
FFT Implementation on FPGA using Butterfly

Algorithm

Enis ÇERRI
1

Aleksander Moisiu University

Faculty of Information Technology

Durres, Albania

Marsida IBRO
2

Aleksander Moisiu University

Faculty of Information Technology

Durres, Albania

Abstract — Today digital signals processing operation requires

several multiplication and for the same we need very fast

multiplier for a wide range of requirements for hardware and

speed. This paper presents a FFT implementation using FPGA

for fast and area efficient digital multiplier based on Butterfly

algorithm. FFT is an efficient tool in signal processing in the

linear system analysis. Complex arithmetic modules like

multiplier and powering units are now being extensively are

used in design. The parallel pipelined technology is introduced

to increase the throughput of the circuit at low frequency. Based

on low power technology FFT power saving is achieved. For the

purpose of this implementation, we have used the Altera

EPF8282ALC84-4 element and SN-DSP54B device platform

FPGA.

Keywords — DSP, FFT algorithm, Butterfly algorithm, FPGA

INTRODUCTION

In the discrete Fourier transform (DFT), both the input and

the output consist of sequences of numbers defined at

uniformly spaced point in time and frequency, respectively.

Accordingly, the DFT lends itself directly to numerical

evaluation on digital computers. Moreover, the computation

can be implemented most efficiently using a class of

algorithms, called Fast Fourier Transform (FFT) algorithms.

The FFT refers to a class of efficient algorithms for

computing the DFT. The algorithms are efficient in that they

use a greatly reduced number of arithmetic operations as

compared with the brute force computation of the DFT.

Fourier transform transforms a time-domain function into the

frequency domain. Inversely, the Inverse Fourier Transform

converse a frequency-domain function into the time domain.

For an aperiodic continuous signal, the continuous Fourier

Transform is expressed by:

and the continuous inverse Fourier Transform is:

Equations (1) and (2) are known as the continuous Fourier

Transform pair for aperiodic signals which related the time

and frequency domains. Similarly form an aperiodic digital

sequence, the discrete-time Fourier Transform (DTFT) is

given by:

and the discrete-time inverse Fourier Transform is:

Equations (3) and (4) are known as the discrete-time Fourier

Transform (DTFT) pair for aperiodic digital sequences which

related the time and frequency domains. Although, equation

(3) gives the frequency spectrum of a signal, there are two

implementation problems in practice. The first problem is

associated with the limits of summation which extend from

 to , implying the length of the signal must be

infinitely long. The second problem is associated with the

frequency variable which is continuous implying there is

an infinite number of frequency points to be computed [1, 9].

To overcome the first problem, the limit of the summation are

reduced, thereby truncating an infinitely long signal to a finite

length signal. This is known as windowing because only a

portion of the actual discrete signal is available for the

transform operation. To overcome the second problem, the

number of frequency points to be computed is confined to a

finite number and the selected frequency points should be

spaced evenly over the range to . Taking these factors

into account, equation (3) can be expressed in a new form to

give the discrete Fourier Transform (DFT), that is:

where is called the twiddle factor and .

The twiddle has two important properties: symmetry and

periodicity.

The smallest transform used in 2-point DFT which is known

as radix-2. It processes a group of two samples. Radix-2 is

the fastest method for calculating FFT. These are amongst the

one of large number of FFT algorithm being developed.

Radix-2 algorithm are useful if N is a regular power of

2(N=2^p). The term FFT is actually slightly ambiguous

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020424

Vol. 4 Issue 02, February-2015

534

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

because there are several commonly used FFT algorithms.

There are two different radix-2 algorithms, they are:

decimation-in-time (DIT) and decimation-in-frequency (DIF)

algorithms. A butterfly unit block consisting of N/2

butterflies. Each one containing two (N/2)*16-bits ROMs to

store the sine and cosine of the twiddle factors, four 16*16

multipliers in 2’s complement, six 32-bits accumulators and

two special operators to adequate the data format [2, 4].

1. DIT FFT Algorithm

The decimation-in-time FFT (DIT FFT) is a process of

dividing the N-point DFT into two (N/2)-point DFTs by

splitting the input samples into even and odd indexed

samples. The two (N/2)-point DFTs are then further divided

in the same way into (N/2)-point DFTs and this

decomposition process continues until 2-point DFTs are

obtained [5]. This approach is demonstrated below. Since

, the following

equation can be derived by rearranging equation (5) and then:

where , and are the DFTs of the

even- and odd- indexed samples respectively. Although,

equation (6) still needs to be valuated N times for k varying

from 0 to N-1, each summation only needs to be computed

N/2 times for k varying from 0 to because

and are repetitive with an internal interval of N/2

(periodicity property). Consequently, the original DFT

computation time is reduced by approximately 50%.

Consequently by restricting k to the range 0 to ,

equation (6) can be rewritten in two parts; one part for the

first half of the frequency points and

other part for the second half of the frequency points

, that is

The implementation of equation (7) for an 8-point DFT can

be shown as a butterfly diagram as in Figure 1. Each butterfly

takes a pair of inputs and generates a pair of outputs.

Figure 1. Butterfly diagram for 8-point DFT with one decimation stage

Applying the same decomposition technique again to divide

two N/2-points DFTs into four N/4-point DFTs by splitting

the even- and odd-indexed sequences into four subsequences,

see the stage 2 in Figure 2. Consequently, the same technique

is applied to divide four N/4-point DFT into eight N/8-point

DFTs, see stage 3 in Figure 2.

Figure 2. Butterfly diagram for a 8-point DIT FFT

Each decomposition stage doubles the number of separate

DFTs, but halves the number of points in DFT. In computing

an N-point DFT, this decimation process can be repeated

 times. The number of computation stages is seen to be

3 since

In the stage 1 are required N additions/substractions and the

other two stages require N complex additions/substractions

(or 2N additions/substractions) and N/2 complex

multiplications (or 2N multiplications and N

additions/substractions, since each complex multiplication

requires 4 ordinary multiplications and 2

additions/substractions). Since there are stages for an

N-point FFT, the total number of multiplications is

 and the total number of additions is

. This can be compared with the

multiplications and additions required for the

direct implementation of DFT.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020424

Vol. 4 Issue 02, February-2015

535

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

3. DIF FFT Algorithm

In contrast to the DIT FFT which decomposes the DFT by

recursively splitting the input samples in the time domain into

subsequences, the decimation-in-frequency FFT (DIF FFT)

decomposes the DFT by recursively splitting the sequence

elements in the frequency domain into smaller subsequences

[5]. Dividing equation (5) into two N/2-point DFTs by

splitting the input samples into halves yields:

The implementation of equation (9) for a 8-point DFT is

shown as butterfly diagram in Figure 3.

Figure 3. Butterfly diagram for 8-point DFT with one decimation stage

In contrast to Figure 2, Figure 4 shows that DIF FFT has its

input data sequence in natural order and the output sequence

in bit-reversed order. For a 512-point FFT, 512-points cosine

and sine tables should be built to involve this computation.

Figure 4. Butterfly diagram for 8-point DIF FFT

4. Implementation

To implement the computation of butterfly with C54x

instructions we have considered equations (8) and (9). If

letting , and , these

two equations can be rewritten as:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020424

Vol. 4 Issue 02, February-2015

536

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Figure 5. DIT Radix 2 Butterfly

Since sequences P and Q and twiddle coefficient W are

complex, we can divide these butterfly computations into two

parts (real and imaginary). In practical computation, data of

each part is stored in memory buffer. This is called in-place

operation.

At stage 1, there are only two values of twiddle factor (k=0

and k=n/2) required for DFT computations. If k=0, then

 since . If

, then .

At stage 2, there are four twiddle required for the butterfly

computation , and . Complex

computations are required for the butterfly computations after

stage 3. For a 1024-point DIT FFT 10 stages are needed

 to achieve the butterfly computations.

In DSP system, imaginary part must be placed by zero for

FFT computations. This process is called packing. The

unpacking process is the reverse operation of packing. It is

used to unpack the FFT outputs to N-point complex values

because the FFT outputs are N/2-point complex values. After

unpacking, the 1024 complex values are used to compute the

power values of FFT outputs [7]. Each power values is

computed by the formula , where R is the real

part and I is the imaginary part [6, 8].

In this implementation we have used a deterministic 3 kHz

signal with low-level white noise created by MATLAB. Once

the FFT processor is executed, the deterministic data will be

loaded and stored in input data buffer 1C00H-1FFFH.

Figure 6. Sine and cosine waves

Figure 7. Spectrum of input signal

Figure 8. Power of FFT signal spectrum

5. CONCLUSIONS

In this paper we have described the basic algorithm for radix-

2 FFTs. Modeling and hardware description of FFT

approaches such as Butterfly algorithms by VHDL were

introduced and the realization of them on Altera

EPF8282ALC84-4 chip was proposed. The power impact

parameter of the technique has been observed and compared

with the conventional FFT blocks to analyze the

performance. This paper presented a new, very high speed

FFT architecture based on the radix-2 butterfly algorithm. A

fully pipelined, processing core of a 1024-point FFT has been

implemented in FPGA. The results shows a very high

operating frequencies and low latencies of the

implementation.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020424

Vol. 4 Issue 02, February-2015

537

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

REFERENCES

[1] Arman Chahardahcherik, Yousef S. Kavian, Otto Strobel, and Ridha

(2011). Implementing FFT Algorithms on FPGA (IJCSNS).
International Journal of Computer Science and Network Security, Vol.

11, No.11, November 2011.

[2] Aniket Shukla, Mayuresh Deshmukh (2012), Comparative Study of
Various FFT Algorithm Implementation on FPGA, International Journal

of Emerging Trends in Signal Processing Vol.1, Issue 1, November

2012.
[3] Chandan.M,S.L.Pinjare, Chandra Mohan Umapthy Chandan M, S.L

Pinjare (2012). Optimized FFT Design using Constant Coefficient

Multiplier.International Journal of Emerging Technologyand Advanced
Engineering, Vol.2, Issue 6, June 2012.

[4] Niladri Mandal, Souragni Ghosh (2012). A Modified Fast FFT

Algorithm for OFDM. International Journal of Soft Computing and
Engineering (IJSCE), Vol.1, Issue-6, January 2012.

[5] K.Sreekanth Yadav, V.Charishma, , Neelima Koppala (2013).Design

and simulation of 64 point FFT using Radix 4 algorithm for FPGA
Implementation, International Journal of Engineering Trends and

Technology- Volume 4 Issue2- 2013

[6] M. Kannan and S.K. Srivatsa (2007). Low Power Hardware
Implementation of High Speed FFT Core. Journal of Computer Science.

Vol. 3, Issue 6, 2007.

[7] S. He and M. Torkelson, ―Design and implementation of a 1024-point
pipeline fft processor,‖ in Proc. IEEE Custom Integrated Circuits Conf.,

Santa Clara, CA, May 11-14 1998, vol. 2, pp. 131–134

[8] Senthil Sivakumar M & Banupriya M & Arockia Jayadhas S (2012).
Design of Low Power High Performance 16-Point 2 Parallel Pipelined

FFT Architecture. International Journal of

Electronics,`Communication& Instrumentation Engineering Research
and Development (IJECIERD). Vol. 2, Issue 3 September 2012.

[9] Sneha N.Kherde, Meghana Hasamnis (2011). Efficient Design and

Implementation of FFT. International Journal of Engineering Science &
Technology, Vol. 3 Issue Sup, p10, February 2011.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS020424

Vol. 4 Issue 02, February-2015

538

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

