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Abstract: Dijkstra's Algorithm is a fundamental method for finding 

the shortest path in weighted graphs, with applications ranging from 

network routing to logistics and supply chain management. This 

algorithm begins by initializing distances from a source node to all 

others, then iteratively selects the node with the shortest known 

distance, updating distances to its neighbour’s. The process continues 

until all nodes are visited, determining optimal paths. In logistics, it 

helps optimize transportation routes, balancing factors like cost and 

time. While Dijkstra's Algorithm is efficient and versatile, research 

gaps exist, such as scalability for large networks, real-time adaptation, 

and handling uncertainty. Nonetheless, its efficiency, flexibility, and 

practical use cases underscore its significance in addressing 

transportation and logistics challenges. Dijkstra's Algorithm, 

originally designed for finding the shortest path in a graph, can be 

adapted to solve the Transport Problem efficiently. The algorithm 

starts at an initial node (supply point), explores adjacent nodes 

(routes) to calculate the cumulative cost of reaching them, and selects 

the path with the minimum cost. This process continues iteratively, 

updating cost estimates until the algorithm reaches the destination 

(demand point) or exhausts all possible routes. 

Keywords: Transport Problem, Dijkstra's Algorithm, Optimization, 

Logistics, Supply Chain Management 

I. INTRODUCTION:

This paper discusses the development of an efficient method for 

determining the best travel route between two points, resulting in 

the creation of the shortest path algorithm. Known as Dijkstra's 

Algorithm, this graph search technique is designed to solve the 

single-source shortest path problem within a graph, specifically 

one with non-negative edge path costs. Its primary application lies 

in network routing and related protocols[1].  

Over time, Dijkstra's Algorithm has demonstrated its versatility, 

extending its utility beyond its initial purpose in network routing to 

various domains, including logistics and supply chain 

management. Within these contexts, the algorithm plays a crucial 

role in optimizing transportation routes, taking into account factors 

like cost and time while addressing supply and demand constraints. 

This paper explores the adaptation of Dijkstra's Algorithm to 

efficiently solve transportation problems, with a focus on 

optimizing transportation processes and using mathematical 

models to represent complex logistics scenarios. Additionally, it 

delves into multi-criteria decision-making techniques, time-

dependent analysis, and practical applications of the algorithm in 

real-world logistics challenges[2]. Leveraging the algorithm's 

efficiency, flexibility, and adaptability can enhance organizations' 

logistics operations, ultimately contributing to improved efficiency 

and cost-effectiveness in transportation and supply chain 

management[3]. 

For a given source vertex or node in the graph, the algorithm 

computes the shortest path to a single destination vertex. Once 

the shortest path to the destination vertex is determined, the 

algorithm terminates. To illustrate, if the graph's vertices 

represent cities and edge path costs represent driving distances 

between city pairs connected by direct roads, Dijkstra's algorithm 

can find the shortest route from one city to all others. Extensive 

research has been conducted on finding shortest paths within 

such networks[4]. 

Dijkstra's algorithm is specifically designed for finding the 

shortest path in a directed graph with edges weighted by non-

negative values. [5]. Dijkstra's algorithm is recognized as 

asymptotically the fastest known single-source shortest-path 

algorithm for arbitrary directed graphs with unbounded 

nonnegative weights. These motivations drive our quest to 

further understand Dijkstra's algorithm in the future[6]. 

II. PURPOSE METHODOLOGY:

o Algorithm Adaptation: Demonstrate how Dijkstra's Algorithm

can efficiently solve transportation problems by representing

suppliers and consumers as nodes with transportation costs as

edge weights.

o Optimization: Emphasize the goal of optimizing transportation

processes, including cost and time minimization, while meeting

supply and demand constraints.

o Mathematical Modelling: Describe the mathematical modelling

used to represent transportation problems, including objective

functions, decision variables, and supply and demand

constraints.

o Multi-Criteria Decision-Making: Discuss the application of

MCDM techniques to optimize transportation routes based on

multiple criteria and the calculation of combined scores.

o Time-Dependent Analysis: Introduce time-dependent analysis

in transportation problems and how time-dependent cost

functions account for dynamic factors like traffic and time

variations.
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III. DIJKSTRA'S ALGORITHM CONCEPT:

Dijkstra's Algorithm is a well-known algorithm in computer science and mathematics for determining the shortest path between two 

nodes in a weighted network. Edsger.W.Dijkstra created it in 1956 and it is particularly beneficial for tackling different network 

routing and optimization challenges.[7]. 

Here's an overview of how Dijkstra's Algorithm works and its 

techniques: 

1. Initialization: The algorithm starts by initializing a list to keep

track of the shortest distance from a selected source node to

every other node in the network. At first, all distances are set to

infinity except for the source node itself, which is set to a

distance of 0.

2. Exploration Queue: Dijkstra's Algorithm to keep track of the

nodes to be investigated, a priority queue (typically

implemented as a min-heap) is used. The priority queue is

initially assigned to the source node.

3. Main Loop: The algorithm enters a loop that continues until the

priority queue is empty or until a specific target node (if

provided) is reached[8].

• Extracting the Minimum: In each iteration of the loop, the

algorithm extracts the node with the minimum distance from

the priority queue. This node is the one with the currently

shortest known distance from the source.

• Relaxation: The approach estimates a tentative distance from

the source node through the extracted node for each nearby

node of the extracted node. If this tentative distance is less than

the neighbour’s current known distance, the distance is

updated.

• Adding to the Queue: If the distance to a neighbour node is

updated, or if the neighbour hasn't been visited yet, it is added

to the priority queue for further exploration[9].

4. Termination: When all nodes have been visited or a specified

target node has been reached, the algorithm finishes. The

algorithm has now determined the shortest path from the source 

node to every other node in the network. 

• Initialize a list to keep track of the shortest distance between the

source node and each node in the graph. All distances are set to

infinity except for the source node, which is set to 0.Initialize a

set S to keep track of visited nodes. Initialize a list d to keep

track of the shortest distance from the source node to each node

in the graph. Initialize all distances to infinity except for the

source node: d[s] =0[10].

• Create a priority queue (min-heap) Q to keep track of the nodes

to be explored. Initially, add the source node to Q[11].While

the priority queue Q is not empty:

o Extract the node u with the minimum distance from Q:

o u=extractMin (Q)

• For each neighbour of the extracted node:

• Calculate the tentative distance from the source node to the

neighbour through the extracted node.

o Tentative distance=d[u] +w (u, v)

• If this tentative distance is less than the current distance

recorded for the neighbour, update the neighbour’s distance.

o d[v]=tentative distance

o Add the neighbour to the priority queue if it hasn't been visited

yet.

Once all nodes have been visited or the target node is reached, the 

algorithm terminates. The shortest distance to each node from 

the source node is now known[12]. 

An Example of Dijkstra's Algorithm: 

The following is the procedure for implementing Dijkstra's 

Algorithm: 

Step 1: Initially, set the distance of the source node to 0, and 

assign a distance of INFINITY to all other nodes. 

Step 2: Identify the unvisited node with the shortest current 

distance, denoted as X, and designate it as the current node. 

Step 3: For each neighbour N of the current node X, calculate a 

tentative distance by adding the current distance of X to the 

weight of the edge connecting X to N. If this tentative distance is 

shorter than the current distance of N, update N's distance to this 

new value. 

Step 4: Mark the current node X as visited. 

Step 5: If there are still unvisited nodes in the graph, return to 

'Step 2' and repeat the process. 

Let us now look at how the algorithm is implemented using an 

example: 

Figure 1: Algorithm of Time Complexity 
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1. Start with a graph and designate a source node (in this case,

node A).

2. Initialize all nodes as unvisited.

3. Set the path to the source node (A) as 0 and all other nodes'

paths as infinity.

4. Mark the source node A as visited (or accessed).

5. Use relaxation to update the path to neighbouring nodes (in

this case, nodes B and C) based on the path to node A.

Update the path to the node with the minimum distance

among the unvisited neighbors.

6. Continue relaxing nodes until all of the source node's

neighbours have been visited.

7. Move to the next unvisited node with the shortest path (in

this case, node B) and relax its unvisited neighbours (nodes

C, D, and E).

8. Repeat the relaxation process for other unvisited nodes until

all nodes are visited. This ensures that you find the shortest

path through the network from the source node to all other

nodes

9. Once all nodes have been visited, the algorithm ends, and

you have the shortest routes between the source node and

every other node in the network.

As a result, final pathways we arrived at are: 

A = 0   

 𝐵 = (𝐴 ≥ 𝐵) 

 𝐶 = 5(𝐴 ≥ 𝐶) 

𝐷 = 4 + 9 = 13(𝐴 ≥ 𝐵 ≥ 𝐷) 

𝐸 = 5 + 3 = 8(𝐴 ≥ 𝐶 ≥ 𝐸) 

𝐹 = 5 + 3 + 6 = 14(𝐴 ≥ 𝐶 ≥ 𝐸 ≥ 𝐹) 

A is assigned a value of 0. This is straightforward and doesn't rely 

on any conditions is assigned a value of 0 because it depends on 

the condition A ≥ B. In this case, since A is 0 and 0 is indeed 

greater than or equal to 0, the condition is met, resulting in B 

being assigned the value of 0.C is assigned a value of 5 because 

it depends on the condition A ≥ C. Since A is 0, and 0 is greater 

than or equal to 5, this condition holds, leading to C being 

assigned the value of 5.D is assigned a value of 13 because it 

relies on two conditions. First, A ≥ B, which is true as explained 

earlier, and second, B ≥ D. Given that B is also 0, it is indeed 

greater than or equal to D (which is 13 in this context), resulting 

in D being assigned the value of 13.E is assigned a value of 8 

because it depends on the conditions A ≥ C and C ≥ E. As 

established earlier, both of these conditions are true (A is greater 

than or equal to C, and C is greater than or equal to E), so E is 

assigned the value of 8.F is assigned a value of 14, which depends 

on three conditions: A ≥ C, C ≥ E, and E ≥ F. All of these 

conditions are true based on the previously established values (A 

is greater than or equal to C, C is greater than or equal to E, and 

E is greater than or equal to F). Therefore, F is assigned the value 

of 14. 

IV. LITERATURE SURVEY:

Dijkstra's Algorithm, originally designed for finding the shortest 

path in networks, has been adapted to address the Transport 

Problem. This literature review explores various applications of 

Dijkstra's Algorithm in solving the Transport Problem, 

examining the mathematical models and equations employed. 

1. Theoretical Foundation:

The Dijkstra Algorithm is a well-known graph traversal approach

for determining the shortest path between nodes in a weighted

graph. In the context of the Transport Problem, it can be applied

by representing suppliers and consumers as nodes and

transportation costs as edge weights.

2. Mathematical Model and Equation:

The mathematical model for the Transport Problem using

Dijkstra's Algorithm can be expressed as follows:

Sets: 

• S: Set of suppliers (i.e., sources of goods).

• C: Set of consumers (i.e., destinations for goods).

Parameters: 

• d_ij: Cost of transporting one unit of goods from supplier i to consumer j.

• x_ij: Decision variable representing the goods transportable supplier I the consumer j[13].

Objective Function: 

• Minimize total transportation cost[14]:

𝑍 = ∑ ∑ 𝑑𝑖𝑗. 𝑥𝑖𝑗
𝑗∈𝐶𝑖∈𝑆
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Constraints: 

• Supply Constraint:

∑ 𝑥𝑖𝑗 ≤ 𝑠𝑢𝑝𝑝𝑙𝑦 𝑖, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆
𝑗∈𝐶

 

• Demand Constraint:

∑ 𝑥𝑖𝑗 ≥ 𝐷𝑒𝑚𝑎𝑛𝑑𝑗, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ∈ 𝐶
𝑖∈𝑆

 

• Non-negativity Constraint:

𝑥𝑖𝑗 ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆, 𝑗 ∈ 𝐶 

In this equation: Dijkstra's Algorithm could be used within this framework to help 

determine the shortest paths and transportation costs (dij) between 

suppliers and consumers, which are then used in the linear 

programming model to optimize the logistics. However, the 

optimization problem itself is typically expressed in the linear 

programming or integer programming format, as shown 

above[17]. 

• Z represents the total transportation cost, which we aim to

minimize[15].

• i and j are indices representing suppliers and consumers,

respectively.

• dij represents the cost of transporting one unit of goods from

supplier i to consumer j.

• Xij represents the decision variable that indicates the quantity of

products to be carried from supplier i to consumer j.

• Then constraints ensure that supply and demand requirements are

met and that the transportation quantities are non-negative[16].

Title Year Techniques Mathematical Model Description 

1.Hazardous material 

transportation problems: A 

comprehensive overview of 
models and solution 

approaches[18]. 

2021 Various modelling 

and solution 

techniques 

Transportation Problem (Linear Programming): 

𝑍 = ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑛

𝑗=1

𝑚

𝑖=1
 

Supply Constraints: 

∑ 𝑥𝑖𝑗 ≤ 𝑎𝑖 𝑓𝑜𝑟 𝑖 = 1,2, . . , 𝑚
𝑛

𝑗=1
 

Demand constraints: 

∑ 𝑥𝑖𝑗 ≥ 𝑏𝑗 𝑓𝑜𝑟 𝑗 =  1,2, . . , 𝑛
𝑚

𝑖=1
 

The transportation problem is a type 

of linear programming problem that 

deals with finding the most cost-
effective way to transport goods from 

multiple suppliers to multiple 

consumers while satisfying supply 
and demand constraints.cij represents 

the cost of shipping from supplier i to 

consumer j, and xij represents the 
quantity to be shipped. 

2.Minimization of the probability 

of serious road accidents in the 
transport of dangerous 

goods[19]. 

2022 Route 

determination, 
statistical analysis

𝑍 = 𝑓(𝑅) + 𝑔(𝑆) 

Where: 

• Z represents the objective function 

to be minimized. 

• f(R) represents the route 

determination component, which 

considers factors such as distance, 
time, or cost for the selected route.

• g(S) represents the statistical 

analysis component, which accounts 

for safety or risk-related factors 
associated with the chosen 

route[20]. 

In this equation, the objective is to 

find a route R that minimizes the 
combined cost f(R) and maximizes 

safety g(S), taking into account the 

specified weights. This approach 
enables the careful equilibrium 

between optimizing transportation 

routes for efficiency while also 
considering safety in the planning 

process. Please note that the specific 

forms of f(R) and g(S) would depend 
on the details of the transportation 

problem and the metrics or measures 

used to quantify cost and safety. 
Additionally, optimization 

techniques such as linear 

programming or heuristic algorithms 

may be used to solve this objective 

function in practical applications. 

3.A new time-dependent shortest 

path algorithm for multimodal 

transportation network[21]. 

2017 Time-dependent 

shortest path 

algorithm, 
heuristics 

C(v,t)=Base Travel Time(v)+Time-Varying 

Component(v,t) 

*𝐶(𝑣, 𝑡) = 𝑣 + 𝑡
• Base Travel Time (v): The base 

travel time or static component 

representing the travel time in the 

absence of dynamic factors.

• Time-Varying Component (v, t): 

The time-dependent component that 

The time-dependent cost function, 

denoted as  

C (v, t), represents the time-
dependent travel cost or time 

required to traverse a specific edge or 

segment. It takes into account factors 
like traffic congestion, time-of-day 

variations, and other dynamic 

conditions. 

3. Literature Table:
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captures variations in travel time 

due to factors like congestion, traffic 

signals, or speed fluctuations. 

4.Implementation of Dijkstra 

Algorithm and Multi-Criteria 
Decision-Making for Optimal 

Route Distribution[16].

2019 Dijkstra Algorithm, 

Multi-Criteria 
Decision-Making

Combined Score: 

𝐶 = 𝑤𝐷. 𝐷 + 𝑤𝑇. 𝑇 

In this equation: 

• C represents the combined score.

• D represents the distance of the 

route. 

• T represents the travel time of the 

route. 

• wD and wT are the weights assigned 

to distance and time, respectively.

• Distance (D): Represents the 
physical distance of the route.

• Time (T): Represents the travel time 

of the route. 

Dijkstra's algorithm to find the 

shortest path based on one criterion 
(e.g., distance) and then calculate the 

combined score for each route using 

the weighted sum approach. The 
methods used in Multi-Criteria 

Decision-Making can vary 

depending on the technique chosen 
and the details of the problem. The 

example provided here demonstrates 

a basic approach for combining 
Dijkstra's algorithm with multiple 

criteria. 

5.From the Digital Internet to the 

Physical Internet: A Conceptual 
Framework With a Stylized 

Network Model[22]. 

2021 Conceptual 

Framework 
Graphics Analysis  

Flow Conservation Equation: 

∑ 𝑥𝑖𝑗 − ∑ 𝑥𝑗𝑖

𝑗𝑗

= 0 

In this equation: 

• xij represents the flow from node i to 

node j. 

• The first summation ∑j.xijcalculates 

the total flow leaving node i. 

• The second summation ∑j.xji

calculates the total flow entering 
node i. 

In transportation and network flow 

problems, one of the fundamental 
principles is flow conservation. This 

principle states that, at any 

intermediate node in a transportation 
network, the total flow into the node 

equals the total flow out of the node. 

The equation essentially states that 
the net flow into or out of nod 

i must be zero, ensuring that flow is 

conserved at every node in the 
transportation network. 

Please note that this is a simple 

example to illustrate a concept within 
transportation modelling. More 

complex transportation models and 

frameworks may involve a series of 
equations and constraints to represent 

various aspects of transportation 

network design, optimization, or 
flow. 

6.On the Robust Shortest Path 

Problem[23]. 

2017 Robust shortest 

path problem, 

scenario approach 

Objective Function (Minimize Worst-Case 

Cost): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑚𝑎𝑥𝑆 ∑ 𝐶𝑒, 𝑠. 𝑋𝑒
𝑒∈𝐸

In This equation: 

• Maxs represents the maximum over 

all scenarios. 

• This equation calculates the total 

cost of the selected path for a 
specific scenario s 

• Xe is a binary decision variable 

representing whether edge e is 

included in the path

• Ce,s represents the cost of edge e

under scenarios s.

This objective function aims to 

minimize the maximum (worst-case) 

cost among all scenarios, ensuring 
that the selected path performs well 

even under the most unfavourable 

scenario. 
This formula encapsulates the 

essence of the Robust Shortest Path 

Problem using a scenario-based 
approach, where the goal is to find a 

path that is robust to uncertainty in 

edge costs by minimizing the worst-
case cost over a set of scenarios. 

7.From the Digital Internet to the 

Physical Internet: A Conceptual 

Framework With a Stylized 

Network Model with Dijkstra 

Algorithm [24]. 

2021 Conceptual 

framework, graph 

theory-based model

∗  𝑇𝐹 = 𝑆𝑢𝑝𝑝𝑙𝑦 − 𝐷𝑒𝑚𝑎𝑛𝑑 

In this equation: 

• TF means "Transport Flow" 

represents the flow of goods or 
resources in the transportation 

network. 

• "Supply" represents the total supply 

available at the source or origin 

nodes. 

• "Demand" represents the total 

demand at the destination nodes.

This equation captures the 

fundamental concept of flow balance 

in transportation networks, indicating 

that the flow of goods or resources 

from sources to destinations must 
balance supply and demand. It's a 

simplified representation of a 
transportation model that adheres to 

flow conservation principles and can 

serve as a foundational equation in 
transportation network analysis. 
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8.Graph representation learning: 

a survey[25] .

2020 Graph embedding 

techniques, 

evaluation  

Given two sets of node embedding’s: 

• Embedding’s for graph A: 

𝑋 = {𝑋1, 𝑋2, … … . , 𝑋𝑛},

where Xi is the embedding for node i in 

graph A 

• Embedding’s for graph B:

𝑌 = {𝑌1,𝑌2,……..,𝑌𝑚} 

     Where Yj is the embedding for node j in 
graph B. 

The goal is to find an optimal 

transport plan, often represented as a 

matrix P, where Pij represents the 

quantity of "mass" transferred from 
node i in graph A to node j in graph 

B while minimizing the overall 

transportation cost. Then the 
transport equation seeks to minimize 

the cost or discrepancy between the 

two embedding’s under the constraint 
that the total mass transported equals 

1 for each node and that the transport 

plan P is non-negative. The cost of 
transporting mass from xi to yj is 

often defined as a distance metric, 

such as the Euclidean distance or the 
squared Euclidean distance: 

9. How Much Will the Belt and 

Road 
Initiative Reduce Trade 

Costs[26]. 

2018 Geographic 

Information System 
(GIS) analysis, 

estimation of ad 

valorem trade costs, 
sectoral analysis 

Trade Cost Equation: 

𝑇𝐶𝑖𝑗 =

𝐷𝑖𝑗.𝑉𝑂𝑇

𝑆𝑖𝑗

Where: 

• TCij represents the ad valorem trade 

cost from location i to location j. 

• Dij is the distance or shipment time 
between location i and location j as 

obtained from GIS analysis.

• VOT is the "Value of Time," which 

represents the monetary value 

assigned to the time savings for the 
shipment. 

• Sij is a sector-specific factor that can 

represent various sectorial 

considerations, such as 
transportation mode-specific costs, 

tariffs, or other sector-specific 

factors that influence trade costs. 

This equation simplifies the 

estimation of ad valorem trade costs 
by taking into account the distance or 

shipment time between locations, the 

sector-specific factors, and the value 
assigned to time savings (Value of 

Time). 
Please note that this is a simplified 

representation, and in practice, trade 

cost estimation can be much more 
complex, considering a wide range of 

factors such as infrastructure quality, 

border delays, administrative costs, 
and more. The specific equation and 

factors used for trade cost estimation 

can vary depending on the research 
context and available data. 

10. Approximation Schemes for 

the restricted shortest path 

problem[27]. 

2017 shortest path 

problem, 

polynomial-time 
algorithms 

Constrained Shortest Path Equation: 

𝑓(𝑥) = ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑖,𝑗

• Xij ∈ {0,1} For all edges (i,j) in the 

graph, where xij is a binary decision 
variable that indicates if an edge 

exists  (i,j) is chosen in the path. 

• ∑ 𝑎𝑖𝑗𝑋𝑖𝑗𝑖,𝑗 ≤ 𝐵 Where aijrepresents 

a constraint associated with edge 

(i,j), and B is the maximum 

allowable constraint value.

This is a basic formulation of a 

constrained shortest path problem, 

where you aim to find the path 
through a graph with binary decision 

variables  

Xij while satisfying a constraint 
related to the selected edges. To 

approximate this problem with a 

polynomial-time algorithm, you 
might employ techniques like linear 

programming relaxation and 

rounding. The relaxation typically 
involves relaxing the binary 

constraint to continuous values 

between 0 and 1, which results in a 
linear programming problem that can 

be solved efficiently. Afterward, a 

rounding scheme can be applied to 
obtain an approximate binary 

solution. Keep in mind that the 
specific constraints, costs (cij), and 

constraint values (B) would depend 

on the problem context, and the 
approximation algorithm used would 

be chosen based on the problem's 

complexity and requirements. 

11.Shortest path problem on 
uncertain networks: An efficient 

two 

phases approach[28]. 

2021 Networks, graph 
modeling, two-

phase approach, 

uncertainty 
handling. 

Uncertainty-Aware Network Flow Equation: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑ (𝑥𝑖𝑗 − 𝑦𝑖𝑗). 𝑃𝑖𝑗
𝑖,𝑗

• 𝑥𝑖𝑗 ≤  𝑈𝑖𝑗For all edges (i,j), where 

xij represents the flow on edge (i,j), 

and Uij is the maximum capacity of 

that edge. 

• 𝑥𝑖𝑗 ≥  0 For all edges (i,j). 

This equation represents an 
optimization problem where you 

maximize a weighted sum of the 

difference between the actual flow 
(xij) and the uncertain flow (yij) on 

network edges. The uncertainty is 

modelled using an upper bound (Uij), 
which can represent factors like 

traffic congestion. 
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• ∑ 𝑥𝑖𝑗 − ∑ 𝑥𝑘𝑖  𝑘𝑖 for all nodes j,

where dj is the demand or supply at 
node j. 

• 𝑦𝑖𝑗 ≤  𝑈𝑖𝑗For all edges (i,j), where 

yij represents the uncertainty (e.g., 
due to traffic conditions) on edge 

(i,j), and Uij is the upper bound on 

that uncertainty. 

• 𝑦𝑖𝑗 ≥  0 For all edges (i,j). 

The two-phase approach would 

involve: 

Phase 1 (Pre-processing): In this 

phase, you might estimate or model 
the uncertainty (yij) on the network 

edges based on available data or 

predictive models. This could 
involve gathering real-time traffic 

information, weather conditions, or 

other relevant factors. 
Phase 2 (Query or Optimization): 

Once you have estimates for the 

uncertainties, you can use the 
equations above to optimize the 

network flow (xij) while considering 

these uncertainties, ensuring that the 
flow remains within the capacity 

limits (Uij) and satisfies demand 

constraints. This is a simplified 
example, and in practice, uncertainty 

modeling and handling in network 

optimization can be much more 

complex, involving probabilistic or 

stochastic models, scenario analysis, 

and more advanced techniques. The 
specific equations and approaches 

used would depend on the problem 

context and the nature of the 
uncertainties involved. 

12. SHORTEST PATH 

METHODS: A UNIFYING 
APPROACH[29]. 

2015 Shortest path 

algorithms, data 
structures for 

shortest path. 

Uncertain Shortest Path Equation: 

𝐺 = (𝑉, 𝐸) 

• Where V represents nodes 

(locations) and E represents edges 

(connections between nodes). Each 

edge e∈E has an associated 

uncertain weight we, representing 

the uncertain travel time or cost 
along that edge. 

• Graph Modelling: In the graph, let 

i and j represent two nodes 

connected by an edge eij, and xij be 

a binary decision variable indicating 

whether edge eij is selected in the 

path. 

• Optimization

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 =
𝐸[𝐶]=∑ 𝑥𝑖𝑗. 𝐸[𝑊𝑒𝑖𝑗]𝑒𝑖𝑗∁𝐸  

Phase 1 (Pre-processing): In this 

phase, you estimate the probability 
distribution of the uncertain edge 

weights We for all edges in the graph. 

For example, you might represent We 
as random variables following 

specific probability distributions. 

Phase 2 (Optimization): 

Once you have estimates of the 

uncertain edge weights, you can 

formulate the uncertain shortest path 
problem as follows: 

where E[C] is the expected cost (or 

expected travel time) of the path, 
E[Weij] is the expected weight of 

edge eij based on the probability 

distribution of Weij, and xij is a 
binary decision variable indicating 

whether edge eij is part of the path. 

13.Stochastic Shortest Path: 

Minimax, Parameter-Free and 
Towards Horizon-Free 

Regret[30]. 

2021 Stochastic shortest 

path, minimax 
regret, exploration 

bonuses, parameter-

free algorithms 

The Minimax Regret R over a horizon-free 

setting can be represented as 

𝑅 = 𝑚𝑎𝑥𝑠(𝐽𝑇(𝑠) − 𝑚𝑖𝑛𝑎𝐽𝑇(𝑠, 𝑎)) 

• R represent the Minimax Regret 

represent the time horizons 

represent a state or node a represent 
an action (path choice).

• JT(s,a) represent the expected cost-

to-go for state s when taking action 

a over the first T stages. 

• JT(s) represent the minimum 

expected cost-to-go for state’s over 

the first T stages, considering all 

possible actions. 

This equation captures the idea of 

minimizing the maximum regret over 
all states regardless of the time 

horizon, where  

JT(s) represents the minimum 
expected cost-to-go for states over an 

unspecified time horizon, and 

min(s,a) represents the best expected 
cost-to-go achieved by taking any 

action over the same unspecified time 

horizon. 
In practice, the computation of R may 

involve dynamic programming, 

reinforcement learning algorithms, or 
other optimization techniques to find 

the optimal policy that minimizes this 

regret criterion while considering 
exploration bonuses and adapting to 

the environment without predefined 

parameters (parameter-free 
algorithms). 

14.Application of Dijkstra 

Algorithm in Logistics 

Distribution Lines[31]. 

2015 Dijkstra Algorithm 

for path 

optimization in 

Tentative distance alt can be written as: 

𝑎𝑙𝑡 = 𝑑(𝑢) + 𝑤(𝑢, 𝑣) 

This equation represents the sum of 

the current shortest distance to node 

d(u)) and the weight of the edge from 
u to its neighbor  (w(u,v)). If alt is 
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logistics 

distribution lines 

smaller than the current shortest 

distance to v d(v)), it means that there 

is a shorter path from the source to v 

through u, so d(v) is updated with this 
shorter distance. This process 

continues until the shortest paths to 

all reachable nodes have been found, 
providing an optimized path in 

logistics distribution lines based on 

the chosen weight (distance, time, or 
cost) criteria. 

15.Surface Optimal Path 

Planning Using an Extended 
Dijkstra Algorithm[32]. 

2020 extended Dijkstra 

Algorithm for 
surface path 

planning 

Extended Dijkstra Algorithm 

𝑤(𝑒) = 𝑐𝑜𝑠𝑡(𝑒) = 𝑓(𝑧𝑣 − 𝑧𝑢)
+ 𝑔(𝑜𝑡ℎ𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟𝑠)

In this equation, zv−zurepresents the 

elevation change between nodes u 
and v, and f and g are functions that 

combine the elevation change with 

other relevant surface parameters. 
These functions can be application-

specific and may involve factors like 

slope, terrain roughness, or energy 
consumption. The exact equations for 

f(zv−zu) and 

(other factors)g(other factors) would 
depend on the specific surface 

modeling, application, and desired 
cost functions. 

16.Comparative Analysis 

between Dijkstra and Bellman-

Ford Algorithms in Shortest Path 
Optimization[33]. 

2020 Dijkstra and 

Bellman-Ford 

algorithms for 
shortest path 

optimization 

relaxing the edge (u,v) is: 

𝑑(𝑣) = min (𝑑(𝑣), 𝑑(𝑢) + 𝑤(𝑢, 𝑣)) 

The Bellman-Ford Algorithm is used 

to discover the shortest path in a 

weighted network from a source node 
to all other nodes, even if the graph 

contains negative-weight edges or 

has a negative-weight cycle. It 
detects negative-weight cycles. 

This equation updates the distance to 

node v by taking the minimum 
between its current distance (d(v)) 

and the sum of the distance to node u 

(d(u)) and the weight of the edge (u,v) 
w(u,v)). It ensures that the shortest 

path to v is considered. 

17. Optimal Route Planning of 
Parking Lot Based on Dijkstra 

Algorithm[34]. 

2017 optimal route 
planning in parking 

lots using Dijkstra 

Algorithm 

tentative distance alt is: 

𝑎𝑙𝑡 = 𝑑(𝑢) + 𝑤(𝑢, 𝑣) 

This equation represents the sum of 
the current shortest distance to node 

u (d(u)) and the weight of the edge 

from u to its neighbouring node v 
(w(u,v)). If alt is smaller than the 

current shortest distance to v (d(v)), it 

means that there is a shorter path 
from the starting point to v through u, 

so d(v) is updated with this shorter 

distance. 

In the context of parking lots, the 

weight w(u,v) may represent the time 
it takes to travel between parking 

spaces, considering factors such as 

distance, congestion, or even parking 
availability 

18. Dijkstra algorithm interactive 
training software development 

for network analysis applications 

in GIS[35]. 

2021 GIS and Graph 
on Dijkstra's 

Algorithm using 

self-designed 
graphs. 

Dijkstra's Algorithm in GIS (Geographic 
Information Systems) typically involves 

representing nodes (locations) and edges 

(connections) with associated weights 
(distances or costs). 

NODES: A, H , S , M 

Edges (with distances): 

- A to H: 5 km 

- A to S: 8 km 

- H to S: 2 km 

- H to M: 6 km 

- S to M: 4 km 

• The distance from Airport (A) to 

Hospital (H) is 5 kilometres.

• The distance from Airport (A) to 

School (S) is 8 kilometres.

This graph represents a simple 
geographical network where each 

node represents a location, and each 

edge represents a road or path 
between two locations with the 

associated distance. 

For example, if you want to find the 
shortest path from the Airport (A) to 

the Mall (M), you would apply 

Dijkstra's Algorithm to this graph, 
and it would yield the path with the 

minimum total distance (in this case, 

A > H > S > M, with a total distance 
of 13 kilometres). 
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• The distance from Hospital (H) to 

School (S) is 2 kilometres[36]. 

• The distance from Hospital (H) to 

Mall (M) is 6 kilometres.

• The distance from School (S) to 

Mall (M) is 4 kilometres.

19.Algorithm To Find Tourism 
Place Shortest Route[37]: 

2012 importance of 
algorithms in 

finding the shortest 

route for tourism 
places and factors 

minimize total travel distance: 

∑ ∑ 𝑑𝑖𝑗. 𝑥𝑖. 𝑥𝑗
𝑛

𝑗=1

𝑛

𝑖=1
 

Subject to: 

• ∑ 𝑥𝑖 = 𝑛𝑛
𝑖=1 (Each attraction is 

visited exactly once) 

• ∑ 𝑡𝑖. 𝑥𝑖𝑛
𝑖=1 ≤ 𝑇(Total travel time 

does not exceed the time constraint) 

• 𝑥 ∈ {0,1} (Decision variable: 1 if 

attraction i is visited, 0 otherwise)

The actual optimization of the 
objective function while satisfying 

constraints is performed using 

optimization algorithms. Common 
algorithms include Genetic 

Algorithms, Ant Colony 

Optimization, and Mixed-Integer 
Linear Programming, among others. 

These algorithms iteratively adjust 

the decision variables to find the 
optimal route. This is a simplified 

example, and the actual formulation 

would depend on the specific 
constraints and objectives of the 

tourism route optimization problem. 

You may need to adapt and 
customize the equations and 

constraints to suit your particular 

scenario. Additionally, solving such 
optimization problems often requires 

specialized optimization software or 

libraries. 

20.An Extensive Review of 

Shortest Path Problem Solving 
Algorithms[38]. 

2021 Shortest Path 

Algorithms (SPAs) 

The equation for updating the shortest distance 

d[v] from the source node s to node v using 
Dijkstra's Algorithm is as follows 

𝑑(𝑣) = min(𝑑(𝑣), 𝑑(𝑢) + 𝑤(𝑢, 𝑣)) 

• d[v]is updated if a shorter path to 

node v is found through node u. 

• d[u]is the current shortest distance 

to node u. 

• w(u,v) is the weight of the edge 

(u,v). 

The algorithm iteratively selects the 

node with the minimum d[v] value 
among unvisited nodes and updates 

the distances until all nodes have 

been visited or the destination node is 
reached. 

Let's define the following terms: 

V: Set of nodes (vertices). 
E: Set of edges, where each edge (u,v) 

has a non-negative weight w (u,v). 

s: Source node. 
d[v]: Shortest distance from the 

source node s to node v. 

V. RESEARCH GAP

While Dijkstra's Algorithm is a powerful method for finding the 

shortest path in a weighted graph, there are still some research 

gaps and areas where further investigation is warranted, 

especially in the context of its application to the Transport 

Problem and related logistics and supply chain management 

challenges. Some potential research gaps include: 

Scalability: Investigating methods to improve the scalability of 

Dijkstra's Algorithm for large-scale transportation networks, 

considering the computational complexity and memory 

requirements when dealing with a vast number of nodes and 

edges. 

Real-time Optimization: Developing real-time optimization 

strategies that can dynamically adapt to changing transportation 

conditions, such as traffic congestion, road closures, or demand 

fluctuations, to provide more accurate and responsive routing 

solutions. 

Multi-Objective Optimization: Extending Dijkstra's Algorithm to 

handle multi-objective optimization problems in logistics, where 

multiple criteria, such as cost, time, and environmental impact, 

need to be simultaneously considered when determining the 

optimal transportation routes. 

Uncertainty Modelling: Integrating uncertainty modelling into 

Dijkstra's Algorithm for more robust decision-making in logistics 

and supply chain management. This includes handling uncertain 

travel times, demand variations, and other stochastic factors. 

Advanced Data Sources: Leveraging emerging data sources, such 

as real-time GPS data, IoT sensors, and satellite imagery, to 

enhance the accuracy and reliability of input data for Dijkstra's 

Algorithm in transportation optimization. 
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Key Findings: 

Despite these research gaps, several key findings highlight the 

practical significance of applying Dijkstra's Algorithm in 

addressing transportation and logistics challenges: 

1. Efficiency: Dijkstra's Algorithm is highly efficient in finding

the shortest path in weighted graphs, making it suitable for real-

time or near-real-time routing and logistics optimization.

2. Flexibility: The algorithm's flexibility allows it to be applied to

various transportation scenarios, including road networks,

supply chain logistics, and even surface path planning.

3. Integration: Dijkstra's Algorithm can be integrated into larger

optimization frameworks, such as linear programming models,

to solve complex transportation optimization problems

efficiently.

4. Adaptability: By considering different weight criteria (e.g.,

distance, time, cost), Dijkstra's Algorithm can adapt to diverse

logistics and supply chain requirements.

5. Practical Use Cases: The algorithm has been effectively

implemented in a variety of real-world circumstances,

including route planning for delivery trucks, network

optimization in telecommunications, and surface path planning

for autonomous vehicles

VI. CONCLUSION:

Dijkstra's Algorithm, originally developed for finding the 

shortest path in weighted graphs, has proven to be a versatile and 

powerful tool with applications in various fields, particularly in 

addressing transportation and logistics challenges. In this 

comprehensive overview, we have explored the core concepts of 

Dijkstra's Algorithm and its application in solving the Transport 

Problem.  

Dijkstra's Algorithm, developed by Edsger W. Dijkstra in 1956, 

is a fundamental method for finding the shortest path in weighted 

networks. Its flexibility allows it to adapt to different criteria such 

as distance, time, or cost, making it valuable for solving complex 

problems in domains like network routing, logistics, and 

transportation optimization.Dijkstra's Algorithm operates 

through a systematic process that involves initializing distances, 

maintaining a priority queue, extracting nodes with the shortest 

known distances, relaxing edges, and iteratively updating 

distances until all nodes are visited or a target node is reached. 

This process efficiently determines optimal paths from a source 

node to all other nodes in the network. 

Dijkstra's Algorithm can be adapted to efficiently solve the 

Transport Problem, where it finds the optimal routes for 

transporting goods from suppliers to consumers while 

minimizing transportation costs. The algorithm identifies the 

shortest paths and transportation costs, which can then be used in 

linear programming models to optimize logistics. We conducted 

a literature survey to explore various applications of Dijkstra's 

Algorithm and related mathematical models. These applications 

ranged from hazard material transportation and trade cost 

estimation to time-dependent shortest path algorithms and robust 

shortest path problems. Dijkstra's Algorithm plays a crucial role 

in solving these diverse problems, often integrated with other 

techniques and models to address real-world challenges.  

While Dijkstra's Algorithm is highly efficient and flexible, there 

are research gaps that invite further exploration. These include 

enhancing scalability for large networks, enabling real-time 

adaptability, handling multi-objective optimization, modelling 

uncertainty, and integrating advanced data sources. Addressing 

these challenges will further enhance the algorithm's applicability 

in complex logistics and transportation scenarios. In conclusion, 

Dijkstra's Algorithm remains a cornerstone in solving 

transportation and logistics problems, offering an efficient and 

adaptable means of determining optimal routes. Its enduring 

significance is evident in applications spanning from supply 

chain management to route planning for autonomous vehicles, 

making it an invaluable asset in addressing real-world challenges 

in the ever-evolving field of transportation and logistics. 

REFERENCE 
[5] O. Khaing, D. H. H. Wai, and D. E. E. Myat, “Using Dijkstra’s Algorithm for 

Public Transportation System in Yangon Based on GIS,” Int. J. Sci. Eng. Appl., 

vol. 7, no. 11, pp. 442–447, 2018, doi: 10.7753/ijsea0711.1008.

[6] N. Akpofure and N. Paul, “Anapplication of Dijkstra’s Algorithm to shortest 
route problem,” IOSR J. Math., vol. 13, no. 1, pp. 20–32, 2017, doi: 

10.9790/5728-1303012032. 

[7] R. L. Sah, “Dijkstra ’ S Algorithm for Determining Shortest Path,” vol. 7, no. 
4, pp. 677–681, 2020. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

[1] M. A. Alam and M. O. Faruq, “Finding Shortest Path for Road Network 

Using Dijkstra’s Algorithm,” Bangladesh J. Multidiscip. Sci. Res., vol. 1, 

no. 2, pp. 41–45, 2019, doi: 10.46281/bjmsr.v1i2.366.

[2] B. Amaliah, C. Fatichah, and O. Riptianingdyah, “Finding the shortest 

paths among cities in Java Island using node combination based on 

Dijkstra algorithm,” Int. J. Smart Sens. Intell. Syst., vol. 9, no. 4, pp. 2219–

2236, 2016, doi: 10.21307/ijssis-2017-961. 

[3] A. Shaikh and A. Dhale, “AGV Path Planning and Obstacle Avoidance 

Using Dijkstra’s Algorithm,” Int. J. Appl. or Innov. Eng. Manag., vol. 2, 

no. 6, pp. 77–83, 2013. 

[4] R. Likaj, A. Shala, M. Mehmetaj, P. Hyseni, and X. Bajrami, “Application 

of graph theory to find optimal paths for the transportation problem,” IFAC 

Proc. Vol., vol. 15, no. PART 1, pp. 235–240, 2013, doi: 

10.3182/20130606-3-XK-4037.00031. 

 

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 07, July-2024

IJERTV13IS070046

www.ijert.org
www.ijert.org


[8] Z. Fuhao and L. Jiping, “An algorithm of shortest path based on Dijkstra for 

huge data,” 6th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2009, vol. 4, pp. 

244–247, 2009, doi: 10.1109/FSKD.2009.848.

[9] R. P. S. Y. M. RK Arjun, “Research on the Optimization of Dijkstra’S 
Algorithm and Its Applications,” Int. J. Sci. Technol. Manag., vol. No 04, no. 

No. 01, April 2015, pp. 304–309, 2015, [Online]. Available: www.ijstm.com

[10] S. Kumawat, C. Dudeja, and P. Kumar, “An extensive review of shortest path 
problem solving algorithms,” Proc. - 5th Int. Conf. Intell. Comput. Control Syst. 

ICICCS 2021, no. Iciccs, pp. 176–184, 2021, doi: 

10.1109/ICICCS51141.2021.9432275.
[11] E. D. Madyatmadja, H. Nindito, R. A. Bhaskoro, A. V. D. Sano, and C. P. M. 

Sianipar, “Algorithm to find tourism place shortest route: A systematic 

literature review,” J. Theor. Appl. Inf. Technol., vol. 99, no. 4, pp. 787–796, 
2021. 

[12] H. Yuan, J. Hu, Y. Song, Y. Li, and J. Du, “A new exact algorithm for the 

shortest path problem: An optimized shortest distance matrix,” Comput. Ind. 
Eng., vol. 158, no. August 2020, p. 107407, 2021, doi: 

10.1016/j.cie.2021.107407. 

[13] M. M. Ahmed, A. R. Khan, M. S. Uddin, and F. Ahmed, “A New Approach to 
Solve Transportation Problems,” Open J. Optim., vol. 05, no. 01, pp. 22–30, 

2016, doi: 10.4236/ojop.2016.51003. 

[14] M. L. Aliyu, U. Usman, Z. Babayaro, and M. K. Aminu, “A Minimization of 

the Cost of Transportation,” Am. J. Oper. Res., vol. 2019, no. 1, pp. 1–7, 2019, 

doi: 10.5923/j.ajor.20190901.01.

[15] S. X. Wang, “The improved Dijkstra’s shortest path algorithm and its 
application,” Procedia Eng., vol. 29, pp. 1186–1190, 2012, doi: 

10.1016/j.proeng.2012.01.110.
[16] Y. D. Rosita, E. E. Rosyida, and M. A. Rudiyanto, “Implementation of dijkstra 

algorithm and multi-criteria decision-making for optimal route distribution,” 

Procedia Comput. Sci., vol. 161, pp. 378–385, 2019, doi: 
10.1016/j.procs.2019.11.136.

[17] A. Trivella, F. Corman, D. F. Koza, and D. Pisinger, “The multi-commodity 

network flow problem with soft transit time constraints: Application to liner
shipping,” Transp. Res. Part E Logist. Transp. Rev., vol. 150, no. April, p. 

102342, 2021, doi: 10.1016/j.tre.2021.102342.

[18] V. B. S. de Zaldivar, “Reference (1).pdf,” Revista Europea de Estudios 
Latinoamericanos y del Caribe, vol. 95. pp. 71–95, 2013. 

[19] M. Izdebski, I. Jacyna-Gołda, and P. Gołda, “Minimisation of the probability 

of serious road accidents in the transport of dangerous goods,” Reliab. Eng. 
Syst. Saf., vol. 217, no. June 2021, 2022, doi: 10.1016/j.ress.2021.108093.

[20] S. A. Bęczkowska and I. Grabarek, “The importance of the human factor in 

safety for the transport of dangerous goods,” Int. J. Environ. Res. Public Health, 

vol. 18, no. 14, 2021, doi: 10.3390/ijerph18147525.

[21] A. Idri, M. Oukarfi, A. Boulmakoul, K. Zeitouni, and A. Masri, “A new time-

dependent shortest path algorithm for multimodal transportation network,” 
Procedia Comput. Sci., vol. 109, pp. 692–697, 2017, doi: 

10.1016/j.procs.2017.05.379.

[22] C. Dong and R. Franklin, “From the Digital Internet to the Physical Internet: A 
Conceptual Framework With a Stylized Network Model,” J. Bus. Logist., vol. 

42, no. 1, pp. 108–119, 2021, doi: 10.1111/jbl.12253.

[23] G. Yu and J. Yang, “On the robust shortest path problem,” Comput. Oper. Res., 
vol. 25, no. 6, pp. 457–468, 1998, doi: 10.1016/S0305-0548(97)00085-3. 

[24] P. Kolman, P. Zach, and J. Holoubek, “The development of e-learning 

applications solving problems from graph theory,” Acta Univ. Agric. Silvic. 
Mendelianae Brun., vol. 61, no. 7, pp. 2311–2316, 2013, doi: 

10.11118/actaun201361072311. 

[25] F. Chen, Y. C. Wang, B. Wang, and C. C. J. Kuo, “Graph representation 
learning: A survey,” APSIPA Trans. Signal Inf. Process., vol. 9, 2020, doi: 

10.1017/ATSIP.2020.13. 

[26] F. de Soyres, A. Mulabdic, S. Murray, N. Rocha, and M. Ruta, “How much will 
the Belt and Road Initiative reduce trade costs?,” Int. Econ., vol. 159, no. July, 

pp. 151–164, 2019, doi: 10.1016/j.inteco.2019.07.003.

[27] R. Hassin, “Approximation Schemes for the Restricted Shortest Path Problem,” 

Math. Oper. Res., vol. 17, no. 1, pp. 36–42, 1992, doi: 10.1287/moor.17.1.36.

[28] M. Davoodi and M. Ghaffari, “Shortest path problem on uncertain networks: 

An efficient two phases approach,” Comput. Ind. Eng., vol. 157, no. February, 
p. 107302, 2021, doi: 10.1016/j.cie.2021.107302.

[29] C. Italia, “Stefano PALLOTTI NO,” vol. 26, pp. 38–64, 1986. 

[30] J. Tarbouriech, R. Zhou, S. S. Du, M. Pirotta, M. Valko, and A. Lazaric, 
“Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-

Free Regret,” Adv. Neural Inf. Process. Syst., vol. 9, no. NeurIPS, pp. 6843–

6855, 2021. 
[31] D. Ding and X. Zou, “The Optimization of Logistics Distribution Route Based 

on Dijkstra’s Algorithm and C-W Savings Algorithm,” no. Mmebc, 2016, doi: 

10.2991/mmebc-16.2016.200. 

[32] M. Luo, X. Hou, and J. Yang, “Surface Optimal Path Planning Using an 

Extended Dijkstra Algorithm,” IEEE Access, vol. 8, pp. 147827–147838, 2020, 

doi: 10.1109/ACCESS.2020.3015976.

[33] S. W. G. Abusalim, R. Ibrahim, M. Zainuri Saringat, S. Jamel, and J. Abdul 
Wahab, “Comparative Analysis between Dijkstra and Bellman-Ford 

Algorithms in Shortest Path Optimization,” IOP Conf. Ser. Mater. Sci. Eng., 

vol. 917, no. 1, 2020, doi: 10.1088/1757-899X/917/1/012077.
[34] Yujin and G. Xiaoxue, “Optimal Route Planning of Parking Lot Based on 

Dijkstra Algorithm,” Proc. - 2017 Int. Conf. Robot. Intell. Syst. ICRIS 2017, 

pp. 221–224, 2017, doi: 10.1109/ICRIS.2017.62.
[35] I. R. Karaş, O. Yasin, and M. K. Turan, “Interactive training software for 

optimum travel route analysis applications in railway networks,” vol. 16, no. 2, 

pp. 81–87, 2013. 
[36] “Algorithms problem statement.pdf.”

[37] A. Fitriansyah, N. W. Parwati, D. R. Wardhani, and N. Kustian, “Dijkstra’s 

Algorithm to Find Shortest Path of Tourist Destination in Bali,” J. Phys. Conf. 
Ser., vol. 1338, no. 1, pp. 1163–1168, 2019, doi: 10.1088/1742-

6596/1338/1/012044. 

[38] A. Madkour, W. G. Aref, F. U. Rehman, M. A. Rahman, and S. Basalamah, “A 
Survey of Shortest-Path Algorithms,” pp. 1–26, 2017, [Online]. Available: 

http://arxiv.org/abs/1705.02044

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS070046
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 07, July-2024

www.ijert.org
www.ijert.org



