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Abstract — Today digital signals processing operation requires 

several multiplication and for the same we need very fast 

multiplier for a wide range of requirements for hardware and 

speed. This paper presents a FFT implementation using FPGA 

for fast and area efficient digital multiplier based on Butterfly 

algorithm. FFT is an efficient tool in signal processing in the 

linear system analysis. Complex arithmetic modules like 

multiplier and powering units are now being extensively are 

used in design. The parallel pipelined technology is introduced 

to increase the throughput of the circuit at low frequency. Based 

on low power technology FFT power saving is achieved. For the 

purpose of this implementation, we have used the Altera 

EPF8282ALC84-4 element and SN-DSP54B device platform 

FPGA. 
 

Keywords — DSP, FFT algorithm, Butterfly algorithm, FPGA  

 

INTRODUCTION 

In the discrete Fourier transform (DFT), both the input and 

the output consist of sequences of numbers defined at 

uniformly spaced point in time and frequency, respectively. 

Accordingly, the DFT lends itself directly to numerical 

evaluation on digital computers. Moreover, the computation 

can be implemented most efficiently using a class of 

algorithms, called Fast Fourier Transform (FFT) algorithms. 

The FFT refers to a class of efficient algorithms for 

computing the DFT. The algorithms are efficient in that they 

use a greatly reduced number of arithmetic operations as 

compared with the brute force computation of the DFT. 

Fourier transform transforms a time-domain function into the 

frequency domain. Inversely, the Inverse Fourier Transform 

converse a frequency-domain function into the time domain. 

For an aperiodic continuous signal, the continuous Fourier 

Transform is expressed by:  

 

 
and the continuous inverse Fourier Transform is: 

 

 
Equations (1) and (2) are known as the continuous Fourier 

Transform pair for aperiodic signals which related the time 

and frequency domains. Similarly form an aperiodic digital 

sequence, the discrete-time Fourier Transform (DTFT) is 

given by: 

 
 

and the discrete-time inverse Fourier Transform is: 

 
 

Equations (3) and (4) are known as the discrete-time Fourier 

Transform (DTFT) pair for aperiodic digital sequences which 

related the time and frequency domains. Although, equation 

(3) gives the frequency spectrum of a signal, there are two 

implementation problems in practice. The first problem is 

associated with the limits of summation which extend from 

 to , implying the length of the signal must be 

infinitely long. The second problem is associated with the 

frequency variable  which is continuous implying there is 

an infinite number of frequency points to be computed [1, 9]. 

To overcome the first problem, the limit of the summation are 

reduced, thereby truncating an infinitely long signal to a finite 

length signal. This is known as windowing because only a 

portion of the actual discrete signal is available for the 

transform operation. To overcome the second problem, the 

number of frequency points to be computed is confined to a 

finite number and the selected frequency points should be 

spaced evenly over the range  to . Taking these factors 

into account, equation (3) can be expressed in a new form to 

give the discrete Fourier Transform (DFT), that is: 

   
 

where is called the twiddle factor and . 

 

The twiddle has two important properties: symmetry and 

periodicity.   

The smallest transform used in 2-point DFT which is known 

as radix-2. It processes a group of two samples. Radix-2 is 

the fastest method for calculating FFT. These are amongst the 

one of large number of FFT algorithm being developed. 

Radix-2 algorithm are useful if N is a regular power of 

2(N=2^p). The term FFT is actually slightly ambiguous 
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because there are several commonly used FFT algorithms. 

There are two different radix-2 algorithms, they are: 

decimation-in-time (DIT) and decimation-in-frequency (DIF) 

algorithms. A butterfly unit block consisting of N/2 

butterflies. Each one containing two (N/2)*16-bits ROMs to 

store the sine and cosine of the twiddle factors, four 16*16 

multipliers in 2’s complement, six 32-bits accumulators and 

two special operators to adequate the data format [2, 4].    

 

1. DIT FFT Algorithm 

 

The decimation-in-time FFT (DIT FFT) is a process of 

dividing the N-point DFT into two (N/2)-point DFTs by 

splitting the input samples into even and odd indexed 

samples. The two (N/2)-point DFTs are then further divided 

in the same way into (N/2)-point DFTs and this 

decomposition process continues until 2-point DFTs are 

obtained [5]. This approach is demonstrated below. Since  

, the following 

equation can be derived by rearranging equation (5) and then: 

 

 

 

 

 
 

where ,  and  are the DFTs of the 

even- and odd- indexed samples respectively. Although, 

equation (6) still needs to be valuated N times for k varying 

from 0 to N-1, each summation only needs to be computed 

N/2 times for k varying from 0 to  because  

and are repetitive with an internal interval of N/2 

(periodicity property). Consequently, the original DFT 

computation time is reduced by approximately 50%.  

Consequently by restricting k to the range 0 to , 

equation (6) can be rewritten in two parts; one part for the 

first half of the frequency points  and 

other part for the second half of the frequency points  

, that is  

 

 

 

 

 
The implementation of equation (7) for an 8-point DFT can 

be shown as a butterfly diagram as in Figure 1. Each butterfly 

takes a pair of inputs and generates a pair of outputs.  

 

 
Figure 1. Butterfly diagram for 8-point DFT with one decimation stage 

 

Applying the same decomposition technique again to divide 

two N/2-points DFTs into four N/4-point DFTs by splitting 

the even- and odd-indexed sequences into four subsequences, 

see the stage 2 in Figure 2. Consequently, the same technique 

is applied to divide four N/4-point DFT into eight N/8-point 

DFTs, see stage 3 in Figure 2. 

 

 
Figure 2. Butterfly diagram for a 8-point DIT FFT 

Each decomposition stage doubles the number of separate 

DFTs, but halves the number of points in DFT. In computing 

an N-point DFT, this decimation process can be repeated 

 times. The number of computation stages is seen to be 

3 since  

In the stage 1 are required N additions/substractions and the 

other two stages require N complex additions/substractions 

(or 2N additions/substractions) and N/2 complex 

multiplications (or 2N multiplications and N 

additions/substractions, since each complex multiplication 

requires 4 ordinary multiplications and 2 

additions/substractions). Since there are  stages for an 

N-point FFT, the total number of multiplications is 

 and the total number of additions is 

. This can be compared with the  

multiplications and  additions required for the 

direct implementation of DFT. 
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3. DIF FFT Algorithm 

In contrast to the DIT FFT which decomposes the DFT by 

recursively splitting the input samples in the time domain into 

subsequences, the decimation-in-frequency FFT (DIF FFT) 

decomposes the DFT by recursively splitting the sequence 

elements in the frequency domain into smaller subsequences 

[5]. Dividing equation (5) into two N/2-point DFTs by 

splitting the input samples into halves yields: 

 

 

 

 
 

 

 

 

 

 

 

 
 

The implementation of equation (9) for a 8-point DFT is 

shown as butterfly diagram in Figure 3.  
 

 
Figure 3. Butterfly diagram for 8-point DFT with one decimation stage 

 

 

In contrast to Figure 2, Figure 4 shows that DIF FFT has its 

input data sequence in natural order and the output sequence 

in bit-reversed order. For a 512-point FFT, 512-points cosine 

and sine tables should be built to involve this computation. 

 

 
Figure 4. Butterfly diagram for 8-point DIF FFT 

 

 

4. Implementation 

To implement the computation of butterfly with C54x 

instructions we have considered equations (8) and (9). If 

letting ,  and , these 

two equations can be rewritten as: 
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Figure 5. DIT Radix 2 Butterfly 

Since sequences P and Q and twiddle coefficient W are 

complex, we can divide these butterfly computations into two 

parts (real and imaginary). In practical computation, data of 

each part is stored in memory buffer. This is called in-place 

operation. 

At stage 1, there are only two values of twiddle factor (k=0 

and k=n/2) required for DFT computations. If k=0, then 

 since . If  

, then .  

At stage 2, there are four twiddle required for the butterfly 

computation  ,  and . Complex 

computations are required for the butterfly computations after 

stage 3. For a 1024-point DIT FFT 10 stages are needed 

 to achieve the butterfly computations. 

In DSP system, imaginary part must be placed by zero for 

FFT computations. This process is called packing. The 

unpacking process is the reverse operation of packing. It is 

used to unpack the FFT outputs to N-point complex values 

because the FFT outputs are N/2-point complex values. After 

unpacking, the 1024 complex values are used to compute the 

power values of FFT outputs [7]. Each power values is 

computed by the formula , where R is the real 

part and I is the imaginary part [6, 8].  

In this implementation we have used a deterministic 3 kHz 

signal with low-level white noise created by MATLAB. Once 

the FFT processor is executed, the deterministic data will be 

loaded and stored in input data buffer 1C00H-1FFFH.  

 

 
Figure 6. Sine and cosine waves                                      

 

 

 
Figure 7. Spectrum of input signal 

 

 
 

Figure 8. Power of FFT signal spectrum 

 

 

5. CONCLUSIONS 

 

In this paper we have described the basic algorithm for radix-

2 FFTs. Modeling and hardware description of FFT 

approaches such as Butterfly algorithms by VHDL were 

introduced and the realization of them on Altera 

EPF8282ALC84-4 chip was proposed. The power impact 

parameter of the technique has been observed and compared 

with the conventional FFT blocks to analyze the 

performance. This paper presented a new, very high speed 

FFT architecture based on the radix-2 butterfly algorithm. A 

fully pipelined, processing core of a 1024-point FFT has been 

implemented in FPGA. The results shows a very high 

operating frequencies and low latencies of the 

implementation. 
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