Extension of A Drl - Group

Dr. M. Jeyalakshmi

Assistant Professor in Mathematics Alagappa Govt. Arts College, Karaikudi – 630 003

Abstract: In this paper we introduce the idea of a "DR ℓ - group is a direct product of a Brouwerian Algebra and a commutative ℓ - group".

Key words: commutative ℓ - group, Brouwerian Algebra, DR ℓ - group.

1. Preliminaries

Definition 1.1 [4]

A non – empty set G is called a commutative ℓ – group if and only if

(i) (G, +) is an abelian group (ii) (G, \leq) is a lattice (iii) If $x \leq y$, then $a + x + b \leq a + y + b$, for all a, b, x, y in G. (or) $(a + x + b) \lor (a + y + b) = (a + x \lor y + b)$

 $(a + x + b) \land (a + y + b) = (a + x \land y + b)$, for all a, b, x, y in G.

Definition 1.2 [1], [4]

A non – empty set B is called a Brouwerian Algebra if and only if

(i) (B, ≤) is a lattice
(ii) B has a least element
(iii) To each a, b in B, there is a least x = a - b in B such that b ∨ x ≥ a

Definition 1.3 [4], [5]

A lattice L is called a residuated lattice if

(i) (L, .) is an ℓ -group.

(ii) Given a, b in L, there exist the largest x, y such that

 $bx \leq a \text{ and } yb \leq a.$

Definition 1.3 [4]

A system $A = (A, +, \leq)$ is called dually residuated lattice ordered group (simply $DR\ell$ -group) if and only if

(i) (A, +) is an abelian group.

(ii) (A, \leq) is a lattice.

(iii) $b \le c \Rightarrow a + b \le a + c$, for all a, b, c in A

(iv) Given a, b in A, there exist a least element x = a - b in A such that $b + x \ge a$.

Definition 1.4 [4]

A system $A = (A, +, \vee, \wedge)$ is called a $DR\ell$ -group if and only if

- (i) (A, +) is an abelian group.
- (ii) (A, \lor , \land ,) is a lattice.

(*iii*) $a + (b \lor c) = (a + b) \lor (a + c)$,

$$a + (b \land c) = (a + b) \land (a + c)$$
, for all a , b , c in A .

 $(iv) x + (y - x) \ge y,$

$$x-y\leq (x\vee z)-y,$$

$$(x + y) - y \le x$$
, for all x, y, z in A.

Remark [4]

Two definitions for $DR\ell$ *– group are equivalent.*

Examples 1.1 [4]

Commutative ℓ -group, Brouwerian Algebra and Boolean ring are $DR\ell$ -groups.

Extension of a DR ℓ - group

Theorem: 1.1

Any $DR\ell$ - group A is the direct product of a Brouwerian Algebra B and a commutative ℓ -group G if and only if

i)
$$(a + b) - (c + c) \ge (a - c) + (b - c)$$
 and

ii)
$$(ma + nb) - (a + b) \ge (ma - a) + (nb - b),$$

for all a, b, c in A and any pair of positive integers m, n.

Proof :

Assume that

$$(a+b) - (c+c) \ge (a-c) + (b-c) \qquad \rightarrow (1)$$

(ma+nb) - (a+b) \ge (ma-a) + (nb-b) \qquad \rightarrow (2)

To prove $A = B \times G$

Let a, b, c in A be arbitrary

$$\Rightarrow (a+b) - c \le (a-c) + b, \text{ by property 11 [4]}$$
$$\Rightarrow [(a+b) - c] - c \le [(a-c) + b] - c$$
$$= (a-c) + (b-c)$$
$$\Rightarrow (a+b) - (c-c) \le (a-c) + (b-c) \qquad \rightarrow (3)$$

From (1) and (3), we get

$$(a+b) - (c+c) = (a-c) + (b-c) \longrightarrow (4)$$

Also, $(ma + nb) - a \leq (ma - a) + nb$, by property 11 [4]

$$\Rightarrow [(ma + nb) - a] - b \leq [(ma - a) + nb] - b$$

$$\Rightarrow (ma + nb) - (a + b) \leq (ma - a) + (nb - b) \qquad \rightarrow (5)$$

Form (2) and (5), we have

$$(ma + nb) - (a + b) = (ma - a) + (nb - b) \longrightarrow (6)$$

Let $B = \{a / a + a - a = 0\}$
 $G = \{a / a + a - a = a\}$

Claim (1): B is a Brouwerian Algebra

(i) Closed with respect to \lor and \land

Let a in B be arbitrary

$$\Rightarrow (a + a) - a = 0 \le 0$$
$$\Rightarrow (a + a) - a \le 0$$
$$\Rightarrow [(a + a) - a] + a \le 0 + a$$
$$\Rightarrow a + a \le a$$

Now $0 = (a + a) - a \le (a - a) + a$, by property 11 [4]

Thus a + a = a

 \rightarrow (7)

Hence B is closed under "+"

Let a, b in B be arbitrary

Then (a - b) + (a - b) = (a + a) - (b + b), by (4)

$$= a - b, by (7)$$

$$\Rightarrow a - b \text{ in } B$$
$$\Rightarrow (a - b) + b \text{ in } B$$
$$\Rightarrow a \lor b \text{ in } B, \text{ by property } 7 [4]$$

Also, $(a + b) - (a \lor b) = (a + b) - [(a \lor b) + (a \lor b)]$, since $a \lor b$ in B

 $= [a - (a \lor b)] + [b - (a \lor b)], \quad by (4)$ $= [(a - a) \land (a - b)] + [(b - a) \land (b - b)], \text{ by property 4 [4]}$ $= [0 \land (a - b)] + [(b - a) \land 0]$ = 0 + 0 $\Rightarrow (a + b) - (a \lor b) = 0$ $\Rightarrow a + b = a \lor b$ Let a, b in B $\Rightarrow a + b, a \lor b \text{ in B}$ $\Rightarrow (a + b) - (a \lor b) \text{ in B}$ $\Rightarrow a \land b \text{ in B}$

(ii) $(\mathbf{B}, \lor, \land)$ is a lattice

Idempotent law

Let a in B be arbitrary

Then $a \lor a = a + a$ = a $a \land a = (a + a) - (a \lor a)$ = a + a - a

= a

Thus $a \lor a = a$; $a \land a = a$, for all a in B.

Commutative law:

Let a, b in B be arbitrary

Then
$$a \lor b = a + b$$

= $b + a$
= $b \lor a$

 $a \wedge b = (a + b) - (a \vee b)$, by property 8 [4]

$$= (b+a) - (b \lor a)$$
$$= b \land a$$

Thus $a \lor b = b \lor a$; $a \land b = b \land a$, for all a, b, in B

Associative Law :

Let a, b, c in B be arbitrary.

Then
$$a \lor (b \lor c)$$
 = $a + (b + c)$
= $(a + b) + c$
= $(a \lor b) \lor c$
 $a \land (b \land c)$ = $[a + (b \land c)] - [a \lor (b \land c)]$, by property 8 [4]
= $[a + (b \land c)] - [a + (b \land c)]$
= 0
 $(a \land b) \land c$ = $[(a \land b) + c] - [(a \land b) \lor c]$
= $[(a \land b) + c] - [(a \land b) + c]$
= 0

Thus $a \lor (b \lor c) = (a \lor b) \lor c$; $a \land (b \land c) = (a \land b) \land c$, for all a, b, c in B

Absorption law :

Let a, b in B be arbitrary

Then
$$a \lor (a \land b) = a + (a \land b)$$

 $= a + [(a + b) - (a \lor b)]$
 $= a + [(a + b) - (a + b)]$
 $= a$
 $a \land (a \lor b) = [a + (a \lor b)] - [a \lor (a \lor b)]$
 $= [a + (a \lor b)] - [(a \lor a) \lor b]$
 $= a + (a \lor b) - (a \lor b)$

= a

Thus $a \lor (a \land b) = a$; $a \land (a \lor b) = a$, for all a, b in B

Hence (B, \lor , \land) is a lattice.

(iii) **B** has a least element :

Let a in B be arbitrary

Then $0 = (a + a) - a \le (a - a) + a$

 $\Rightarrow 0 \leq a$, for all a in B

Hence B has a least element.

(iv) To each a, b in B, there exist a least element x = a - b in B such that $b \lor x \ge a$:

Let a, b in B be arbitrary

 \Rightarrow there exist a least element x = a - b in B

Now $b \lor x = b + x$

$$= b + (a - b)$$
$$= a \ge a$$

Thus to each a, b in B, there exist a least element x = a - b in B such that $b \lor x \ge a$

Hence B is a Brouwerian Algebra

Claim (2) : G is a commutative ℓ - group

(i) (G, +) is an abelian group

Closure law :

Let a, b in G be arbitrary

Then
$$[(a + b) + (a + b)] - (a + b) = (2a + 2b) - (a + b)$$

= $(2a - a) + (2b - b)$, by (6)
= $a + b$

 \Rightarrow a + b in G

Thus a, b in $G \Rightarrow a + b$ in G

Clearly, + is both associative and commutative in G, since G is a subset of A.

Existence of Identity:

Let a in G be arbitrary.

Clearly 0 in G, since 0 = 0 + 0 - 0

Then a + 0 = 0 + a = a, for all a in G.

Existence of Inverse :

Let a in G be arbitrary

Then
$$(-a) + (-a) - (-a) = -a - a + a$$

= -a

$$\Rightarrow$$
 -a in G

Now, a + (-a) = (-a) + a = 0

Hence (G, +) is an abelian group

(ii) (G \lor , \land) is a lattice :

Let a, b in G be arbitrary.

$$\Rightarrow a, -b, b \text{ in } G$$

$$\Rightarrow a-b, b \text{ in } G$$

$$\Rightarrow (a-b) + b \text{ in } G$$

$$\Rightarrow a \lor b \text{ in } G, \text{ by property 7 [4]}$$

Also a, b in G \Rightarrow a + b , a \lor b in G

$$\Rightarrow$$
 (a + b) – (a \lor b) in G

$$\Rightarrow$$
 a \land b in G

Idempotent law:

Let a in G be arbitrary

Then $a \lor a = (a - a) + a$ = a $a \land a = (a + a) - (a \lor a)$ = (a + a) - a= a

Thus $a \lor a = a$; $a \land a = a$, for all a in G

Commutative law:

Let a, b in G be arbitrary

Then
$$a \lor b = (a+b) - (a \land b)$$

$$= [(a+b) - a] \lor [(a+b) - b]$$

$$= b \lor a$$

$$a \land b = (a+b) - (a \lor b)$$

$$= (b+a) - (b \lor a)$$

$$= b \land a$$

Thus $a \lor b = b \lor a$; $a \land b = b \land a$, for all a, b in G

Associative law :

Let a, b, c in G be arbitrary

Then
$$a \lor (b \lor c)$$
 = $[a - (b \lor c)] + (b \lor c)$
= a
 $(a \lor b) \lor c$ = $[(a \lor b) - c] + c$
= $a \lor b$
= $(a - b) + b$
= a

Therefore, $a \lor (b \lor c) = (a \lor b) \lor c$, for all a, b, c in G.

Also,
$$a \wedge (b \wedge c)$$
 = $[a + (b \wedge c)] - [a \vee (b \wedge c)]$
= $[a + (b \wedge c) - ([a - (b \wedge c)] + (b \wedge c)))$
= $a + (b \wedge c) - a$
= $b \wedge c$
= $(b + c) - (b \vee c)$
= $(b + c) - [(b - c) + c]$
= $b + c - b$
= c
 $(a \wedge b) \wedge c$ = $[(a \wedge b) + c] - [(a \wedge b) \vee c]$
= $[(a \wedge b) + c] - ([(a \wedge b) - c] + c))$
= $(a \wedge b) + c - (a \wedge b) = c$

Therefore, $a \land (b \land c) = (a \land b) \land c$, for all a, b, c in G.

Absorption Law :

Let a, b in G be arbitrary

Then
$$a \lor (a \land b) = [a - (a \land b)] + (a \land b)$$

= a
 $a \land (a \lor b) = [a - (a \lor b)] - [a \lor (a \lor b)]$
= $[a + (a \lor b)] - [(a \lor a) \lor b]$
= $a + (a \lor b) - (a \lor b) = a$

Thus $a \lor (a \land b) = a$, $a \land (a \lor b) = a$, for all a, b in G Therefore, (G, \lor, \land) is a lattice

(iii) $\mathbf{a} + (\mathbf{b} \lor \mathbf{c}) = (\mathbf{a} + \mathbf{b}) \lor (\mathbf{a} + \mathbf{c}),$ $\mathbf{a} + (\mathbf{b} \land \mathbf{c}) = (\mathbf{a} + \mathbf{b}) \land (\mathbf{a} + \mathbf{c}), \text{ for all } \mathbf{a}, \mathbf{b}, \mathbf{c} \text{ in } \mathbf{G} :$ Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in \mathbf{G} be arbitrary Then $\mathbf{a} + (\mathbf{b} \lor \mathbf{c}) = \mathbf{a} + [(\mathbf{b} - \mathbf{c}) + \mathbf{c}]$

$$= a + b$$

 $(a+b) \lor (a+c) = [(a+b) - (a+c)] + (a+c)$ = a+b

Therefore, $a + (b \lor c) = (a + b) \lor (a + c)$, for all a, b, c in G

Also, $a + (b \land c) = a + [(b + c) - (b \lor c)]$ = a + ((b + c) - [(b - c) + c]) = a + [(b + c) - b] = a + c $(a + b) \land (a + c) = [(a + b) + (a + c)] - [(a + b) \lor (a + c)], \text{ by property 8 [4]}$ = (a + b) + (a + c) - (a + b), by previous result= (a + c)

Therefore, $a + (b \land c) = (a + b) \land (a + c)$, for all a, b, c in G

Hence G is a commutative ℓ - group.

Claim (3): $A = B \times G$

For any a in A, y = (a + a) - a, x = a - [(a + a) - a] implies y in G, x in B Now (y + y) - y = [(2a - a) + (2a - a)] - (2a - a) = [(2a + 2a) - (a + a)] - (2a - a), by (6) = (4a - 2a) - (2a - a) $\ge 4a - 2a - a$, since $2a - a \le a$ = a $\Rightarrow (y + y) - y \ge y$ Also, $(y + y) - y \le (y - y) + y$, by property 11 [4] = y $\Rightarrow (y + y) - y \le y$

Therefore, $(y + y) - y \le y$

$$\Rightarrow y \text{ in } G$$

$$y = (a + a) - a$$

$$\Rightarrow \quad y \le a$$

$$\Rightarrow \quad x \ge 0$$

$$\Rightarrow x + x \ge 0 + x$$

$$\Rightarrow \quad x + x \ge x$$

Now, (a - y) + (a - y) = (a + a) - (y + y), by (4)

$$= 2a - 2y$$

= 2a - 2 (2a - a)

$$\Rightarrow$$
 x + x = 2a - (4a - 2a)

We have

$$(4a-2a) + [a - (2a - a)] = (2a - a) + (2a - a) + [a - (2a - a)]$$

 $\ge (2a - a) + a$
 $= 2a$

 $\Rightarrow (4a-2a) + [a - (2a - a)] \ge 2a$ $\Rightarrow 2a - (4a - 2a) \le a - (2a - a) = x$ $\Rightarrow x + x \le x$ $\Rightarrow x + x = x$

 \Rightarrow x in B

Thus if a in A, then a = x + y, where x in B, y in G

Now, let
$$a = x + y$$
, where x in B, y in G

Then
$$a + a = (x' + y') + (x' + y')$$

= $(x' + x') + (y' + y')$
= $x' + 2y'$, since x' in B

$$= (x' + y') + y'$$

$$\Rightarrow a + a = a + y'$$

$$\Rightarrow (a + a) - a = (a + y') - a$$

$$\Rightarrow (a + y') - a \text{ in } G$$

$$[(a + y') - a] - y' = (a + y') - (a + y')$$

$$= 0$$

$$\Rightarrow a + y' = a + y'$$

$$\Rightarrow a + y' - a = y'$$

$$\Rightarrow (a + a) - a = y'$$
Now,
$$a = x' + y'$$

$$\Rightarrow a - y' = x' \le x'$$

 $\Rightarrow a - y' \le x'$ Also, $x' - (a - y') \le (x' - a) + y'$ = [x' - (x' + y')] + y' = (0 - y') + y' = 0 $\Rightarrow x' - (a - y') \le 0$ $\Rightarrow x' \le a - y'$ Hence x' = a - y'

Hence follows that A is the direct product of a Brouwerian Algebra B and a commutative ℓ - group G.

Conversely, assume that $A = B \times G$, where B is a Brouwerian Algebra and G is a commutative ℓ – group.

To prove

 $(i) \qquad (a+b)-\ (c+c) \ \ge \ (a-c)+\ (b-c),$

(ii)
$$(ma + nb) - (a + b) \ge (ma - a) + (nb - b),$$

for all a, b, c in A and any pair of positive integers m, n.

Let a, b, c in A be arbitrary

 $\Rightarrow (i). To each [(a-c) + (b-c)], (a+b) in B, there exist a least - (c+c) in B such that (a+b) - (c+c) \ge (a-c) + (b-c),$

(ii). To each [(ma - a) + (nb - b)], (ma + nb) in B, there exist a least element -(a + b) in B such that $(ma + nb) - (a + b) \ge (ma - a) + (nb - b)$,

since B is a Brouwerian Algebra

$$\Rightarrow (i) (a+b) - (c+c) \ge (a-c) + (b-c),$$

(ii)
$$(ma + nb) - (a + b) \ge (ma - a) + (nb - b),$$

for all a, b, c in A and any pair of positive integers m, n.

References:

- [1]. E. A. Nordhaus and Leo Lapidus, Brouwerian Geometry, Canad. J. Math., 6 (1954).
- [2]. G. Birkhoff, Lattice Theory, American Mathematical Society, Colloguium Publications, Volume 25, Providence R. I., 3rd Edition, 3rd Printing, (1979).
- [3]. K.L.N. Swamy, Dually Residuated Lattice Ordered Semigroup, Math. Ann. 159, 105 114, (1965).
- [4]. M. Jeyalakshmi and R. Natarajan, DRℓ group, Acta Cienca Indica, Vol. XXIX. M, No.4, 823 – 830 (2003).
- [5]. M. Ward and R. P. Dilworth, Residuated Lattice, Trans, Am. Math., Soc. 45, (1939).