Extension of A Dr $\boldsymbol{\ell}$ - Group

Dr. M. Jeyalakshmi
Assistant Professor in Mathematics
Alagappa Govt. Arts College, Karaikudi - 630003

Abstract

In this paper we introduce the idea of a "DR ℓ - group is a direct product of a Brouwerian Algebra and a commutative ℓ - group".

Key words: commutative ℓ - group, Brouwerian Algebra, DR ℓ - group.

1. Preliminaries

Definition 1.1 [4]
A non - empty set G is called a commutative ℓ - group if and only if
(i) $(G,+)$ is an abelian group
(ii) (G, \leq) is a lattice
(iii) If $x \leq y$, then $a+x+b \leq a+y+b$, for all a, b, x, y in G.
(or)
$(a+x+b) \vee(a+y+b)=(a+x \vee y+b)$
$(a+x+b) \wedge(a+y+b)=(a+x \wedge y+b)$, for all a, b, x, y in G.
Definition 1.2 [1], [4]
A non - empty set B is called a Brouwerian Algebra if and only if
(i) (B, \leq) is a lattice
(ii) B has a least element
(iii) To each a, b in B, there is a least $x=a-b$ in B such that $b \vee x \geq a$

Definition 1.3 [4], [5]

A lattice L is called a residuated lattice if
(i) (L,.) is an $\ell-$ group.
(ii) Given a, b in L, there exist the largest x, y such that

$$
b x \leq a \text { and } y b \leq a .
$$

Definition 1.3 [4]

A system $A=(A,+, \leq)$ is called dually residuated lattice ordered group (simply DR - group) if and only if
(i) $(A,+)$ is an abelian group.
(ii) (A, \leq) is a lattice.
(iii) $b \leq c \Rightarrow a+b \leq a+c$, for all a, b, c in A
(iv) Given a, b in A, there exist a least element $x=a-b$ in A such that $b+x \geq a$.

Definition 1.4 [4]

A system $A=(A,+, V, \wedge)$ is called a $D R \ell-$ group if and only if
(i) $(A,+)$ is an abelian group.
(ii) $(A, V, \wedge$,$) is a lattice.$
(iii) $a+(b \vee c)=(a+b) \vee(a+c)$, $a+(b \wedge c)=(a+b) \wedge(a+c)$, for all a, b, c in A.
(iv) $x+(y-x) \geq y$,
$x-y \leq(x \vee z)-y$,
$(x+y)-y \leq x$, for all x, y, z in A.

Remark [4]

Two definitions for $D R \ell$ - group are equivalent.

Examples 1.1 [4]

Commutative ℓ - group, Brouwerian Algebra and Boolean ring are DR ℓ - groups.

Extension of a DR $\boldsymbol{\ell}$ - group

Theorem : 1.1

Any DRl - group A is the direct product of a Brouwerian Algebra B and a commutative ℓ - group G if and only if
i) $\quad(a+b)-(c+c) \geq(a-c)+(b-c)$ and
ii) $(m a+n b)-(a+b) \geq(m a-a)+(n b-b)$,
for all a, b, c in A and any pair of positive integers m, n.

Proof :

Assume that

$$
\begin{align*}
& (a+b)-(c+c) \geq(a-c)+(b-c) \tag{1}\\
& (m a+n b)-(a+b) \geq(m a-a)+(n b-b) \tag{2}
\end{align*}
$$

To prove $\mathrm{A}=\mathrm{B} \times \mathrm{G}$
Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in A be arbitrary

$$
\begin{align*}
& \Rightarrow(a+b)-c \leq(a-c)+b, \text { by property } 11 \\
& \begin{aligned}
\Rightarrow[(a+b)-c]-c & \leq[(a-c)+b]-c \\
& =(a-c)+(b-c)
\end{aligned} \\
& \Rightarrow(a+b)-(c-c) \leq(a-c)+(b-c)
\end{align*}
$$

From (1) and (3), we get

$$
\begin{equation*}
(a+b)-(c+c)=(a-c)+(b-c) \tag{4}
\end{equation*}
$$

Also, $(\mathrm{ma}+\mathrm{nb})-\mathrm{a} \leq(\mathrm{ma}-\mathrm{a})+\mathrm{nb}$, by property $11[4]$
$\Rightarrow[(m a+n b)-a]-b \leq[(m a-a)+n b]-b$
$\Rightarrow(m a+n b)-(a+b) \leq(m a-a)+(n b-b)$

Form (2) and (5), we have

$$
(m a+n b)-(a+b)=(m a-a)+(n b-b) \quad \rightarrow(6)
$$

Let

$$
\begin{aligned}
B & =\{a / a+a-a=0\} \\
G & =\{a / a+a-a=a\}
\end{aligned}
$$

Claim (1): B is a Brouwerian Algebra

(i) Closed with respect to \vee and \wedge

Let a in B be arbitrary

$$
\begin{array}{ll}
\Rightarrow(a+a)-a & =0 \leq 0 \\
\Rightarrow(a+a)-a & \leq 0 \\
\Rightarrow[(a+a)-a]+a \leq 0+a \\
\Rightarrow a+a & \leq a
\end{array}
$$

Now $0=(a+a)-a \leq(a-a)+a$, by property 11 [4]

$$
\begin{aligned}
& \Rightarrow \quad 0 \leq a \\
& \Rightarrow \\
& \Rightarrow \quad 0+a \leq a+a \\
& \Rightarrow \quad a \quad a+a
\end{aligned}
$$

Thus

$$
\begin{equation*}
a+a=a \tag{7}
\end{equation*}
$$

Hence B is closed under " + "
Let a, b in B be arbitrary
Then $(a-b)+(a-b)=(a+a)-(b+b), \quad b y(4)$

$$
=\mathrm{a}-\mathrm{b}, \mathrm{by}
$$

$\Rightarrow \mathrm{a}-\mathrm{b}$ in B
$\Rightarrow(\mathrm{a}-\mathrm{b})+\mathrm{b}$ in B
$\Rightarrow \mathrm{a} \vee \mathrm{b}$ in B , by property 7 [4]
Also, $(a+b)-(a \vee b)=(a+b)-[(a \vee b)+(a \vee b)]$, since $a \vee b$ in B

$$
\begin{aligned}
& =[a-(a \vee b)]+[b-(a \vee b)], \quad b y(4) \\
& =[(a-a) \wedge(a-b)]+[(b-a) \wedge(b-b)], \text { by property } 4 \\
& =[0 \wedge(a-b)]+[(b-a) \wedge 0] \\
& =0+0 \\
\Rightarrow(a+b)-(a \vee b) & =0 \\
\Rightarrow \quad a+b & =a \vee b
\end{aligned}
$$

Let a, b in $\mathrm{B} \Rightarrow \mathrm{a}+\mathrm{b}, \mathrm{a} \vee \mathrm{b}$ in B

$$
\begin{aligned}
& \Rightarrow(a+b)-(a \vee b) \text { in } B \\
& \Rightarrow a \wedge b \text { in } B
\end{aligned}
$$

(ii) (B, \vee, \wedge) is a lattice

Idempotent law

Let a in B be arbitrary
Then $\mathrm{a} \vee \mathrm{a}=\mathrm{a}+\mathrm{a}$

$$
=\mathrm{a}
$$

$$
\begin{aligned}
a \wedge a & =(a+a)-(a \vee a) \\
& =a+a-a \\
& =a
\end{aligned}
$$

Thus $a \vee a=a ; a \wedge a=a$, for all a in B.

Commutative law:

Let a, b in B be arbitrary
Then $\mathrm{a} \vee \mathrm{b}=\mathrm{a}+\mathrm{b}$

$$
\begin{aligned}
& =b+a \\
& =b \vee a
\end{aligned}
$$

$\mathrm{a} \wedge \mathrm{b}=(\mathrm{a}+\mathrm{b})-(\mathrm{a} \vee \mathrm{b})$, by property 8 [4]

$$
\begin{aligned}
& =(b+a)-(b \vee a) \\
& =b \wedge a
\end{aligned}
$$

Thus $\mathrm{a} \vee \mathrm{b}=\mathrm{b} \vee \mathrm{a} ; \mathrm{a} \wedge \mathrm{b}=\mathrm{b} \wedge \mathrm{a}$, for all a, b, in B

Associative Law :

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in B be arbitrary.

$$
\begin{aligned}
\text { Then } a \vee(b \vee c) & =a+(b+c) \\
& =(a+b)+c \\
& =(a \vee b) \vee c \\
a \wedge(b \wedge c) \quad & =[a+(b \wedge c)]-[a \vee(b \wedge c)], \text { by property } 8[4] \\
& =[a+(b \wedge c)]-[a+(b \wedge c)] \\
& =0 \\
(a \wedge b) \wedge c & =[(a \wedge b)+c]-[(a \wedge b) \vee c] \\
& =[(a \wedge b)+c]-[(a \wedge b)+c] \\
& =0
\end{aligned}
$$

Thus $a \vee(b \vee c)=(a \vee b) \vee c ; a \wedge(b \wedge c)=(a \wedge b) \wedge c$, for all a, b, c in B

Absorption law :

Let a, b in B be arbitrary
Then $a \vee(a \wedge b)=a+(a \wedge b)$

$$
\begin{aligned}
& =a+[(a+b)-(a \vee b)] \\
& =a+[(a+b)-(a+b)] \\
& =a \\
a \wedge(a \vee b) & =[a+(a \vee b)]-[a \vee(a \vee b)] \\
& =[a+(a \vee b)]-[(a \vee a) \vee b] \\
& =a+(a \vee b)-(a \vee b)
\end{aligned}
$$

$$
=\mathrm{a}
$$

Thus $\mathrm{a} \vee(\mathrm{a} \wedge \mathrm{b})=\mathrm{a} ; \mathrm{a} \wedge(\mathrm{a} \vee \mathrm{b})=\mathrm{a}$, for all a, b in B

Hence $(B, \vee, \wedge$) is a lattice.
(iii) B has a least element :

Let a in B be arbitrary
Then $0=(a+a)-a \leq(a-a)+a$
$\Rightarrow 0 \leq \mathrm{a}$, for all a in B
Hence B has a least element.
(iv) To each a, b in B, there exist a least element $x=a-b$ in B such that $b \vee x \geq a$:

Let a, b in B be arbitrary
\Rightarrow there exist a least element $\mathrm{x}=\mathrm{a}-\mathrm{b}$ in B
Now $b \vee x=b+x$

$$
\begin{aligned}
& =b+(a-b) \\
& =a \geq a
\end{aligned}
$$

Thus to each a, b in B , there exist a least element $\mathrm{x}=\mathrm{a}-\mathrm{b}$ in B such that $\mathrm{b} \vee \mathrm{x} \geq \mathrm{a}$
Hence B is a Brouwerian Algebra

Claim (2) : G is a commutative ℓ - group

(i) (G, +) is an abelian group

Closure law :

Let a, b in G be arbitrary
Then $[(a+b)+(a+b)]-(a+b)=(2 a+2 b)-(a+b)$

$$
\begin{aligned}
& =(2 a-a)+(2 b-b), b y \\
& =a+b
\end{aligned}
$$

$$
\Rightarrow \mathrm{a}+\mathrm{b} \text { in } \mathrm{G}
$$

Thus a, b in $\mathrm{G} \Rightarrow \mathrm{a}+\mathrm{b}$ in G
Clearly, + is both associative and commutative in G, since G is a subset of A.

Existence of Identity:

Let a in G be arbitrary.
Clearly 0 in G, since $0=0+0-0$
Then $\mathrm{a}+0=0+\mathrm{a}=\mathrm{a}$, for all a in G.

Existence of Inverse :

Let a in G be arbitrary
Then $(-a)+(-a)-(-a)=-a-a+a$

$$
=-\mathrm{a}
$$

$$
\Rightarrow-\mathrm{a} \text { in } \mathrm{G}
$$

Now, $a+(-a)=(-a)+a=0$
Hence ($G,+$) is an abelian group
(ii) $(G \vee, \wedge)$ is a lattice :

Let a, b in G be arbitrary.

$$
\begin{aligned}
& \Rightarrow \mathrm{a},-\mathrm{b}, \mathrm{~b} \text { in } \mathrm{G} \\
& \Rightarrow \mathrm{a}-\mathrm{b}, \mathrm{~b} \text { in } \mathrm{G} \\
& \Rightarrow(\mathrm{a}-\mathrm{b})+\mathrm{b} \text { in } \mathrm{G} \\
& \Rightarrow \mathrm{a} \vee \mathrm{~b} \text { in } \mathrm{G}, \text { by property } 7
\end{aligned}
$$

Also a, b in $\mathrm{G} \Rightarrow \mathrm{a}+\mathrm{b}, \mathrm{a} \vee \mathrm{b}$ in G

$$
\begin{aligned}
& \Rightarrow(a+b)-(a \vee b) \text { in } G \\
& \Rightarrow a \wedge b \text { in } G
\end{aligned}
$$

Idempotent law:

Let a in G be arbitrary

Then $\mathrm{a} \vee \mathrm{a}=(\mathrm{a}-\mathrm{a})+\mathrm{a}$

$$
=\mathrm{a}
$$

$$
\begin{aligned}
a \wedge a & =(a+a)-(a \vee a) \\
& =(a+a)-a \\
& =a
\end{aligned}
$$

Thus $\mathrm{a} \vee \mathrm{a}=\mathrm{a} ; \mathrm{a} \wedge \mathrm{a}=\mathrm{a}$, for all a in G

Commutative law:

Let a, b in G be arbitrary
Then $\mathrm{a} \vee \mathrm{b}=(\mathrm{a}+\mathrm{b})-(\mathrm{a} \wedge \mathrm{b})$

$$
\begin{aligned}
& =[(a+b)-a] \vee[(a+b)-b] \\
& =b \vee a \\
a \wedge b & =(a+b)-(a \vee b) \\
& =(b+a)-(b \vee a) \\
& =b \wedge a
\end{aligned}
$$

Thus $\mathrm{a} \vee \mathrm{b}=\mathrm{b} \vee \mathrm{a} ; \mathrm{a} \wedge \mathrm{b}=\mathrm{b} \wedge \mathrm{a}$, for all a, b in G

Associative law :

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in G be arbitrary
Then $a \vee(b \vee c)=[a-(b \vee c)]+(b \vee c)$

$$
\begin{aligned}
& =a \\
(a \vee b) \vee c & =[(a \vee b)-c]+c \\
& =a \vee b \\
& =(a-b)+b \\
& =a
\end{aligned}
$$

Therefore, $\mathrm{a} \vee(\mathrm{b} \vee \mathrm{c})=(\mathrm{a} \vee \mathrm{b}) \vee \mathrm{c}$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in G .

$$
\text { Also, } a \wedge(b \wedge c) \quad \begin{aligned}
& =[a+(b \wedge c)]-[a \vee(b \wedge c)] \\
& =[a+(b \wedge c)-([a-(b \wedge c)]+(b \wedge c)) \\
& =a+(b \wedge c)-a \\
& =b \wedge c \\
& =(b+c)-(b \vee c) \\
& =(b+c)-[(b-c)+c] \\
& =b+c-b \\
& =c \\
(a \wedge b) \wedge c & =[(a \wedge b)+c]-[(a \wedge b) \vee c] \\
& =[(a \wedge b)+c]-([(a \wedge b)-c]+c) \\
& =(a \wedge b)+c-(a \wedge b)=c
\end{aligned}
$$

Therefore, $a \wedge(b \wedge c)=(a \wedge b) \wedge c$, for all a, b, c in G.

Absorption Law :

Let a, b in G be arbitrary
Then $a \vee(a \wedge b)=[a-(a \wedge b)]+(a \wedge b)$

$$
=\mathrm{a}
$$

$$
\begin{aligned}
a \wedge(a \vee b) & =[a-(a \vee b)]-[a \vee(a \vee b)] \\
& =[a+(a \vee b)]-[(a \vee a) \vee b] \\
& =a+(a \vee b)-(a \vee b)=a
\end{aligned}
$$

Thus $\mathrm{a} \vee(\mathrm{a} \wedge \mathrm{b})=\mathrm{a}, \mathrm{a} \wedge(\mathrm{a} \vee \mathrm{b})=\mathrm{a}$, for all a, b in G
Therefore, $(\mathrm{G}, \vee, \wedge)$ is a lattice
(iii) $\mathbf{a}+(\mathbf{b} \vee \mathbf{c})=(\mathbf{a}+\mathbf{b}) \vee(\mathbf{a}+\mathbf{c})$,
$a+(b \wedge c)=(a+b) \wedge(a+c)$, for all a, b, c in $G:$
Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in G be arbitrary
Then $\mathrm{a}+(\mathrm{b} \vee \mathrm{c})=\mathrm{a}+[(\mathrm{b}-\mathrm{c})+\mathrm{c}]$

$$
\begin{aligned}
& =a+b \\
(a+b) \vee(a+c) & =[(a+b)-(a+c)]+(a+c) \\
& =a+b
\end{aligned}
$$

Therefore, $a+(b \vee c)=(a+b) \vee(a+c)$, for all a, b, c in G
Also, $\quad a+(b \wedge c)=a+[(b+c)-(b \vee c)]$

$$
\begin{aligned}
& =a+((b+c)-[(b-c)+c]) \\
& =a+[(b+c)-b] \\
& =a+c
\end{aligned}
$$

$$
(a+b) \wedge(a+c)=[(a+b)+(a+c)]-[(a+b) \vee(a+c)], \text { by property } 8[4]
$$

$$
=(a+b)+(a+c)-(a+b), \text { by previous result }
$$

$$
=(a+c)
$$

Therefore, $a+(b \wedge c)=(a+b) \wedge(a+c)$, for all a, b, c in G
Hence G is a commutative ℓ - group.

Claim (3): $\quad \mathbf{A}=\mathbf{B x} \mathbf{~ G}$

For any a in $A, \quad y=(a+a)-a, x=a-[(a+a)-a]$ implies y in G, x in B
Now $(y+y)-y=[(2 a-a)+(2 a-a)]-(2 a-a)$

$$
\begin{equation*}
=[(2 a+2 a)-(a+a)]-(2 a-a), \quad b y \tag{6}
\end{equation*}
$$

$$
=(4 a-2 a)-(2 a-a)
$$

$$
\geq 4 a-2 a-a, \text { since } 2 a-a \leq a
$$

$$
=\mathrm{a}
$$

$$
\Rightarrow \quad(y+y)-y \geq y
$$

Also, $(y+y)-y \leq(y-y)+y, \quad$ by property 11 [4]

$$
\begin{aligned}
& =y \\
\Rightarrow \quad(y+y)-y & \leq y
\end{aligned}
$$

Therefore, $(\mathrm{y}+\mathrm{y})-\mathrm{y} \leq \mathrm{y}$

$$
\begin{aligned}
& \Rightarrow y \text { in } G \\
& y=(a+a)-a \\
& \Rightarrow \quad y \leq a \\
& \Rightarrow \quad x \geq 0 \\
& \Rightarrow x+x \geq 0+x \\
& \Rightarrow \quad x+x \geq x
\end{aligned}
$$

Now, $\quad(a-y)+(a-y)=(a+a)-(y+y), \quad$ by (4)

$$
\begin{aligned}
& =2 a-2 y \\
& =2 a-2(2 a-a) \\
\Rightarrow \quad x+x & =2 a-(4 a-2 a)
\end{aligned}
$$

We have

$$
\left.\begin{array}{rl}
& \\
& \\
& \geq(2 a-2 a)+[a-(2 a-a)]
\end{array}\right)(2 a-a)+(2 a-a)+[a-(2 a-a)]
$$

Thus if a in A , then $\mathrm{a}=\mathrm{x}+\mathrm{y}$, where x in B, y in G
Now, let $\mathrm{a}=\mathrm{x}^{\prime}+\mathrm{y}^{\prime}$, where x ' in $\mathrm{B}, \mathrm{y}^{\prime}$ in G
Then $a+a=\left(x^{\prime}+y^{\prime}\right)+\left(x^{\prime}+y^{\prime}\right)$

$$
=\left(x^{\prime}+x^{\prime}\right)+\left(y^{\prime}+y^{\prime}\right)
$$

$$
=x^{\prime}+2 y^{\prime} \text {, since } x^{\prime} \text { in } B
$$

$$
\begin{gathered}
=\left(x^{\prime}+y^{\prime}\right)+y^{\prime} \\
\Rightarrow \quad a+a=a+y^{\prime} \\
\Rightarrow(a+a)-a=\left(a+y^{\prime}\right)-a \\
\Rightarrow\left(a+y^{\prime}\right)-a \text { in } G \\
{\left[\left(a+y^{\prime}\right)-a\right]-y^{\prime}=\left(a+y^{\prime}\right)-\left(a+y^{\prime}\right)} \\
=0 \\
\Rightarrow \quad a+y^{\prime} \quad=a+y^{\prime} \\
\Rightarrow a+y^{\prime}-a=y^{\prime} \\
\Rightarrow(a+a)-a=y^{\prime}
\end{gathered}
$$

Now,

$$
\begin{aligned}
& \\
& a x^{\prime}+y^{\prime} \\
\Rightarrow & a-y^{\prime}=x^{\prime} \leq x^{\prime} \\
\Rightarrow \quad & a-y^{\prime} \leq x^{\prime}
\end{aligned}
$$

Also,

$$
\begin{aligned}
x^{\prime}-\left(a-y^{\prime}\right) & \leq\left(x^{\prime}-a\right)+y^{\prime} \\
& =\left[x^{\prime}-\left(x^{\prime}+y^{\prime}\right)\right]+y^{\prime} \\
& =\left(0-y^{\prime}\right)+y^{\prime}=0 \\
\Rightarrow x^{\prime}-\left(a-y^{\prime}\right) & \leq 0 \\
\Rightarrow \quad x^{\prime} & \leq a-y^{\prime}
\end{aligned}
$$

$$
\text { Hence } \quad x^{\prime}=a-y^{\prime}
$$

Hence follows that A is the direct product of a Brouwerian Algebra B and a commutative ℓ - group G.

Conversely, assume that $A=B \times G$, where B is a Brouwerian Algebra and G is a commutative ℓ - group.

To prove
(i) $(\mathrm{a}+\mathrm{b})-(\mathrm{c}+\mathrm{c}) \geq(\mathrm{a}-\mathrm{c})+(\mathrm{b}-\mathrm{c})$,
(ii) $(m a+n b)-(a+b) \geq(m a-a)+(n b-b)$,
for all a, b, c in A and any pair of positive integers m, n.
Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in A be arbitrary
\Rightarrow (i). To each $[(a-c)+(b-c)]$, $(a+b)$ in B, there exist a least $-(c+c)$ in B such that $(a+b)-(c+c) \geq(a-c)+(b-c)$,
(ii). To each $[(\mathrm{ma}-\mathrm{a})+(\mathrm{nb}-\mathrm{b})]$, $(\mathrm{ma}+\mathrm{nb})$ in B, there exist a least element $-(a+b)$ in B such that $(m a+n b)-(a+b) \geq(m a-a)+(n b-b)$, since B is a Brouwerian Algebra
$\Rightarrow \quad$ (i) $(\mathrm{a}+\mathrm{b})-(\mathrm{c}+\mathrm{c}) \geq(\mathrm{a}-\mathrm{c})+(\mathrm{b}-\mathrm{c})$,
(ii) $(m a+n b)-(a+b) \geq(m a-a)+(n b-b)$,
for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in A and any pair of positive integers m, n.

References:

[1]. E. A. Nordhaus and Leo Lapidus, Brouwerian Geometry, Canad. J. Math.,6 (1954).
[2]. G. Birkhoff, Lattice Theory, American Mathematical Society, Colloguium Publications, Volume 25, Providence R. I., $3{ }^{\text {rd }}$ Edition, $3{ }^{\text {rd }}$ Printing, (1979).
[3]. K.L.N. Swamy, Dually Residuated Lattice Ordered Semigroup, Math. Ann. 159, 105 - 114, (1965).
[4]. M. Jeyalakshmi and R. Natarajan, DR - group, Acta Cienca Indica, Vol. XXIX. M, No.4, 823 - 830 (2003).
[5]. M. Ward and R. P. Dilworth, Residuated Lattice, Trans, Am. Math., Soc. 45, (1939).

