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Abstract — The design of a PV system involves establishing a PV 

model that faithfully and accurately reproduces the actual 

behaviour of the system under various conditions. The accuracy 

of this model is proportional to the parameters extracted by 

optimization methods, generally metaheuristic methods. 

Referring to the literature, we have identified two methods for 

calculating the estimated current based on the objective 

function. The first step was to determine the most efficient 

method for calculating the estimated current, with a view to 

obtaining the most consistent and accurate solutions. The 

algorithms used were Monarch Butterfly Optimization and 

Social Spider Optimization. Experimental data from the RTC 

France solar cell were used in this case study. The main results 

show that the iterative method based on the Lambert function 

for calculating the estimated current in the objective function 

provides more accurate and precise solutions than the 

approximate method using the measured current to determine 

the estimated current. What's more, the Monarch Butterfly 

Optimization algorithm provides more accurate solutions than 

many other methods in the literature. 

Keywords— Extraction, Parameters, Metaheuristic method, 

Lambert W  

I.  INTRODUCTION 

 

The unrestrained race of man towards the development of 

infrastructure, allowing the improvement of his standard of 

living, pushed this last one to develop a diagram of energy 

production that mainly leaned on fossil fuels [1]. It is 

estimated that more than 71% of the world's electricity 

production is based on fossil fuels [2]. This pattern of 

production, if it is maintained, will inexorably lead to 

numerous consequences for both humans and the environment 

[3]. Many organizations, in accordance with the climate 

protocol, have opted to migrate to renewable energies. These 

have many advantages, including reduced pollution, 

environmental friendliness, and the infinite availability of the 

primary source [4, 5]. Among the renewable sources, we can 

mention wind, water, biomass, and the sun. This last one is 

one of the most accessible renewable energy sources on the 

globe [6]. With a rapidly increasing growth rate, the energy 

production of solar photovoltaic (PV) installations in recent 

years has risen from 89.5 GW in 2012 to over 800 GW today 

[7]. There are many areas of application for this form of 

energy. These include telecommunications [8], the military 

[9], and increasingly the automotive sector [10, 11]. 

Nevertheless, this production scheme is more sensitive to 

external factors [12]. In order to efficiently and accurately 

predict electricity production from solar PV modules while 

optimizing and controlling photovoltaic systems, 

mathematical models have been developed [13]. Among 

others, we can mention the single-diode model, the double-

diode model, and, more recently, the three-diode model for 

industrial configurations [14]. These models are characterized 

by parameters that must be accurately estimated. Obtaining 

these different parameters remains a crucial and primary 

problem. This is due to the transcendence of the current-

voltage characteristic equation, which makes it difficult to 

solve because it leads to an optimization problem. In the 

literature, several methods have been identified for the 

extraction of the best parameters of a PV cell or module. The 

application of these methods shows that the accuracy obtained 

from the results is different from one method to another [15].  

Analytical methods are the most commonly used methods 

to extract the parameters of a PV module. The advantages of 

this method are the speed of calculation and the relative 

accuracy of the results, as only one analytical equation is 

needed to obtain the solution of a parameter [16]. However, 

despite the popularity of this method, it is not always easy to 

apply because it requires many data points on the curve, which 

makes the calculation more complex [17]. They are effective 

for some PV module models under standard test conditions 

(STC) as well as under other environmental conditions. 

Batzelis et al [18] have expressed the voltage as a function of 

current using Lambert's W function. Therefore, this method 

combines the versatility and accuracy provided by the single-

diode model with a faster and more robust execution. Bai et al 

[19] proposed a new method consisting of a piecemeal 

adjustment combined with the four-parameter model to 

simplify the calculation procedures to obtain the five 

parameters. Femia et al [20] proposed a method to analytically 

calculate the series resistance Rs and the parallel resistance 

RSh using Lambert's W function. This method explicitly 

expresses the output current of the PV module as a function of 

the voltage, and shows good performance. Metaheuristics or 

intelligent methods using artificial intelligence techniques are 

increasingly used to estimate PV module parameters because 

of their reliability and performance. These numerical methods 

with curve-fitting techniques are better than analytical 

methods. The algorithms of these methods provide accurate 

results by evaluating all points of the current-voltage curve 

[21]. These global optimization methods do not impose any 

restrictions on the problem formulation and have the ability to 

solve various complex problems [13]. Many works are based 

on some of the evolutionary algorithms. Harrag et al [22] use 

the genetic algorithm (GA) to extract the parameters of a PV 

cell subjected to varying temperature conditions. Allam et al 

[23] proposed the Flower Pollination Algorithm (FPA), which 

has the quality of quickly converging to the optimal solution 

of single and dual diode PV module parameters. This method 

is simple, highly efficient, and outperforms GA methods. 

Muhsen et al [24] estimate the parameters with the 

Differential Evolution with Adaptive Mutation (DEAM) 

algorithm. This algorithm uses the notion of attraction-

repulsion to improve on the original differential evolution 

(DE) mutation operation, a method that provides high 
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accuracy, fast convergence, and optimally fitted control 

parameters. Jordehi et al [25] use a hybrid variant of the 

particle swarm optimization (PSO) algorithm to extract the 

parameters of a PV solar cell. This method has high sensitivity 

to the initial parameters. Abd Elaziz et al [26] use a variant of 

the Whale Optimization Algorithm (WOA) for the extraction 

of the intrinsic parameters of a PV solar cell. This method has 

been shown to be efficient in estimating the parameters of a 

PV cell, but its limitations are its sensitivity to the starting 

parameters and a relatively long computation time. Ayang et 

al [27] and [28], use the maximum likelihood estimator 

(MLE) and least squares estimator (LSE) to extract the 

parameters of the single diode PV module under standard test 

conditions. Ndongmo et al [29] use the bald eagle algorithm 

(BES) for the estimation of the internal parameters of a PV 

cell. This method shows its accuracy in parameter estimation, 

but the method is very sensitive to the initial parameters. Ndi 

et al [30] proposed the equilibrium optimizer algorithm to 

estimate the parameters of a photovoltaic solar cell. This 

method has shown its effectiveness in solving this type of 

problem. However, it is very sensitive to the initial 

parameters. 

Evaluating the performance of metaheuristic optimization 

algorithms relies on a number of factors. One of the most 

widely used factors is the root mean square error. This is the 

difference between the measured current and the estimated 

current [31]. According to the literature, this error can be 

evaluated using either an iterative method (using numerical 

resources to solve the nonlinear equation of the cell model 

with the extracted parameters), or an approximate method (the 

measured current and the extracted parameters are used to 

calculate the estimated current) [32]. 

In this manuscript, both methods of calculating the 

estimated current are employed with new optimization 

algorithms. The aim is to determine the most accurate method 

for providing a reliable and precise PV model. Here, we 

propose two estimation methods, to extract the parameters of 

the single-diode model (SDM) and the double-diode model 

(DDM). These methods are the Social Spider Optimization 

(SSO) method and the Monarch Butterfly Optimization 

(MBO) method. We test the proposed work on a well-known 

dataset, the R.T.C. France commercial solar cell dataset, and 

then compare the proposed methods with selected algorithms 

to verify their effectiveness. The results of the proposed 

algorithms have been validated by Lambert equations for 

SDM and DDM. 

The main contributions of this paper are presented as 

follows: 

 A comparison between the proposed methodologies 

for calculating the estimated current is established to 

determine which is the most robust, reliable, and 

accurate whatever the proposed algorithm. 

 Two new optimization algorithms (SSO and MBO) 

have been used to identify SDM and DDM 

parameters based on experimental data sets 

measured under different environmental conditions. 

 A comparison between the RMSE obtained by the 

optimizers and the RMSE calculated on the basis of 

the Lambert function was reported as evidence of the 

accuracy of the identification. 

 Finally, a comparison is made with existing literature 

in order to position our work in relation to what 

already exists. 

 This article is organized as follows: First, we present the 

generalities concerning the modelling of a PV solar cell. Then, 

a second time, we will focus on the extraction method used. 

We will present the results of this method, and then we will 

finish with a conclusion. 

 

II. MODELLING OF A PV SOLAR CELL 

 

In the literature, the single-diode model is the simplest and 

most widely used model. This is justified by its precision in 

the parameters obtained, its speed in execution, and especially 

its simplicity in the implementation of its structure [33]. The 

equivalent electrical diagram is given in Fig. 1. 

 

 

Fig. 1: Single Diode Model 

By applying Kirchhoff's theorem to this circuit, we can 

establish the expression of the current I of the PV solar cell as 

a function of the voltage V, which is given by equation (1): 

 

𝐼 =  𝐼𝑝ℎ − 𝐼0 (𝑒
𝑞 (𝑉+𝐼𝑅𝑆)

𝑛𝐾𝑇 − 1) −
(𝑉+𝐼𝑅𝑆)

𝑅𝑆ℎ
  

Where Iph is the photo current, I0 is the saturation current 

of the diode, n is the ideality factor, K is the Boltzmann 

constant, q is the charge of the electron, T is the temperature 

of the module, RS is the serial resistance, and RSh is the shunt 

resistance.  
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 This model has five unknown parameters, namely: the 

photo current (Iph), the saturation current of the diode (I0), the 

shunt resistance (RSh), the series resistance (RS), and the 

ideality factor of the diode (n). These last ones, chosen in an 

optimal way, allow, in addition to efficiently predicting 

production, to successfully adapt to a certain extent to the 

experimental data. However, studies have shown that this 

model inherently neglects the recombination current losses in 

the depletion region of the junction diode, resulting in a 

deterioration of accuracy at low irradiances [34]. Taking into 

account this loss, especially in open circuits, leads to a more 

accurate solution [35]. Thus, the double-diode model, as 

shown in Fig. 2, uses one diode as a rectifier while the other 

addresses the loss due to the recombination current [30]. 

 

 

Fig. 2: Double Diode Model 

 By applying Kirchhoff's theorem to this circuit, we can 

establish the expression of the current I of the PV solar cell as 

a function of the voltage V, which is given by the equation (2):  

𝐼 =  𝐼𝑝ℎ − 𝐼01 (𝑒
𝑞 (𝑉+𝐼𝑅𝑆)

𝑛1𝐾𝑇 − 1) − 𝐼02 (𝑒
𝑞 (𝑉+𝐼𝑅𝑆)

𝑛2𝐾𝑇 − 1) −

(𝑉+𝐼𝑅𝑆)

𝑅𝑆ℎ
   

 

 This model requires the knowledge of seven unknown 

parameters, namely: the photo current (Iph), the saturation 

current of diode 1 (I01), the saturation current of diode 2 (I02), 

the shunt resistance (RSh), the series resistance (RS), the 

ideality factor of diode 1 (n1), and the ideality factor of diode 

2 (n2). The Double-diode model, compared to the one-diode 

model, significantly improves the accuracy of the PV system 

[13]. Nevertheless, it presents additional computations and 

complexity in the intrinsic parameters. 

 

III. OBJECTIVE FUNCTION CALCULATION 

 

Each equation of the above-mentioned electrical models 

can be treated as an optimization problem. For this purpose, it 

is necessary to have a data set. The objective function allows 

you to check if the result produced by a set of parameters is 

close to the required values provided in the data set. The 

minimization of the root mean square error (RMSE) is the 

objective function par excellence. Here, the objective is to 

minimize the difference between the measured and estimated 

currents. The optimization techniques are based on the 

principle of identifying the best vector X that minimizes the 

objective function [14]. 

Thus, the expression of the objective function (Obj1) is 

given by equation (3): 

 

𝑂𝑏𝑗1 = 𝑀𝑖𝑛(√1

𝑁
∑ (𝐼𝑘,𝑚𝑒𝑎𝑠 − 𝐼𝑘,𝑒𝑠𝑡(𝑉𝑘, 𝐼𝑘, 𝑋))

2
𝑁
𝑘=1 )           

 

Where: 

 N is the number of points measured. 

 𝐼𝑘,𝑚𝑒𝑎𝑠 is the current measured.  

 𝑉𝑘,𝑚𝑒𝑎𝑠 is the voltage measured.  

 𝐼𝑘,𝑒𝑠𝑡(𝑋) is the current estimated by the 

metaheuristic method with the equation (1) for the 

SDM and the equation (2) for the DDM. 

 X is the intrinsic parameter obtained with the 

metaheuristic method. 

 However, this mathematical expression of the mean 

square error is not correct. The expression of the estimated 

current is a function of the measured current and voltage. 

Thus, the result given by equation (3) will not reflect the real 

value of the error. Thus, the proposed iterative procedure for 

calculating the estimated current for a single-diode model can 

be formulated by the Lambert-W equation [36, 37]: 

 

𝑦 = 𝑤(𝛼)     

With 

𝛼 =  

𝑛𝑅𝑆
𝑉𝑡

1 + 
𝑅𝑆

𝑅𝑆ℎ

(𝐼0 𝑒𝑥𝑝(
𝑛𝑉𝑚𝑒𝑠

𝑉𝑡
) 𝑒𝑥𝑝((

𝑛𝑅𝑆

𝑉𝑡
) (

𝐼𝑝ℎ + 𝐼0 − 
𝑉𝑚𝑒𝑠
𝑅𝑆ℎ

1 + 
𝑅𝑆

𝑅𝑆ℎ

))    

Where  

 𝑉𝑡 =  
𝑛 𝐾 𝑇

𝑞
      

 Based on equation (4), the expression for the estimated 

current given by equation (1) can be rewritten as follows: 
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𝐼𝐿𝑎𝑚 =  

𝐼𝑝ℎ + 𝐼0 − 
𝑉𝑚𝑒𝑠
𝑅𝑆ℎ

 − 
𝑦( 1 + 

𝑅𝑆
𝑅𝑆ℎ

)

𝑛𝑅𝑆
𝑉𝑡

1 + 
𝑅𝑆

𝑅𝑆ℎ

    

 The proposed iterative procedure, based on the Lambert 

W function, for computing the estimated current for a double-

diode model can be formulated as follows [36]. 

 

𝜃 =  𝛼 +  𝛽 𝑒𝑥𝑝(∆)   

𝑦 = 𝑤(𝜃)    

Where 

𝛼 =

 

𝑛1𝑅𝑆
𝑉𝑡

1 + 
𝑅𝑆

𝑅𝑆ℎ

(𝐼01 𝑒𝑥𝑝(
𝑛1𝑉𝑚𝑒𝑠

𝑉𝑡
) 𝑒𝑥𝑝((

𝑛1𝑅𝑆

𝑉𝑡
) (

𝐼𝑝ℎ + 𝐼01 + 𝐼02 − 
𝑉𝑚𝑒𝑠
𝑅𝑆ℎ

1 + 
𝑅𝑆

𝑅𝑆ℎ

))

 

 

𝛽 =

 

𝑛1𝑅𝑆
𝑉𝑡

1 + 
𝑅𝑆

𝑅𝑆ℎ

(𝐼02 𝑒𝑥𝑝(
𝑛2𝑉𝑚𝑒𝑠

𝑉𝑡
) 𝑒𝑥𝑝((

𝑛2𝑅𝑆

𝑉𝑡
) (

𝐼𝑝ℎ + 𝐼01 + 𝐼02 − 
𝑉𝑚𝑒𝑠
𝑅𝑆ℎ

1 + 
𝑅𝑆

𝑅𝑆ℎ

)) 

 

 

∆= 1 −
𝑛1

𝑛2
     

Based on equation (8), we can rewrite the equation as 

follows: 

𝐼𝐿𝑎𝑚 =  

𝐼𝑝ℎ + 𝐼01+ 𝐼02 − 
𝑉𝑚𝑒𝑠
𝑅𝑆ℎ

 − 
𝑦( 1 + 

𝑅𝑆
𝑅𝑆ℎ

)

𝑛1𝑅𝑆
𝑉𝑡

1 + 
𝑅𝑆

𝑅𝑆ℎ

   

 

Thus, the new objective function formulation (Obj2) 

of the root mean square error is given by equation (14) as 

follows: 

𝑂𝑏𝑗2 = 𝑀𝑖𝑛(√1

𝑁
∑ (𝐼𝑘,𝑚𝑒𝑠 − 𝐼𝑘,𝐿𝑎𝑚(𝑉𝑘, 𝑋))

2
𝑁
𝑘=1 )        

 

 

IV. OPTIMIZATION METHODS 

 

 In this section, we will present the metaheuristic 

optimization methods used in the rest of our work. 

 

A. Monarch Butterfly Optimization 

 

Feng et al. [38] proposed a new optimization approach 

based on swarm intelligence in 2015. Monarch Butterfly 

Optimization (MBO) is inspired by the migration behaviour 

of monarch butterflies from one continent to another, i.e., 

monarch butterfly optimization (MBO). Fig. 3 shows the 

movement of the monarch butterfly from one region to 

another. They keep their reproduction cycle active during this 

cross-county movement [39]. 

 

 

Fig. 3: Migratory behaviour of the monarch butterfly [38] 

 

The migration behaviour is modelled into some 

mathematical formulation. 

 A collection of pre-defined criteria is developed in order 

to represent the realistic migration behaviour of monarch 

butterflies. The following are the pre-defined rules [38]. 

 

 All members of the monarch fleet should be in either 

region 1 or region 2. In MBO, the total population is 

regarded as representing the whole population of that 

region. 

 The migration operator, which can be regulated by 

the migration ratio, produces new offspring of 

monarch butterflies in regions 1 or 2. 

 The overall population of monarch butterflies stays 

unchanged in MBO. If the children outperform their 

parents in terms of fitness, they take over. 

 The flutter's fittest butterfly remains in the fleet and 

is unaffected by the migration operator. 
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 Monarch butterflies move from area 1 to region 2 every 

year in April and return in September, as seen in Fig. 3. 

Monarch butterflies are seen to fly in Region 1 from 

September to March and in Region 2 from April to August. 

Assume that the number of monarch butterflies remaining in 

region 1 is referred to as subpopulation 1' and is denoted by 

Pn1. Pn1 is defined as the nearest integer larger than or equal to 

R. 

 

𝑅 = 𝑃𝑛  × 𝑃𝑛1     

Where R and Pn are the ratios of butterfly flutter 

remaining in region 1 and the total monarch butterfly 

population, respectively. Similarly, butterflies located in 

Region 2 are classified as subpopulation 2. 

 

𝑃𝑛2 = 𝑃𝑛 − 𝑃𝑛1    

 

This butterfly migratory mechanism is mathematically 

represented as: 

 

𝑆𝑖 𝑗(𝑡 + 1) =  𝑆𝑟1 ,𝑗(𝑡)   

With 

Si, j (t+1) denotes the jth position element or variable of the ith 

butterfly in the t+1 generation, whereas Sr1,j (t) denotes the jth 

element of Sr1, which is the new location of monarch butterfly 

r1 in the current generation t. The butterfly r1 is chosen at 

random from subpopulation 1 or region 1. 

A random number r is created for decision-making 

purposes as follows: 

 

𝑟 =  𝛾 × 𝑟𝑎𝑛𝑑     

Where rand is a random integer drawn from a uniform 

distribution and 𝛾 is the migration period, believed to be 1.2 

for 12 months. If 𝑟 ≤ 𝑅, then equation (17) produces the new 

element j of the butterfly; otherwise, the new-born monarch 

butterfly is formed as 

 

𝑆𝑖 𝑗(𝑡 + 1) =  𝑆𝑟2 ,𝑗(𝑡)   

 

Where r2 is a randomly chosen monarch butterfly from 

subpopulation 2 or region 2. The direction of migration can be 

adjusted by altering the value of R. For example, if R is high, 

more monarch butterflies Pn1 members are predicted. A low 

R value, on the other hand, increases the number of Pn2 

monarch butterflies in subpopulation 2 or region 2. The 

selection of R is critical in order to develop new monarch 

butterflies. 

 

B. Social Spider Optimization 

 

Cuevas et al. [40] presented the Social Spider 

Optimization algorithm (SSO), a modern population-based 

swarm intelligence system. The social behaviour of the social 

spider colony, which comprises social individuals and a 

common web, inspired the SSO algorithm. Because of its 

efficiency, the SSO has been used in a variety of applications, 

particularly for solving global optimization issues [41]. 

Female and male spiders account for 70% and 30% of total 

colony members, respectively [42]. Each member of the 

colony is responsible for a separate task, such as building and 

maintaining the common web, catching prey, using water, and 

so on[43]. Female spiders either attract or repel others. The 

community web vibrations are dependent on the weight and 

distance of the limbs, which are the primary aspects of a 

spider's attraction or aversion [44]. Male spiders are classified 

into two types: dominant and non-dominant [45]. 

Dominant male spiders are physically superior to non-

dominant spiders. The dominant male may mate with one or 

all of the females in the colony in order to share knowledge 

and create progeny. The method for optimizing each solution 

in the spider social optimization (SSO) algorithm symbolizes 

a spider location, while the common web represents the search 

space. Each solution's value is expressed by computing its 

fitness function, which represents each spider's weight. Each 

spider's weight. 

The population in the SSO method consists of Ns solutions 

(spiders) and may be classified into females fi and males mi. 

The number of females Nf  is chosen to be between 65% and 

90% and may be estimated using the following equation (20): 

 

𝑁𝑓 = 𝑓𝑙𝑜𝑜𝑟 ((0.9 − 𝑟𝑎𝑛𝑑(0,1). 0.25). 𝑁𝑠)   

 

With rand is a random number between (0, 1) and floor (.) 

converts a real number to an integer number. The number of 

male spiders Nm can be calculated as follows: 
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𝑁𝑚 = 𝑁𝑠 − 𝑁𝑓     

 

The female and male spider position fi and mi are 

randomly generated within the lower 𝐿𝐵 and the upper 𝑈𝐵 

initial parameter bounds as follows. 

𝑓𝑖,𝑗
0 =  𝐿𝐵 + 𝑟𝑎𝑛𝑑(0,1). (𝑈𝐵 −  𝐿𝐵)   

𝑚𝑘,𝑗
0 =  𝐿𝐵 + 𝑟𝑎𝑛𝑑(0,1). (𝑈𝐵 −  𝐿𝐵)   

 

With  

𝑖 =  {1, 2, 3, … , 𝑁𝑓} , 𝑘 =  {1, 2, 3, … , 𝑁𝑚} and  𝑗 =

 {1, 2, 3, … , 𝑛} 

The zero signals represent the initial population and i, j and 

k are the parameter and individual indices, respectively. The 

value of fi, j is the jth parameter of the ith female spider 

position. 

The weight of each spider represents the quality of the 

answer. The fitness function value of each solution I is 

calculated as follows. 

 

𝑤𝑖 =
𝐽 (𝑠𝑖)− 𝑤𝑜𝑟𝑠𝑡𝑠

𝑏𝑒𝑠𝑡𝑠− 𝑤𝑜𝑟𝑠𝑡𝑠
   (24) 

 

Where J(si) is the fitness value of the spider position, si 

with regard to the substituted objective function J(·). The 

value worsts represents the maximum solution’s value while 

the bests represents the minimum value of the solution in the 

population. These values are defined by considering the 

following minimization problem as follows. 

𝑏𝑒𝑠𝑡𝑠 = 𝑚𝑖𝑛  𝐽(𝑠𝑘) and 𝑤𝑜𝑟𝑠𝑡𝑠 = 𝑚𝑎𝑥  𝐽(𝑠𝑘) (25) 

 

With 𝑘 =  {1, 2, 3, … , 𝑁𝑠}. 

The transmission of the information by the colony 

members is done through the communal web by encoding it 

as small vibrations. The vibrations perceived by the solution i 

from solution j is modelled by the equation (26). 

 

𝑣𝑖𝑏𝑖,𝑗 =  𝑤𝑗 . 𝑒−𝑑𝑖,𝑗
2

    (26) 

 

The dominant male is responsible for mating of female 

members when it locates them with a specific range rm. This 

operation can be calculated as follows 

 

𝑟𝑚  = ∑
𝑝𝑗

ℎ𝑖𝑔ℎ
− 𝑝𝑗

𝑙𝑜𝑤

2.𝑛

𝑛
𝑗=1    (27) 

 

V. RESULTS 

The framework of this section is divided into subsequent 

subsections; the first one concerns the comparison among the 

objective functions across the implemented algorithms, while 

the second one focuses on detecting the superior algorithm. 

For this extraction, we used the Matlab R2020a platform. This 

was simulated on a computer with the following 

specifications: an Intel Core i5-3437U @ 1.9 GHz, 8 GB of 

RAM, and the Windows 10 64-bit operating system.  

TABLE I. shows the upper and lower bounds, for each 

unknown parameter in each PV model. 

TABLE I.  Lower and Upper bounds 

Parameters Lower bound Upper bound 

𝐼𝑝ℎ (𝐴)  0 1 

𝐼0, 𝐼01, 𝐼02 (𝜇𝐴) 0 10-6 

𝑅𝑠(Ω) 0 0,5 

𝑅𝑠ℎ(Ω) 0 100 

n, n1, n2 1 2 

 

 

A. Comparison among the proposed objective functions 

 

In this section, a well-regarded dataset of RTC France 

solar cells is utilized to compare the two reported objectives 

of Equations. 3 and 14. The proposed algorithms are executed 

to identify the parameters of SDM and DDM for the cell based 

on the measured dataset at an irradiance of 1000W/m2 and a 

temperature of 33°C. These experimental values of the output 

voltage and current of an RTC France are found in a lot of 

manuscripts in particular [13] and [29]. 

 

1) Extraction for a single diode model (SDM) 
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This paragraph summarizes the outcomes of the 

algorithms investigated in this research utilizing the SDM and 

the goal functions described in Equations 3 and 14. Table 2 

shows the results of the Lambert function's RMSE calculation, 

which includes the difference between the Obj1 and Obj2. 

According to the results from Table 2, we see that after 

500 iterations, the Lambert-W function allows us to refine the 

estimation of the root mean square error. Thus, we go from an 

RMSE equal to 48.977×10-4 using the equation (3) to an 

RMSE equal to 46.0517×10-4 with the equation (14) for the 

Social Spider Optimization (SSO) method and from 

10.111×10-4 RMSE to 7.8028×10-4 using the Monarch 

Butterfly Optimization (MBO) method with the Lambert W 

function. It is also important to underline the superiority in 

terms of accuracy of the MBO algorithm compared to the SSO 

algorithm. This algorithm minimizes the Obj1 function, as 

well as the Obj2 function. This shows that the current 

estimated by this method is closest to the measured current. 

The intrinsic parameters of this method are much closer to the 

results presented in the literature. Fig. 4 shows the 

performance of the parameter estimation by the SSO method 

associated with the Lambert-W function for a single-diode 

model. 

 

 

Fig. 4: Convergence of the SSO and Lambert SSO methods to the optimal 

solution. 

 

2) Extraction for a double diode model (DDM) 

 

This paragraph summarizes the outcomes of the 

algorithms investigated in this research utilizing the DDM. 

Table 3 shows the results of the Lambert function's RMSE 

calculation, which includes the difference between the 

Lambert RMSE (Lambert RMSE) and the values produced by 

Obj1 and Obj2. 

For 100 iterations, we find that the MBO algorithm is 

significantly more accurate than the SSO algorithm. This 

algorithm minimizes more of the Obj1 function, 

demonstrating that the current estimated by this method is 

close to the measured current. The intrinsic parameters of this 

method are much closer to the results found in the literature. 

Regarding the objective function Obj2, we observe that, 

compared to the SSO algorithm, the MBO algorithm 

minimizes the most the difference between the measured 

current and the estimated current. The Lambert-W function 

associated with the latter allows for further refinement of the 

estimation of the internal parameters of the model, as shown 

in Fig. 5. 

 

Fig. 5: Convergence of the MBO and Lambert MBO methods to the optimal 

solution 

Fig. 5 shows the performance of parameter estimation by 

the MBO method associated with the Lambert-W function 

before the standard MBO method. 

 

B. Comparison results with the literature 

Tables 2 and 3 have shown the superiority and accuracy of 

computing the mean square error by the W-Lambert function. 

It appears that this function is more efficient and accurate in 

the evaluation of the objective function. In this part, we 

compare the results of the use of the Lambert-W function for 

a model with single and double diodes with the results found 

in the literature. 

The results resulting from the comparison of these 

methods with those in the literature for a commercial solar cell 

RTC France under the conditions described upstream are 

presented in Table 4. In the latter, we can observe the 
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superiority of the Monarch Butterfly Optimization method 

(RMSEMBO = 7.802×10-4) for the extraction of the parameters 

of a single diode model, compared to the numerous algorithms 

listed in the literature. This method thus outperforms methods 

such as the Parasitism Predation Algorithm (RMSEPPA = 

9.503×10-4), the Slime Mould Algorithm (RMSESMA = 

11.712×10-4), the Harris Hawks Optimizer (RMSEHHO = 

21.607×10-4) and the Social Spider Optimization (RMSESSO 

= 46.051×10-4). This superiority is due to a greater ability to 

explore and exploit than with the methods cited above. 

However, this method is less accurate than the Marine 

Predator Algorithm (RMSEMPA = 7.7301×10-4) due to 

population diversity. 

Fig. 6 shows the I-V characteristic curve of the 

photovoltaic cell, derived from the measured data (red dot 

curve) and the intrinsic parameters extracted from the cell by 

the Lambert-MBO method (blue dot curve) and the Lambert-

SSO method (green curve) under the test conditions 

mentioned above. 

 

Fig. 6: I –V characteristic of the SDM. 

For a double-diode model, the results from the 

comparison of these methods with those in the literature, for a 

commercial RTC France solar cell, under the conditions 

described above, are presented in Table 5. In the latter, we 

note the effectiveness of the Monarch Butterfly Optimization 

(RMSEMBO = 6.352×10-6) and Social Spider Optimization 

(RMSESSO = 3.943472×10-5) methods for extracting the 

parameters of a double-diode model. These surpass in 

accuracy and efficiency many algorithms listed in the 

scientific literature. These methods demonstrate their 

effectiveness in solving this problem with high nonlinearity, 

because they have a greater capacity for exploration and 

exploitation than the algorithms listed in the literature. They 

outperform the Chaotic Lambert Success History Based 

Adaptive Differential Evolution method (RMSEChaotic-LSHADE 

= 7.5274×10-4), the Marine Predator Algorithm (RMSEMPA 

= 7.7696×10-4), the Slime Mould Algorithm (RMSESMA = 

9.9715×10-4), the Parasitism Predation Algorithm (RMSEPPA 

= 11.172×10-4), and the Harris Hawks Optimizer (RMSEHHO 

= 12.491×10-4) which presents the least accurate results in 

the extraction of the parameters. 

These results show that the Monarch Butterfly 

Optimization (MBO) algorithm was able to effectively extract 

the parameter values to concretely predict the measured curve 

in a meaningful way. The Social Spider Optimization (SSO) 

method is more accurate in extracting the intrinsic parameters 

for the double-diode model than for the single-diode model. 

 

VI. CONCLUSION 

Renewable energy resources are a critical topic that can help 

tackle many energy-related issues. This type of energy has the 

potential to overcome numerous difficulties associated with 

the existing production system, which is mostly focused on 

fossil fuels. Solar energy is seen as the best solution to solving 

the difficulties related to fossil fuels owing to its availability 

and ease of deployment. In order to efficiently predict 

electricity production while optimizing PV systems, PV 

models have been developed. In order to extract precise and 

accurate parameters from PV models, it is necessary and even 

imperative to have a reliable objective function and a robust 

algorithm. This can be estimated either iteratively or by 

approximation by linearly solving the estimated current as a 

function of the measured current. In this manuscript, we have 

presented the accuracy of the methods discussed in the 

literature and established the most reliable and accurate 

method for extracting SDM and DDM model parameters. 

Relying on an objective function based on an iterative method, 

diode model parameter extraction provides more accurate, 

precise, and reliable solutions than the approximate method. 

This has been verified regardless of which algorithm is 

highlighted here. The MBO algorithm has shown its 

superiority over SSO and many other algorithms in the 

literature in terms of stability, optimal solution matching, and 

error curve convergence. However, despite the highlighted 

performance in terms of precision and accuracy of the optimal 

solution, the iterative method has a longer computation time 

than the approximate method. 
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VIII. TABLES 

 

TABLE II.  Comparison between the standard RMSE and the Lambert’s RMSE for the SDM  

Obj Algorithms Iph (A) I0 (μA) RS (Ω) RSh (Ω) n RMSE 

 

RMSE 

Lambert 

 

Obj1 

 

SSO 0.7581225 0.5627167 0.0328821 40.9025725 1.5400682 0.0048977 - 

MBO 0.7607404    0.3631381    0.0359033   56.8404767    1.4930679 0.0010111 - 

 

Obj2 

 

SSO 0.7648172 0.8369124 0.0330777 48.6201192 1.5824912 - 0.00460517 

MBO 0.7608512 0.3286955 0.0362770 53.0088783 1.4829622 - 0.00078028 

 

TABLE III.  Comparison between the standard RMSE and the Lambert’s RMSE for the DDM  

 

 

 

 

 

 

 

 

 

 

 

 

  

Obj Algorithms Iph (A) I01 (μA) RS (Ω) RSh (Ω)  n1 I02 (μA) n2 RMSE 

 

RMSE 

Lambert 

(10-5) 

 

Obj1 

 

SSO 0.7600929 0.8745996 0.0358025 91.4723960 1.9938196 0.3188443 1.4866188 0.0063807 - 

MBO 0.7611615 0.5614189 0.0361921 52.8089084 1.7939177 0.1915798 1.4440137 0.0010652 - 

 

Obj2 

 

SSO 0.7601496 0.4496564 0.0294139 69.1354713 1.5867504 0.6478670 1.6432520 - 3.9434724 

MBO 0.7616087    0.2446412    0.0353916 47.8395571 1.4652683 0.4989489 1.8062628 - 0.63521313 
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TABLE IV.  Comparison between the different extraction tools for SDM  

 

Algorithms Iph (A) I0 (μA) RS (Ω) RSh (Ω) n RMSE 

Lambert 

SSO 0.76481 0.83691 0.033077 48.6201 1.5824 0.00460517 

MBO 0.76085 0.32869 0.036277 53.0088 1.4829 0.00078028 

MPA [32] 0.76079 0.31072 0.036546 52.8871 1.4771 0.00077301 

SMA [32] 0.76105 0.44962 0.034400 53.9823 1.5151 0.00117120 

PPA [32]  0.76078 0.43557 0.034952 58.6694 1.5118 0.00095038 

HHO [32] 0.76143 0.96500 0.031311 72.4432 1.6004 0.00216070 

 

TABLE V.  Comparison between the different extraction tools for DDM  

 

Algorithms Iph (A) I01 (μA) RS (Ω) RSh (Ω) n1 I02 (μA) n2 RMSE 

Lambert 

(10-5) 

SSO 0.7601496 0.4496564 0.0294139 69.1354713 1.5867504 0.6478670 1.6432520 3.9434724 

MBO 0.76160    0.2446412    0.035391 47.8395 1.4652683 0.49894 1.8062628 0.63521313 

MPA [32] 0.76080 0.11872 0.037419 55.4579 1.4011 0.92078 1.8505 76.965 

SMA [32] 0.76035 0.31574 0.035155 67.4807 1.4846 0.84969 2 99.715 

PPA [32]  0.76106 0.29966 0.034449 57.8076 1.4671 0.44560 1.7595 111.720 

HHO [32] 0.76035 0.91286 0.034875 64.5645 1.8645 0.20341 1.4498 124.910 

Chaotic 

LSHADE 

[36] 

0.76076 0.20440 0.036907 55.5300 1.4424 0.87640 1.9952 75.274 
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