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Abstract— The aim of this paper is to develop the new feasible 

direction of the constrained nonlinear optimization. The 

algorithm is based on the enhancements of the search 

determination and initial total number of line searching steps. 

The Newton and Kuhn-Tucker method are the most popular 

method in determine the certain structured constraint linearly 

of nonlinear problem whilst the rate of the convergence is not 

effective. This paper has successfully improved the Newton 

and Kuhn-Tucker method by extended the algorithms due to 

the conjugate directions. The method is applied the 

conjugations respect to the last two direction and can be 

applied to the single user traffic problem with the lower cost 

and stochastic transportation problem. 
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I.  INTRODUCTION 

 

Generally, the aim of the optimization problem is to 

choose the best alternative method due to the any available 

criteria, such as maximizing profits in the company, the 

rate of change of the volume of business, or minimizing the 

cost of the production. Mathematically, the optimization 

problem can be stated as follows: 

 

 min ( )
x X

f x


 

with x is a vector at 
n , ( )f x is an objective function and 

nx is a set of constraint of feasible area (see [1], [4], 

[5]). Optimization models are often formulated as a linear 

program in which all parameters are assumed in 

deterministic, but in some cases the application of a linear 

relationship can not be used and not feasible to determine 

the exact problem. The effective and feasible methods that 

we can use to solve the problem is called algorithms, a 

nonlinear program. Nonlinear program has a very broad 

scope and its applications has undergone major 

developments in decades recently. This variety approach 

models are being made to solve any nonlinear optimization 

program, for example traffic, telecommunications, 

chemical industry, large-scale structural design 

optimization, structural optimization applications in 

economics, marketing, business applications, scientific 

applications such as biology, chemistry, physics,  

mechanical and protein structure prediction. Traffic 

network problems [2] is not a linear model that explain 

how each visitor to minimize their own travel expenses to 

achieve the desired goal. The travel time modeling, 

congestion and the difference in the number of tourists 

from time to time is being considered as the constraint and 

causing the problem turn into a nonlinear problem [6]. This 

is characterized by the presence of nonlinear functions 

between goals or constraints. We can written the nonlinear 

form such as 2 1, , ,sin( ), tan( )x

x
x e x x and etc. 

 

 The nonlinearities can be caused due to the interaction 

between two or more variables [3]. Constraint in a 

nonlinear program can be represented in an equality or 

inequality form. Optimization with a continuous function 

can be derived to the constraint equality form. This paper is 

used the extended Lagrange procedure to solve the 

optimization problem In this paper we focus in determine 

the optimum solution of constrained nonlinear program by 

combining and modifying the two previous method that has 

been studied by [3] and [1]. This paper unfolds as follows. 

Section II we review some background information that 

adopted and related to constrained nonlinear problem. 

Section III we present our model then present the 

computation result in a given data in Section IV. Finally, 

conclusion and future research in the last section. 

  

 
II. NONLINEAR PROGRAM WITH CONSTRAINT EQUALITY 

 

A. Nonlinear optimization with constraint equality 

 

Assume that the maximizing problem of a continuous 

function can be derived as 0 1 2( , , , )ny f x x x   with 

constraints 1 2( , , , )ng x x x b  where ( )g X is a 

continuous and also can be derived. Under this assumption, 

it suggested that the model can choose the variable nx  of 

the constraint, so 1 2 1( , , , )n nx H x x x   . Then, it 

substituting to the objective function and can be written as 

 

0 1 2 1 1 2 1[( , , , , ( , , , )]n ny f x x x H x x x     

 

Based on the above form, the general method can be 

applied due to the function that has no constraint of the 
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model. An necessary condition at extreme points can be 

written as follows. 

 

0 .
j j n j

y f f H

x x x x

   
 

   
; where 1,2, , 1j n   (1.1) 

 

From 1 2( , , , )ng x x x b  

 

. 0
j n j

g g H

x x x

  
 

  
; where 1,2, , 1j n   (1.2) 

 

and 

 

. . 0
j j n n

H g g g

x x x x

   
  

   
; where 1,2, , 1j n  (1.3) 

 

Thus, it can written as 

 

0 . . 0
j j n j n

y f f g g

x x x x x

    
  

    
; 1,2, , 1j n   (1.4) 

 

If the solution vector is the maximum vector, then 

1 2, , , nx x x  is the maximum solution of the model. By 

substituting .
n n

f g

x x


 


 
, then 

 

0
j j

f g

x x


 
 

 
; where 1,2, ,j n   (1.5) 

 

with assumption 1 2( , , , )ng x x x b . Now, we have 1n  

with 1n  unknown variables. If an objective function 

1 2( , , , )nf x x x  with constraint 1 2( , , , )ng x x x b , then 

the Lagrange function as follows. 

 

1 2 1 2( , , , ) [ ( , , , ) ]n nL f x x x g x x x b     (1.6) 

 

and for the necessary condition of stationery point  

 

0
j j j

L f g

x x x


  
  

  
; where 1,2, ,j n   (1.7) 

 

1 2( , , , ) 0n

L
g x x x b




  


  (1.8) 

 

B. Nonlinear optimization with constraint inequality 

 

Kuhn and Tucker has successfully extended the theory 

to solve the general nonlinear program with constraint both 

equality or inequality. The necessary condition of Kuhn-

Tucker method that discussed in this paper is to indentify 

the stationer point of a nonlinear problem with constraint 

inequality. These constraint inequality can be changed to 

be an equality by adding the nonnegative slack variable. 

Assume that 
2 ( 0)iS  denoted as slack quantity that has 

been adding to constraint i and ( ) 0ig x  . Identifying that 

1 2( , , )mS s s s  and 
2 2 2 2

1 2( , , )mS s s s   where m is the 

total number of constraint equality of the model. Thus, the 

Lagrange function can be written as follows. 

 
2( , , ) ( ) [ ( ) ]L X S f X g X S     with ( ) 0g x  (1.9) 

 

 

 

III. MODELS AND NUMERICAL EXAMPLES 

 

 

This problem is based on studied by [1] by using the 

seven steps in determine the best solution as follows. 

 

Step 1. Choose the best or feasible method to solve the 

problem. 

 

Step 2. Assume that there exists known variables 

1 2 1, , nd d d   

 

Step 3. Denoted that the objective of the model is to 

maximize the function 1nd  . 

 

Step 4. Denoted all the constraint of the model as follows. 

 

1 2 1
1 2

0B B B n n
n

f f f
d d d d

X X X


  
    
  

 (1.10) 

 

1 1 1
1 2 1 1 1

1 2

( )B B B n n
n

g g g
d d d k d g B

X X X


  
     
  

 (1.11) 

 

2 2 2
1 2 2 1 2

1 2

( )B B B n n
n

g g g
d d d k d g B

X X X


  
     
  

 (1.12) 

 

1 2 1
1 2

( )
p p p

B B B n p n p
n

g g g
d d d k d g B

X X X


  
     
  

 (1.13) 

 

where ( 1,2, , )ik I p   is 0 if ( )ig x  linear and 1 otherwise. 

 

Step 5. If 1nd  = 0, then X* = B. If not, back to Step 4.  

 

Step 6. Choose 1 2 1( , , , )nD d d d T  . Denote a nonnegative 

x to maximize ( )f B D  and ( )f B D  is feasible.  

 

Step 7. Choose B D  and back to Step 2. 

 

Minimum program min ( )
x X

f x


. ( 0)D   is feasible where 

*x X  if 0 ( * )x D X      for [0, )   as we can see on 

Fig. 1 and Fig. 2 below. 
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Fig 1. Feasible direction 

 

 
Fig. 2 Not feasible direction 

 

 

In standard form of nonlinear program that contains 

inequality constraint, the model can be written as for this 

example. 

 

Max 1 2Z x x   

s.t 2 1 22 3 0x x x    

  1 23 2 24 0x x    

  1 0x   

  2 0x   

 

Here, we assume that we have 1 2( )f X x x  , 

1 2 1 2( ) 2 3g X x x x   , 2 1 2( ) 3 2 24g X x x   , 3 1( )g X x   and 

4 2( )g X x  . 

 

1

1
f

x





   

2

1
f

x





 

1
2

1

g
x

x





   1

1
2

2
g

x
x


 


 

2

1

3
g

x





   2

2

2
g

x





 

3

1

1
g

x


 


   3

2

0
g

x





 

4

1

0
g

x





   4

2

1
g

x


 


 

 

Thus, we get the feasible solution that shows on Table 1 as 

follows. 

 

1X  2X  1d  2d  3d  *  

1 1 1 0 1 4 

5 1 1 -1/2 ½ 2 

7 0 1 0 1 1 

8 0 -2/3 1 1/3 0.531 

7.645 0.531 0 0 0  

 

 

Thus, from the result we determine the optimum solution 
*
1 7.645x  and *

2 0.513x  and the objective function is 

* *
1 2* ( , ) 7.645 0.513 8.158z f x x    . 

 

IV. CONCLUSIONS 

 

Nonlinear optimization program with equality and 

inequality constraints can be solved by combining the 

Newton-Raphson method and conditions of Kuhn-Tuckher. 

Both of this method can be done by using the principle of 

the Lagrange method. To determine the optimum value of 

linear programs with inequality constraints not based on the 

requirements Kuhn-Tuckher. However, this necessary 

condition must be done by changing back the inequality 

constraints into equality constraints to determine the 

optimum solution becomes less effective. 
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