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Abstract - With rapidly increasing demand of electrical energy and 

without any major appreciable reinforcement’s projects to 

enhance power transmission networks, more brittle situation 

exists in operation of power system. Modern power system 

operating tools with Optimization techniques have been adapted 

to insure proper operation and security of operation to meet 

increasing demand and reduce generation cost to optimize 

resources and to satisfy customers and suppliers. 

 This paper presents an algorithm for solving Optimal 

Power Flow problem through the application of modern heuristic 

method known as Differential Evolution (DE) for obtaining global 

minima of objective function. The objective is to minimize the 

total fuel cost of thermal generating units having quadratic cost 

characteristics subjected to limits on generator real and reactive 

power outputs, bus voltages, transformer taps and power flow of 

transmission lines.  

 The DE method has to be tested on 26-bus system, within 

this various parameters in the optimization process and their 

effects on convergence are to be studied and finally the feasible 

parameter values that effect to fit as the solution to Optimal 

Power Flow Problem is presented. 

 

Keywords—Optimal Power Flow, Heuristic Method, Differential 

Evolution etc., 

 
I. INTRODUCTION 

 

Nowadays, the electricity market is going toward open 

market and deregulation creating an environment for forces of 

competition and bargaining. Electricity utilities are in need to 

serve more loads through their networks and also maintain the 

system security. New power systems simulation tools with 

optimization techniques have been adapted to power systems to 

insure proper operation/security of the power system, meet the 

requirement of electricity demand, reduce cost, optimize the 

resources and also help to satisfy customers and suppliers. 

Traditionally, in system studies, normal load flow was 

used to simulate performance of system under certain 

operational conditions. In the early stages, fuel cost 

optimization described as the  economical dispatch was a very 

basic objective. Later, the load flow problem was combined 

with the economical dispatch problem as an optimization 

problem. This has formulated the optimal power flow (OPF) 

which provided a tool to manipulate the system variables to 

reduce the fuel cost while meeting certain conditions and 

constraints to ensure proper system operation. At later stages,  

 

 

the application of OPF has gone far beyond the economical 

dispatch problem, depending on the selection of the objective 

function 

 
II. THE OPTIMAL POWER FLOW 

 
For the planner and operator fixed generation 

corresponds to a snapshot only. Planning and operating 

requirements very often ask for an adjustment of the generated 

powers according to certain criteria. One of the obvious ones is 

the minimum of the generating cost. The application of such a 

criterion immediately assumes variable input powers and bus 

voltages which have to be determined in such a way that a 

minimum of the cost of generating these powers is achieved. 

 At this point it is not only the voltages at buses where 

the loads are supplied but also the input powers together with 

the corresponding voltages at the generator buses which have to 

be determined. The degree of freedom for the choice of inputs 

seems to be exceedingly large, but due to the presence of an 

objective, namely to reach the minimum of the generating cost 

the problem is well defined. Of course the mathematics become 

more demanding as compared to the original power flow 

problem, however, the aim still being the same, i.e.  the 

determination of the nodal voltages in the system. They play 

the role of state variables from which all other quantities can be 

derived. It turns out that the extended problem requires a more 

detailed definition and different methods of solution. 

 The problem can be generalized by attaching different 

objectives to the original power flow problem. As long as the 

power flow model stays the same it is considered the optimal 

power flow problem where the objective is a scalar function of 

the state variables. In essence, any optimal power flow problem 

can be reduced to such a form. 
 

III. DIFFERENTIAL EVOLUTION ALGORITHM 

 

 One extremely powerful algorithm from Evolutionary 

Computation due to convergence characteristics and few 

control parameters is differential evolution. Differential 

Evolution is an optimization algorithm that solves real-valued 

problems based on the principles of natural evolution using a 

population P of Np floating point encoded individuals that 

evolve over G generations to reach an optimal solution. Each 

individual, or candidate solution, is a vector that contains as 
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many parameters as the problem decision variables D. In 

Differential Evolution, the population size (Np) remains 

constant throughout the optimization process. 

 

P
(G)

 = [X1
(G) 

, - - - - XNp
(G)

]        - - - (1) 

 

Xi
(G)

 = [X1,i
(G) 

, - - - - XD,i
(G)

]
T   

   - - - (2) 

i= 1, - - - - NP 

 

Differential Evolution creates new offspring by 

generating a noisy replica of each individual of the population. 

The individual that performs better from the parent vector 

(target vector) and the replica (trial vector) advances to the next 

generation. This optimization process is carried out with three 

basic operations: Mutation, Crossover and Selection. First, the 

mutation operation creates mutant vectors by perturbing each 

target vector with the weighted difference of two other 

individuals selected randomly. Then, the crossover operation 

generates trial vectors by mixing the parameters of the mutant 

vectors with the target vectors, according to a selected 

probability distribution. Finally, the selection operator forms 

the next generation population by selected between the trial 
vector and the corresponding target vector those that fit better 

the objective function. 

 
4. DE OPTIMIZATION PROCESS 

 

 The first step in the DE optimization process is to 

create an initial population of candidate solutions by assigning 

random values to each decision parameter of each individual of 

the population. Such values must lie inside the feasible bounds 

of the decision variable, and can be generated by equation, 

 

Xj,i
(0)

 = Xj
min

 + ηj (Xj
max  

- Xj
min

),      - - - (3) 

i= 1, - - - - NP ; j= 1, - - - - D 

 

Where Xj
min

 and Xj
max

 are respectively, the lower and 

upper bound of the j
th

 decision parameter and ηj is the 

uniformly distributed random number within [0, 1] generated a 

new for each value of j. 

 After the population is initialized, this evolves through 

the operators of mutation, crossover and selection. The 

mutation operator is in charge of introducing new parameters in 

to the population. To achieve this, the mutation operator creates 

mutant vectors by perturbing a randomly selected vector (Xa) 

with the difference of two other randomly selected vectors (Xb 

and Xc)) according to. All of these vectors must be different 

from each other, requiring the population to be of at least four  

individuals to satisfy this condition. To control the perturbation 

and improve convergence, the difference vector is scaled by a 

user defined constant in the range [0, 1.2]. This constant is 

commonly known as the scaling constant (F). This is illustrated 

in Fig 4.1. 

 

 
 

 

Fig.1 Method of creating Mutant Vector 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2 Method of Crossover operation 

 

Xi
’(G)

 = Xa
(G)

 + F (Xb
(G)  

- Xc
(G) 

)    - - - (4) 

i= 1, - - - - NP ; 

 

Where Xa , Xb,  Xc are randomly chosen vectors €{1, - - 

- - Np} and a ≠b≠c≠ i. Xa , Xb,  and Xc are generated anew for 

each parent vector. F is the scaling constant. 

The crossover operator creates the trial vectors which 

are used in the selection process. A trial vector is a combination 

of a mutant vector and a parent (target) vector performed based 

on probability distributions. For each parameter, a random 

value based on binomial distribution (preferred approach) is 

generated in the range [0, 1] and compared against a user 

defined constant referred to as the crossover constant. If the 

value of the random number is less or equal than the value of 

the crossover constant the parameter will come from the mutant 

vector, otherwise the parameter comes from the parent vector.  

The Figure.2 shows how the crossover operation is 

performed. 

The cross operation maintains diversity in the 

population, preventing local minima convergence. The 

crossover constant (CR) must be in the range of [0, 1]. A 

crossover constant of one means the trial vector will be 

composed entirely of mutant vector parameters. A crossover 

constant near zero results in more probability of having 

parameters from the target vector in the trial vector. A 

randomly chosen parameter from the mutant vector is always 

selected to ensure that the trial vector gets at least one 
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parameter from the mutant vector even if the crossover constant 

is set to zero. 

 

Xj,i
’’(G)

   = Xj,i
’(G)

 if ηj
’
 ≤ CR  or j=q     - - - (5) 

    Xj,i
(G)

 otherwise 

                  i= 1, - - - - NP ; j= 1, - - - - D 

 

Where q is a randomly chosen index €{1, - - - - D} 

that guarantees that the trial vector gets at least one parameter 

from the mutant vector; ηj
’ 

is a uniformly distributed random 

number with [0, 1) generated anew for each value of j. Xj,i
(G)

is 

the parent (target) vector, Xj,i
’(G)

the mutant vector and 

Xj,i
’’(G)

the trial vector. 

The selection operator chooses the vectors that are 

going to compose the population in the next generation. This 

operator compares the fitness of the trial vector and the fitness 

of the corresponding target vector, and selects the one that 

performs better. The selection process is repeated for each pair 

of target/trial vector until the population for the next generation 

is complete. 

 

Xi
(G+1)

   =  Xj,i
’’(G) 

 if   f(Xj,i
’’(G)

)  ≤  f(Xj,i
(G)

)  - - - (6) 

 Xi
(G)

   otherwise 

                  i= 1, - - - - NP ; 

 
V. DE BASED OPF ALGORITHM 

 

Differential Evolution has been applied to problems 

from several areas. Some power engineering problems have 

been solved with DE including: Distribution systems capacitors 

placement, harmonics voltage distribution reduction and 

passive shunt harmonic filter planning. DE has also been used 

in the design of filters, neural network learning, fuzzy logic 

application, and optimal control problems, among others. 

The objective function of OPF 

Minimize   



N

Ni

GiiCOSTCOST

pq

PFF
1

)( )(  

Minimize 



N

Ni

GiiCOSTCOST

pq

PFF
1

)( )( =  

ai PGi
2 
+ bi PGi + ci 

   - - - (7) 

Where Ng = N - Npq = No.  of generating units to be optimized 

  Npq = No. of fixed load PQ buses 

Subject to constraints,  

g(x) =0   

h(x) ≤0 

g(x) =0 is the equality constraints and represent typical load 

flow equations. 

h(x) ≤0 is the system operating constraint 

 

 

 

 

A. Dependent Variables 

X is the vector of dependent variables consisting of slack bus 

power PG1, load bus voltages VL , generator reactive power 

outputs QG , and transmission line loadings Sl . Hence, X can 

be expressed as 

X
T
=[PG1, VL, QG, Sl] 

 

i.e., X
T
= [PG1, VL1, - - - - VLNpq, QG1, - - - - QGNg, Sl1, - - - - SlNl] 

  

 Where Npq ,Ng ,Nl are number of load buses, number 

of generators and number of transmission lines respectively 

 

B. Independent Variables 

U is the vector of independent variables consisting of 

generator voltages VL , generator real power outputs PG , except 

at the slack bus PG1, and transformer tap settings T. Hence, U 

can be expressed as  

U
T
= [VG, PG, T] 

i.e., U
T
 = [VG1, - - - - VGNg, PG1, - - - - PGNg, T1, - - - - TNt] 

 Where Nt is the number of the regulating transformers 

C. Initialization 

The first step in this algorithm is to create an initial 

population. All the independent variables [VG, PG, T] have to 

be generated according to formula (3), where each independent 

parameter of each individual in the population is assigned a 

value inside the given feasible region of the generator. This 

creates parent vectors of independent variables for the first 

generation. As they have created within their limits, they 

readily satisfy the corresponding inequality constraints. To find 

dependent variables X
T
= [PG1, VL, QG, Sl] corresponding to 

each individual, Newton- Raphson power flow solution is 

implemented. After getting all vectors corresponding to 

dependent variables, constraint-handling method of penalty 

functions is applied to handle the inequality constraints related 

to dependent variables. Penalty factors corresponding to each 

dependent variable of each individual in population have to be 

calculated. If they violate a limit whether lower or upper, 

difference of that value and corresponding limit violated was 

taken as penalty index and it is multiplied with a constant so as 

to match with basic objective function i.e., fuel cost. The 

penalty functions for slack bus power, voltages of load buses, 

line flows and reactive power generations are considered to 

calculate fitness of each population member. Fitness includes 

fuel cost function and also penalties corresponding to 

dependent variables. Inclusion of these penalties in fitness 

gives us a great opportunity to assign better fitness to that 

particular population member whose control parameters are 

within the operational limits in addition to minimum fuel cost. 

 

 

 

 

- - - (8) 
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VI. ALGORITHM FOR OPF FROM DE CANDIDATE 

SOLUTION 

 

This is the algorithm for Optimal Power Flow for the 

considered system of study. This has been developed as a 

separate subroutine within which there is an other subroutine 

for ordinary Power Flow. This Optimal Power Flow subroutine 

is evaluated for each of the obtained DE candidate solution in 

the population concerned at the particular iteration and 

evaluated in each iteration for all candidate vectors in the 

population of current iteration. The number of times this 

subroutine is evaluated depends on the population size and the 

iteration maximum value.  

 In brief this subroutine for the obtained candidate 

solution from the Differential Evolution subroutine, which is 

the generation of all the generator buses in the system (except 

the slack bus) it checks with the limits of the corresponding 

generator bus, whether there is any violation of such limits (or) 

not. Next the ordinary Power Flow is run for the above data to 

obtain the contribution of slack bus also, which is a generator 

bus. Finally with the cost function existing for each generator, 

the total cost for generation of active power in the system is 

found.  

 Along with the generator contribution the power flow 

results with the voltage profile of each bus in the system and 

the total loss for the given contribution of generator.  

Here the optimum solution is reached where the Total 

cost of generation and the Line Losses are at minimum. The 

algorithm for the above implementation is as explained below. 

Step 1: Get the current Population matrix with the 

individual candidate solution vectors. 

Step  2: For the obtained candidate solution vector of 

current iteration, at first generation is checked with the limits of 

generators Real Power output specified for each generator 

(except slack bus), as given in the Cost function matrix. If it 

crosses the extreme it is fixed to that extreme itself, if not hold 

the obtained value. 

Step 3: This obtained generations are substituted at the 

corresponding buses in the busdata matrix of the system 

considered. 

Step 4: Now for obtained generations an ordinary load 

flow is run to obtain new generations at all buses including 

slack bus.  

Step 5: This is adjusted with the set base MVA of the 

system. 

Step 6: Now with generations, the cost of generating 

such power from existing generator is found by their individual 

cost functions. At last new cost of generation is obtained. 

Step 7: From the same load flow, the voltage at 

different buses in system is obtained, which is checked for any 

violation due to optimization process. 

Step 8: The individual generator contribution is 

obtained at last of the subroutine 

Step 9: Stop the function evaluation. 

In this subroutine an ordinary load flow is made to 

evaluate by Newton-Raphson method. This is the most widely 

used method for solving simultaneous nonlinear algebraic 

equations is the Newton-Raphson method. Newton’s method is 

a successive approximation procedure based on an initial 

estimate of the unknown and the use of Taylor’s series 

expansion. 

After the iterative solution of bus voltages, the next 

step is the computation of the line flows and line losses. This is 

formulated by the basic equations for the bus considered from 

current equations. Even all the load flow programs result with 

this calculation. 

 
VII. SIMULATION AND RESULTS 

 

Different cases of simulation was performed by 

repeatedly executing the Optimal Power Flow program for 

different values of DE variables, and the total cost of 

generation is found with the losses calculated for that particular 

combination. Some of which are as shown below 

 

 

 

 

 

 

 

 

 

 
Fig 3 Effect of Number of Generations 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig 4 Effect of Scaling Factor 

 
 

 

 

 

 

 

 

 

Fig. 5 Effect of Number of Population members 
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Total Generation Cost
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Fig. 6 Effect of Strategy selected 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7 Cost Comparison for 26-bus system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Losses Comparison for 26-bus system 

 

The following are the conclusions obtained from the above 

simulations: 

 

i.  For a system with high number of bus, the solution is 

getting converged for only with considerable number of 

iterations (i.e., generations). This mean it needs to have 

at least minimum number of generation to attain the 

global minima. The effect is depicted in Table 3. 

ii.  With CR constant for a particular case, for increasing F 

as mentioned in Table (1) and (2), the solution is 

changing for different values of F. At first due to F=0, 

cost it maximum. As the F increases cost at first 

decreases reaches to an optimum value and thereafter 

with increase in F cost also increases. From this we 

conclude that value of F has considerable effect towards 

attainment of global minima. Hence it value should be 

within [0.4, 0.8]. This is depicted as in Figure 4. 

iii.  With CR constant for a particular case, for increasing F 

as mentioned in Table (1) and (2), the total cost is 

getting same for more combinations. It means the 

solution is getting converged for same value for higher 

F and CR, except at F=0, as depicted in Figure 3. 

iv.  The Number of population members selected has also 

effect towards the convergence of optimal solution. 

This is clearly exhibited in systems with more number 

of buses, especially in 26-bus system the effect is 

clearly tabulated in Table 4 and plotted in Figure 5. 

v.  For a system with high number of buses, the type of 

strategy adopted has its effect. The effect is depicted in 

Figure 6. This states that Exponential strategy gives 

dominant effect than Binomial strategy. 

vi.  Below is the comparison of DE with the Conventional 

method, an appreciable amount of savings in cost is 

obtained. But the losses are not confronting appreciably. 

However, this is the case only for systems with low 

number of bus, but in practical case with more number 

of buses, this effect more. 

 

On comparing the DE method with the conventional 

method of obtaining solution of Optimal power flow the 

following conclusion was obtained. 

 
 

Table 1 Results of 26-bus system for CR = 0.4 and varying F 

 

 

 

 

 

 

 

 

 
 

 

 

Table 2 Results of 26-bus system for members CR = 0.8 and varying F 

 

 

 

 

 

 

 

 

 

 

 

 

 

CR = 0.4 $/hr Losses (MW) 

F=0 15453.25 12.871 

F=0.2 15446.53 12.803 

F=0.4 15446.49 12.809 

F=0.6 15446.49 12.809 

F=0.8 15446.49 12.811 

F=1.2 15449.99 12.624 

CR = 0.8 $/hr Losses (MW) 

F=0 15493.61 13.283 

F=0.2 15447.39 12.768 

F=0.4 15446.49 12.809 

F=0.6 15446.49 12.809 

F=0.8 15446.49 12.809 

F=1.2 15446.86 13.303 

Effect of Strategy selected

Binomial 
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15449.35

Exponential 
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Table 4 Effect of Number of Population

Table 5 Cost Comparison for 26-bus

No. of 

bus

Parameter 

considered

Solution by 

Conventional 

Method

Solution by 

solving OPF by 

DE

26-bus 

system

Total 

Generating 

Cost

15447.72 $/hr 15446.53$/hr

Total Losses 12.807 MW 12.803 MW

VIII. CONCLUSION

The Differential Evolution method being an heuristic 

method of solving optimization problem, do not give any 

assurance towards convergence of solution with specified 

number of iterations (or) number of population members. So, in 

this aspect a clear analysis of this method to a power system 

optimization problem, termed as the Optimal Power Flow 

(OPF) is clearly presented. Their effects were clearly analyzed 

and presented as a plot. 

Hence, the above analysis concludes  that even though 

being a heuristic method the solution is getting converged only 

after a considerable number of iterations only. The savings in 

cost is very narrow for the considered 26 bus system, but in 

practice a power system comprising several thousands of bus 

the savings in generating cost may be appreciable.

APPENDIX

Data of 26 bus System

The sample 26-bus system has 6 generators and loads 

connected to 23 buses, 4 tap changing transformers, 9 shunt 

capacitors.

The generator’s operating cost is $/h, with Piin MW are as 

follows:

C1 = 240 + 7.0P1 + 0.0070P1
2

C2 = 200 + 10.0P2 + 0.0095P2
2

C3 = 220 + 8.5P3 + 0.0090P3
2

C4 = 200 + 11.0P4 + 0.0090P4
2

C5 = 220 +10.5P5 + 0.0080P5
2

C26 = 190 + 12.0P26 + 0.0075P26
2

For Np = 20

Iter.Max. Total Cost ($/hr)

10 15456.22

20 15447.25

50 15446.49

100 15446.49

For Total Number of iteration = 100

Np Total Cost ($/hr)

5 15470.3

10 15447.5

15 15447.1

20 15446.6

30 15446.6

Shunt Capacitor Data

Bus No Mvar

1 4.0

4 2.0

5 5.0

6 2.0

9 3.0

11 1.5

12 2.0

15 0.5

19 5.0

Regulated Bus Data

Bus 

No.

Voltage 

Magnitude

Min.

Mvar 

Capacity

Max. Mvar 

Capacity

2 1.020 40 250

3 1.025 40 150

4 1.050 40 80

5 1.045 40 160

26 1.015 15 50

Generator Real Power Limits

Gen. Min. MW Max. MW

1 100 500

2 50 200

3 80 300

4 50 150

5 50 200

26 50 120

Transformer 

Designation

Tap Setting Per 

Unit

2 - 3 0.960

2 - 13 0.960

3 - 13 1.017

4 – 8 1.050

4 – 12 1.050

6 – 19 0.950

7 – 9 0.950
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