve

appropriate nodes in the interconnection network. In more

detail, the sharing information is logically centralized into a

directory. The directory is usually co-located with the data

block in the memory and each of its entry corresponds to one

memory address. The entry keeps essential information to

track the memory block’s current sharers and their read/write

privileges. The directory-based mechanism dramatically

reduces the coherence traffic in comparison with bus-based.

Moreover, it allows coherence messages to traverse over the

dedicated and fast channels on the interconnection network

rather than a single shared bus as in the bus-based

mechanism. In this paper, we choose the MOESI and

directory-based coherence protocol for the sake of the

performance and the scalability [8].

 The simulator used in this research is Multi2Sim. It models

an event-driven memory hierarchy which uses MOESI as the

coherence protocol between caches from different processor

cores. It also supports multi-level cache organization as well

as directories for caches and main memory. The simulator is

written purely in C language which is more simple to read

and modify the code in comparison with GEM5 [16]. Other

well known simulators for this research are CACTI [14] and

Simics [15]. But CACTI solely builds the cache model which

costs users more effort to run the simulator with benchmarks

while Simics is mainly for commercial usage.

III. METHODOLOGY

We use Multi2sim to run and simulate the operation of CMP,

focusing on memory hierarchy. Multi2sim is a simulation

framework written in C for heterogeneous computing. It

provides an easy way to design, configure, launch the CMP

for research purpose on heterogeneous system. This

framework allows creating the CMP by using INI files. We

can intercede to the main memory, cache, internal network

from these files. In the first experiment, we use INI files such

as memory configuration and network configuration to

generate a CMP given in Fig. 1.

Fig. 1. The CMP architecture used for experiment.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080547

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

776

 The CMP composes 4 processor cores, 4 L1 cache

modules, 2 L2 cache modules and a main memory module.

Each L2 cache is shared for 2 L1 cache modules, but is

private from the main memory viewpoint. We also create 4

threads for our four-core CMP. The detail configuration of

this system is shown in TABLE I.

TABLE I. Configuration of CMP in detail

 We use a ring network to connect all modules of main

memory. This helps L2 private caches can access directly to

every memory banks in the ring. The MOESI protocol is used

in this CMP design to keep data consistent between L1

caches of processor cores.

 The experiment is run with Splash-2 benchmark. This

benchmark contains 11 applications that solve 11 computing

problems such as: N-Body, Cholesky factorization, FFT, etc.

These are the most classical problems in parallel computing

theory. As we know, the main application field of CMP is

solving the complexity problem by parallel computing. That

is the reason we choose this benchmark to evaluate MOESI

protocol in CMP performance. We run 11 applications and

record the L1 and L2 hit ratio. The result is reported in Fig. 2.

As we can see, the average hit ratio of L1 is very high, over

98% for L1-Data and 99% for L1-Instruction. When it comes

to L2, this number is lower, about 77%. These are relevant

Fig. 2. The average of hit ratio in L1 and L2 cache.

results because L1 cache contains the most likely to used

data and instructions. L2 hit ratio is less than L1 but also

acceptable because L2 is one level lower and processor core

can proceed with other processing tasks that do not need to

wait for the data from L2. Besides, in this configuration, L2

effective size is limited by its private characteristic. With this

result, we can agree that Multi2sim simulator and the MOESI

protocol work correctly. More importantly, we divide the

main memory into 4 equal banks. Each bank preserves a

continuously range of memory address. This method of

separating bank is considered as the baseline for the next

experiment which shows the improvement of L2 hit ratio by

interleaving the bank’s address range.

 In the second experiment, the main memory in this model

is separated into 4 banks by interleaving the memory address

range. There are 32 bits to index memory bytes, but we do

not use all of them. When using interleaving to divide the

main memory, a memory bank is a set of equal smaller range,

if the interleaving ranges are too small, it’s not efficient for

memory access pattern because of its locality of reference.

Thus, we choose the smallest range is 1 KB, this means that

we have 22 bits to index a range. On the other hand, we have

4 memory banks, and also, we need to employ a pair of bits

to locate the memory bank which contains the block. In

theory, we can use any pair for this task, but we use 2

consecutive bits within the 22 index bits for our experiment.

This approach, which is called interleaved address memory

bank, helps us to spread the data and instructions into every

memory bank. Fig. 3 illustrates the cases of dividing memory

address into banks. There are 21 pairs of consecutive bits in

22 index bits. So that we can divide the main memory by 21

difference ways based on these pairs of bits. Our purpose,

finally, is identifying which pair is the best choice, and how

much it improves the hit ratio in L2. Firstly, We run the

model in Fig. 1 for 21 cases using a benchmark from Splash-

2 and get the L2 hit ratio of each case. We randomly choose

the Sparse Cholesky Factorization problem. After getting the

result, we determine the best pair for interleaving. Next, we

run all remaining benchmarks in Splash-2 with that pair and

compare the result

Fig. 3. Memory partitions using difference pair of bits

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080547

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

777

Fig. 4. The hit ratios in L2 based on using difference pairs of bits to partition

main memory when launching Cholesky factorization

with the based line. After that, we compute the improvement

when using interleaved banks versus linear range banks

model. This design is an inclusive cache design so that the

directories in 4 main memory banks limit the number of

cache blocks in all cache modules level 1 and level 2. If the

directories are full, cache blocks in the directories are evicted

and therefore the corresponding blocks in L1 and L2 caches

are also evicted. Thus, we predict that dividing the main

memory banks into 4 linear address range banks should give

the lower performance than that when interleaving the

address range into banks.

IV. EXPERIMENT RESULTS

Fig. 4 shows 2 important information after running Cholesky

factorization. We see that the hit ratio interestingly reaches

the highest value when we use the ninth pair of bits for

partitioning. Besides, when the interleaving size is too large,

hit ratio is a constant.

 First, we present why the hit ratio in L2 is a constant when

the size of interleave is large. Because the size of the

application is limited, when the pair of bits is high, or the

range is large enough, the application code fits within one

bank. Actually, the hit ratio is not a constant due to some

objective reason such as hardware, other programs ..., but it

fluctuates around a number with an amplitude. This

amplitude

is very small, so we can not recognize its appearance.

 Secondly, the hit ratio reaches the maximum value when

we use the ninth pair of bits corresponding with the range of

each interleaved bank is 256 KB. The reason for this it that

L2 is a unified cache for both instruction and data. Besides,

CMP is running 4 threads in parallel. By interleaving the

memory address range, the instruction and data of

applications are distributed equally into 4 directories of main

memory banks. This mechanism of memory banking should

help the directories efficiently store the cache block with

regarding its limited capacity. Moreover, when a cache block

in the directory is evicted, it is high potential that the block

will not be accessed again in upper level caches.

Fig. 5. The hit ratios in L2 when using interleaving 256 KB with base

line in comparison

 In Fig 5, the above line present the hit ratio when using

interleave 256 KB, the other is base line. The average

improvement is 7% and up to 13.5% in the best case. So, we

can make the conclusion for these experiments that using

interleaving method is the good choice.

V. CONCLUSION

The paper explores the MOESI protocol used in CMP. Based

on the different characteristic of instruction and data cache

block, we reorganize the memory bank by interleaving the

address range between the banks. And the experiment result

shows that by interleaving 256 KB between 4 memory banks,

the L2 hit ration of the CMP improves up to 13,5% compared

with the baseline model in which the memory address is

divided into 4 continuous address ranges. This result should

be applicable for other different workloads. Depends on the

size of the workload, the interleaving coefficient might

change

accordingly to achieve the best L2 hit ratio.

ACKNOWLEDGMENT

This research was funded by Vietnam National University -

Hochiminh city under grant number C2015-40-01.

REFERENCES

[1] Chen, Thomas, et al., “Cell broadband engine architecture and

its first implementation - a performance view,” IBM Journal of

Research and Development 51.5 (2007): 559-572.

[2] George, Varghese, T. Piazza, and H. Jiang., “Technology

Insight: Intel Next Generation Microarchitecture Codename Ivy

Bridge,” (2011).

[3] Conway, Pat, et al., “Cache hierarchy and memory subsystem

of the AMD Opteron processor,” IEEE micro 30.2 (2010): 16-

29.

[4] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-

way multi- threaded spark processor,” IEEE Micro, vol. 25, pp.

21-29, March 2005.

[5] Ubal, Rafael, et al. ”Multi2Sim: a simulation framework for

CPU-GPU computing.” Proceedings of the 21st international

conference on Parallel architectures and compilation

techniques. ACM, 2012.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080547

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

778

[6] Milo M. K. Martin. Token Coherence, Ph.D. Dissertation. Dec.

2003.

[7] Balasubramonian, Rajeev, Norman P. Jouppi, and Naveen

Muralimanohar. “Multi-core cache hierarchies,” Synthesis

Lectures on Computer Architecture 6.3 (2011): 1-153.

[8] Martin, Milo MK, Mark D. Hill, and Daniel J. Sorin. “Why on-

chip cache coherence is here to stay.” Communications of the

ACM 55.7 (2012): 78-89.

[9] Kim, Changkyu, Doug Burger, and Stephen W. Keckler,“An

adaptive, non-uniform cache structure for wire-delay

dominated on-chip caches,”Acm Sigplan Notices. Vol. 37. No.

10. ACM, 2002.

[10] Chang, Jichuan, and Gurindar S. Sohi, “Cooperative caching

for chip multiprocessors”, Vol. 34. No. 2. IEEE Computer

Society, 2006.

[11] Zhang, Michael, and Krste Asanovic, “Victim replication:

Maximizingcapacity while hiding wire delay in tiled chip

multiprocessors,” ACMSIGARCH Computer Architecture

News. Vol. 33. No. 2. IEEE Computer Society, 2005.

[12] Beckmann, Bradford M., and David A. Wood, “Managing wire

delay inlarge chip-multiprocessor caches,” Microarchitecture,

2004. MICRO-37 2004. 37th International Symposium on.

IEEE, 2004.

[13] Sorin, Daniel J., Mark D. Hill, and David A. Wood, “A primer

on memory consistency and cache coherence,” Synthesis

Lectures on Computer Architecture 6.3 (2011): 1-212.

[14] Wilton, Steven JE, and Norman P. Jouppi, “CACTI: An

enhanced cache access and cycle time model,” Solid-State

Circuits, IEEE Journal of 31.5 (1996): 677-688.

[15] Magnusson, Peter S., et al., “Simics: A full system simulation

platform”,Computer 35.2 (2002): 50-58.

[16] Binkert, Nathan, et al., “The gem5 simulator,” ACM

SIGARCH Computer Architecture News 39.2 (2011): 1-7.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,

“The SPLASH-2 Programs: Characterization and

Methodological Considerations,” in Proceedings of the 22nd

International Symposium on Computer Architecture, pages 24-

36, June 1995.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080547

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

779

