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Abstract - Quality assessment of structural integrity of 

critical systems such as Rocket motor casings is challenging 

and lacks adequate methods. There have been attempts to 

ascertain the failure loads of structures made from 

composite materials, but limited research was performed 

using metals like maraging steels. 17 dog-bone shaped 18Ni 

maraging steel (Grade 250) specimens were subjected to 

monotonic loading to collect tensile test data in the form of 

acoustic emissions (AE). This AE data was preprocessed 

and filtered to signal parameters that can be used to train 

back-propagation multi-layer perceptron (MLP) neural 

network, specifically using amplitude-hit, Weibull 

distribution parameters and energy/hit rates. The training 

and prediction were conducted at various levels of 25% to 

90% of the failure loads and was determined that the model 

was able to predict the failure load at proof loads as low as 

50% with minimal prediction error of 4.5%. The results 

indicate that an accurate failure prediction may be achieved 

using indirect method of training the artificial neural 

networks using acoustic emissions data from specimens 

under load. Thus, acoustic emissions and artificial neural 

networks pave the way for online monitoring of structural 

integrity of critical systems such as rocket motors used in 

satellite launch vehicles at loads much lower than the failure 

load. 

Keywords— Acoustic Emissions, Artificial Neural Networks, 

Material failure prediction, Non-destructive techniques  

I. INTRODUCTION

Rocket motor casings are significant subsystems for satellite 
launch vehicles and are necessary to be realized with materials 
that withstand high thermal loads, structural loads, possess high 
creep resistance and specific strength[1]. Besides these criteria, 
material selection also needs to focus on aspects such as modes 
of failure and fabrication requirements. Table 1 lists the 
properties of typical materials commonly used for solid rocket 
motor casings. The 18% Nickel maraging steels are 
advantageous over the other alloys for their good forming, 
forging characteristics, their ability to be heat treated at low 
temperatures, dimensional stability during age hardening, higher 
fracture toughness and the ability to be machined in soft 
condition with minimum distortion[2]. However, these high 
strength maraging steel materials can undergo premature brittle 
fractures at stress levels lower than the designed limits due to 
stress concentration around inherent material defects like voids 

and the defects induced during the fabrication processes. These 
defects could reduce the material’s fracture toughness which 
requires the designers to follow fracture-based design 
methodology and be more dependent on the quality control 
strategy. Typical NDT techniques involved in the inspection of 
rocket motor casings for defect detection include liquid 
penetrant inspection, ultrasonic inspection, radiographic 
inspection, and acoustic emission inspection. While each of 
these NDT techniques is more or less better suited for a given 
application, this paper is focused on investigating the use of 
acoustic emissions as an NDT tool to evaluate the structural 
integrity of rocket motor casings made from maraging steel 
using artificial neural network. 

Table 1 Comparative Mechanical Properties of Various Alloys 

Material Design 

Yield 

Strength, 

MPa 

Modulus 

of 

Elasticity, 

GPa 

Density 

Gm/cc 

Heat 

Treatment 

Low Alloy 
Steel 

4130 

4335V 
D6aC 

15CDV6 

1035-1240 

1240-1380 

1240-1660 
1080-1280 

199.95 

199.95 

199.95 
199.95 

7.83 

7.83 

7.83 
7.83 

Quench 

and 
Temper 

Maraging 
Steel 

Grade 200 

Grade 250 
Grade 300 

1380 

1660 

1930 

189.61 

189.61 

189.61 

8.00 

8.00 

8.00 

Solution 

Anneal and 

age 

Titanium 

Ti-6Al-4V 1035 110.32 

4.62 

Solution 

Anneal and 

age 

A. Acoustic Emissions

Acoustic emissions are transient elastic waves that are
generated by rapid release of energy from localized sources 
within a material when it is stressed[3]. This NDT is a fast-
maturing technique to play an effective role in real time 
monitoring of the active defects in structures similar to rocket 
motor casings. The AE technique identifies severity of the 
defects in the material by quantitatively assessing high energy 
emissions that are characterized by high amplitude and long 
duration events[4]. The low displacement high frequency 
mechanical shock wave signals produced by the acoustic 
emissions are received by the piezo-electric sensors placed on 
the material and are converted into suitably amplified electronic 
signal. Most of the emission sources can be distinguished by 
their acoustic emission signature. The extent of AE activity is 
minimal under 50% of the failure load, and increases with 
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increasing load depending on presence of the material defects. 
These acoustic emissions are correlated with the actual straining 
of the material, and allow for characterizing the material for 
yield and ultimate tensile strengths[5]. Mechanical behavior of 
the material can be correlated to AE attributes such as amplitude, 
counts, energy rise time, duration, hit rate, energy rate, and 
amplitude-hit distribution plots[6],[7]. 

 

Figure 1 Process of AE Generation 

 
Figure 2 Typical AE Wave 

B. Artificial Neural Networks 

Artificial neural network-which has proximity to biological 

neural network-is an adaptive computer program or an iterative 

numerical technique that facilitates solutions to problems such 

as prediction and classification of data. The relationship between 

inputs and outputs is established through a training process in 

which a set of inputs are processed through the neural network 

to obtain outputs which are compared to the known correct 

values. The errors in the network outputs are minimized to an 

acceptable level through an iterative process of modifying the 

network parameters. 

Typical artificial neurons have certain parameters such as 

bias/threshold, transfer function and synaptic weights. The 

weighted signals from synapse get combined linearly in the 

adder along with bias. The output from the adder is processed 

through transfer functions (excitatory or inhibitory) such as 

sigmoid, threshold, hard limiter etc. to alter the amplitude of the 

output of the neuron. 

 
Figure 3 Architecture of Artificial Neuron 

  

A multilayer perceptron (MLP) neural network has a single 

input layer, one or more hidden layers, and one output layer. The 

signal propagates through the neural network layer by layer, 

while undergoing training utilizing error back-propagation (BP) 

algorithm to adjust the synaptic weights based on the difference 

between the outputs and the desired response[8]. The hidden 

layers of the error-back propagation algorithm analyze the inter-

nodal relationship from the input layer-otherwise referred to as 

feature, and allows for more abstract representation of the input 

information in the hidden layers[9]. This ability of the BP 

network allows for recognition of features in complex patterns 

with adequate training [10]. 

 
Figure 4 Back Propagation Multi-Layer Perceptron 

 

II. EXPERIMENTAL SETUP 

This section discusses the experimental setup and the 

procedure that was used to tensile test the specimens; collect, 

and process the acoustic emission data, train the ANN program 

with acoustic data, and utilize the trained model to predict the 

peak load outcomes of test samples. The 18% nickel maraging 

steel dog-bone shaped samples tested for this study are 

presented in Figures 6. Of the seventeen (17) samples a set of 9 

specimens had simulated cracks (notches), another set of 1 

specimen had weld defect and the last set of 7 specimens were 

defect free. The samples with notches were fabricated with 3 

different kinds as noted in AMS 2632A standard and listed in 

Table 2. 
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Figure 5 Drawing of specimen showing critical dimensions 

 

The notches designed were per ultrasonic inspection standard 

AMS 2632A which specifies 3 different kinds- E, F and G. 

These samples are tested in Walter-Bai hydraulic servo system 

to collect the tensile data while the piezo-electric sensors on the 

samples also collect AE data while under load. The AE data 

from the test samples is routed through the data acquisition 

system, the test setup for which is detailed in the next section. 

A. AE Monitoring and Data Acquisition System 

The Physical Acoustics corporation (PAC) AEWin system 

was used for this study. The system records the initiation and 

growth of the defects and noise in the specimens under test in 

the form of transient waveform, to analyze store and display the 

resulting data. The main components of the AE system include 

an IBM compatible personal computer, six AE-DSP-32/16 

boards, the MISTRAS software (Graphical User Interface 

(GUI) software) for data acquisition and display. The other 

miscellaneous components include acoustic sensors, plug-in 

filters, and connecting cables. 

 

 
Figure 6 Schematic Block Diagram of AE-Win System 

 

PAC’s MICRO 30D sensitive piezo-electric sensors with 

operating bandwidth between 100-500KHz were fixed on the 

specimen’s surface using adhesive tapes to receive acoustic 

emissions related to damage growth and noise during the 

testing. These AE signals from the transducers, which are of the 

order of a few millivolts, are fed into a preamplifier and then 

into a plug-in filter with a bandpass of 100 KHZ- 1.2 MHz to 

filter out the noises related to oil flow in actuator assembly, 

hydraulic grips, friction, and vibrational energy etc. from the 

fixture accessories. The amplified and filtered output from the 

amplifier, which is in an order of few volts, is fed into AE-DSP-

32/16 board which under software control is used to filter the 

data to the required level. The filtered signal is then processed 

in AE-DSP-32/16 board into outputs containing the required 

AE signal features that are footprint of the defects in the 

specimen. 

 
Figure 7 Test specimen setup in Walter-Bai Hydraulic Tester 

III. RESULTS AND DISCUSSION 

Table 2 details the data from 17 test samples that were 

subjected to tensile loading up to failure using the test setup 

discussed in section 3. The differences in test samples such as 

weld thickness, failures in heat affected zones (HAZ) and 

behavior of different notches led to a difference of 21% in the 

failure loads in the specimens. The lowest failure load was 70.5 

KN and the highest was 84.8 KN. The AE data collected from 

the specimens is analyzed using AE-Win system and MITRAS 

signal data acquisition and analysis software.  

 

 
Figure 8 Actual samples manufactured and tested 

 
Table 2 Test Sample defect type, failure mode and Peak Load 

Specimen Type of Defect Type of failure 

observed 

Failure 

Load in 

KN 

Specimen 10 Weld Defect Defect failure 70.57 

Specimen 05 G-Notch Notch failure 74.79 

Specimen 23 70% G-Notch Notch failure 72.47 

Specimen 22 70% G-Notch Notch failure 75.30 

Specimen 03 50% G-Notch Notch failure 79.13 

Specimen 20 50% G-Notch Notch failure 79.14 

Specimen 06 F-Notch Notch failure 79.47 

Specimen 17 F-Notch Notch failure 80.91 

Specimen 14 E-Notch HAZ failure 84.85 

Specimen 24 None Weldment failure 79.84 

Specimen 07 None Weldment failure 80.27 

Specimen 01 None Weldment failure 80.56 

Specimen 13 None Weldment failure 80.81 

Specimen 11 None Weldment failure 75.80 

Specimen 04 None Weldment failure 81.43 

Specimen 18 None HAZ failure 81.54 

Specimen 08 None HAZ failure 82.79 

 

A. Neural Network Program Training 

The different characteristics of failure mechanism or defect 

of the specimen correspond to different kinds of AE signals 

and their signal parameters. The neural network program is 

required to be adequately trained with relevant data for 
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allowing it to generate prediction equations for an accurate 

defect classification and predict impending failure. 

Signal parameters such as cumulative AE activity, AE hit 

rate, AE energy rate, AE count rate were assessed for their 

fit to be used as inputs to ANN to accurately predict the 

failure loads. These parameters, when interposed with 

stress-strain graph were able to accurately predict the onset 

of yielding but were unable to predict the impending failure 

with the required accuracy. Therefore, these parameters 

were used as augmented input to the neural networks 

program for failure prediction. Other signal parameters such 

as the AE amplitude distribution data (Figure 8) are shown 

to contain information specific to identification of failure 

mechanisms in materials [13]. Various failure mechanisms 

have characteristic humps or bands in amplitude distribution 

with distinctive differences between failure mechanisms for 

plastic deformation and crack propagation. A relatively 

large number of hits at high peak amplitude indicates a high-

quality part while small number of hits at low peak 

amplitude indicates part with defects. 

 

 
Figure 9 Filtered AE data and Stress-strain comparative plot 

The same amplitude-hit distribution data, when modeled using 

Weibull distribution yields 3 parameters (A0, θ and b) 

identifying the shape of the distribution. A0 represents 

threshold amplitude, θ represents mean of amplitude 

distribution which represents ductility or brittleness of the 

specimen, and b represents skewness of distribution towards 

low or high stress events with high value of b representing high 

quality part. Once these Weibull parameters for the amplitude-

hit distribution are identified, they were used as inputs for the 

neural network model for failure prediction. 

 
Figure 10 Weibull distribution and their parameters effect on shape of 

distribution 

Of the 17 specimens, 2 specimens (11 and 23) were excluded 

from training or testing due to their slippage from the grips. For 

MLP training, unique amplitude-hit distribution data sets of 7 

specimens were selected as a training set. 8 of the remaining 

specimens were used to test the trained MLP network. 

 
Table 3 Specimens used for Training 

Specimen Type of Defect Type of failure observed 

Specimen 10 Weld Defect Defect Failure 

Specimen 05 G-Notch Notch Failure 

Specimen 22 70% G-Notch Notch Failure 

Specimen 17 F-Notch Notch Failure 

Specimen 14 E-Notch HAZ Failure 

Specimen 07 None Weldment Failure 

Specimen 01 None Weldment Failure 

 

A total of 60 amplitude distributions were used as inputs for 

training while adopting methods to make the network faster and 

efficient. Other inputs such as hit rate, energy rate and count 

rates were also used as augmented inputs for training. Other 

statistical parameters from amplitude Weibull distribution were 

also used as inputs. In total there were 65 distinct inputs and 

corresponding AE hit distribution that were used as input to the 

neural network. One specific or a combination of parameters 

was used to create multiple MLP programs with each trained 

differently from the other. A significant number of trial-and-

error methods were adopted to determine the network 

parameters such as nodes in the hidden layer, changes in 

learning rate, minimization of weights initiated using random 

numbers etc. 

 
Table 4 Characteristics of MLP Neural Network 

Feature MLP Network Architecture 

Architecture Input Layer-single hidden layer-

output layer 

No. of Input Nodes 65 

No. of output Nodes 1 (tracked failure load) 

No. of hidden nodes 8 

Bias Level Randomly initiated (less than 1) 

Presentation of training data Sequential 

Training error representation Mean square error 

Weight Initiation Small and randomly selected 

Learning rate 0.1 

Activation function Sigmoidal 

Criteria for stopping Acceptable error level 

Learning mode algorithm Supervised-error back propagation 

Programming language MATLAB 

Platform for simulation Win32, Intel  
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B. Failure Prediction using Neural Networks 

Two sets of prediction exercises were conducted. In 

one, only hit-amplitude distribution data (60 inputs) trained 

model was used. The predictions for failure load using this 

particular type of trained model were conducted at 50% of 

failure loading. The resulting error when a comparison 

between the model predicted values and the actual values of 

failure loading were made was 8.1%. In the second set of 

prediction exercises, the model trained with 65 inputs which 

include amplitude distribution data along with rate inputs 

and Weibull distribution parameter inputs was used. The 

predictions using this trained model resulted in a reduction 

of the error to 4.5%. Therefore, it was established that using 

augmented inputs to the neural network model reduced the 

error by half. 

 
Figure 11 Comparison between 60 inputs and 65 inputs 

  

The developed and optimized neural network was trained 

with 7 specimens and tested for the full set of specimen’s 

data at various load levels starting from 25% to 90% and 

outputs were compared to that of the actual failure loads 

 

 
Figure 12 Comparison of NN output with Actual failure loads 

Table 5 Prediction Errors at various load levels 

Specimen Percentage 

error in 

prediction 

at 25% 

Percentage 

error in 

prediction 

at 25% 

Percentage 

error in 

prediction 

at 25% 

Percentage 

error in 

prediction 

at 25% 

Percentage 

error in 

prediction 

at 25% 

Percentage 

error in 

prediction 

at 25% 

Specimen 

01 

0.4781 0.529 0.49768 0.33887 0.35551 0.61797 

Specimen 

03 

-1.3028 4.6939 0.47771 3.4761 -0.05784 2.2369 

Specimen 

04 

-0.16647 -0.19034 1.75 3.7853 -2.6817 0.67171 

Specimen 

05 

0.53805 0.75892 -0.07098 1.1437 1.4404 2.1828 

Specimen 

06 

-0.31876 -4.1823 -3.5542 -3.6702 -0.36069 6.7083 

Specimen 

07 

0.48845 0.55624 -0.52608 0.22711 0.80379 0.36491 

Specimen 

08 

-2.8563 -4.5602 -0.86636 -1.7564 -6.3514 -0.43028 

Specimen 

10 

1.6174 0.52251 2.0623 2.0429 0.82245 0.30116 

Specimen 

13 

-7.8922 -0.30505 2.7199 5.2497 -2.3148 -0.14371 

Specimen 

14 

0.36403 0.53194 0.18995 0.086295 0.10919 0.12843 

Specimen 

17 

0.4767 0.52389 -0.06868 0.36897 0.88839 1.0814 

Specimen 

18 

0.59641 0.67763 0.27913 0.58859 1.2304 0.33254 

Specimen 

20 

-2.035 1.7254 -2.1074 2.4372 1.7897 3.8889 

Specimen 

22 

1.3404 2.0147 -1.0069 -0.01225 0.45596 0.61185 

Specimen 

14 

-2.6907 0.6342 4.1527 6.7059 3.0786 6.2185 

No. of 

cycles 

26677 24617 25312 42108 19521 68037 

 

From table 5, it is evident that the neural network model’s 

prediction error is at 7.9% when the proof load ranges is 

between 25% to 90%. But considering that acoustic emissions 

are negligible during the initial phase of loading at 25%, and 

when the proof loading range of 50-90% range is considered, 

the prediction error is reduced to 6.7%. However, the grip and 

slip noises are highest when the proof loading percentages are 

in 80-90% range. Therefore, if the loading ranges are changed 

to 50-75% of the failure load, the prediction error of the model 

is reduced to 4.5%. This allows for predicting failure load of 

specimen effectively at loads as low as 50% of failure load with 

reasonable prediction error. This confirms that the use of 

augmented input, i.e., rate values and Weibull parameters along 

with the hit-amplitude distribution data reduced the prediction 

error. 

IV. CONCLUSION 

The acoustic emission data from the 15 specimens (2 

specimens excluded from analysis due to slippage) was used 

to train and test back-propagation multi-layer perceptron 

neural network at 25%, 50%, 75%, 80% and 90% of failure 

load. The results indicate that the neural network model was 

able to accurately predict the failure load at proof loads as 

low as 50% with 4.5% prediction error. It was also identified 

that the augmented input to the neural network like 

hit/energy rate and Weibull distribution parameters as 

training parameters have reduced the prediction error by 4%. 

Also, the model was able to appropriately segregate grip 

noise data from the aggregate data set when specimens were 

loaded to 80-90% of proof loads by adjusting the synaptic 

weights without having to remove it manually. The research 

presented in this paper substantiates the feasibility of using 

neural networks and non-destructive techniques such as 

acoustic emission testing data to confirm accurate failure 

load prediction. However, extending this research for 

developing an online structural integrity monitoring system 

requires additional analysis and further understanding of 
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influence of material properties, heat treatment conditions, 

acoustic wave propagation effects like reflection, actual test 

parameters and actual field conditions. 
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