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ABSTRACT 

 

The notion of 2-metric space was first introduced by S.Gahler in 1963. Gahler gave the definition 

of 2-metric space. After that  Ehret (1969), Iseki (1975), Diminie and White (1976), Singh (1979), Rhoades 

(1979), SharmaAshok K(1980),  M.S.Khan and Fisher (1982) S V R Naidu (1986), Ganguly and Chandel 

(1987) and number of other Mathematicians have worked in this field. The aim of this paper is to study 

about the fixed point theorems for continuous self - maps satisfying the commuting property in a complete 

2-metric space.  

 

INTRODUCTION    

 

In mathematics, a metric space is a set where a notion of distance (called a metric) 

between elements of the set is defined. The metric space which most closely corresponds 

to our intuitive understanding of space is the 3-dimensional Euclidean space. In fact, the 

notion of "metric" is a generalization of the Euclidean metric arising from the four long-

known properties of the Euclidean distance. The Euclidean metric defines the distance 

between two points as the length of the straight line segment connecting them. The 

geometric properties of the space depend on the metric chosen, and by using a different 

metric we can construct interesting non-Euclidean geometries such as those used in the 

theory of general relativity. The 2-metric space was shown to have a unique nonlinear 

structure, quite different from a metric space.  As in other spaces, the fixed point theory 

of operators has been developed in this space also. A 2-metric is a real function of triple 

points which abstracts the properties of the area function for Euclidean triangles.   

 

In this paper, we have some useful definitions and two fixed point theorems in 

complete 2-metric space using the concept of continuous self–mapping and commutative 

mapping.  Throughout this paper,  
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(i) (X,d)  is  a complete 2-metric space , 

(ii)   is a non-negative real function mapping from R
+ 

to R
+
  such that  is a non-

decreasing function,  (t) < t   for any t > 0 and  lim  
n
  = 0 . 

                                                 n 

(iii)  N is  the set of all positive integers . 

 

The paper  begins with the necessary definitions that are used  to prove the theorems.   

 

Definition  1.      2-metric space : 

 

Let X be a set consisting of aleast three points. A  2-metric on X is a mapping d 

from XxXxX  to the set of non-negative real numbers that satisfies the following 

conditions: 

 

(i) There exists three points x, y, z such that d(x, y, z)  0, 

(ii) d(x, y, z) = 0 if atleast two of the three points are equal ,  

(iii)  d(x, y, z) = d(y, z, x) = d(x, z, y)  for all x, y, z in X, 

(iv) d(x, y, z)  d(x, y, a) + d(x, a, z) + d(a, y, z)  for all x, y, z, a  in X  

 

The pair (X,d) is called a 2-metric space . 

 

Definition  2 

 

A sequence {xn} in a 2-metric space (X,d) is said to be convergent with lim x in X if, 

  lim   d(xn, x, a) = 0   for  each aX. 

  
n 

 

Definition  3 

 

A sequence {xn} in a 2-metric space (X,d) is said to be Cauchy sequence if, 

 

  lim      d(xn, xm, a) = 0   for all aX , m, nN  . 

             
m, n 

 

Definition  4 
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A 2-metric space (X,d) is said to be complete if every Cauchy sequence is 

convergent in X. 

Definition  5 

 

A mapping T of X into itself is said to be continuous at a point xX, if whenever 

a sequence {xn} of  X converges to xX, then the sequence {Txn} converges to Tx. 

 

Definition  6 

The function  is called upper semi-continuous if, 

        lim sup (x)  (a)   for all  aR
+
 

         
xa 

and    is called lower semi-continuous if, 

                   lim inf (x)  (a)    for all  aR
+ 

. 

        
xa 

 

Definition  7 

 

Two mappings S, T : X  X are said to be commuting if , 

                                 (ST) (x)  =  (TS) (x)   for each xX. 

 

The first  fixed  point  theorem is for  for  two continuous self – maps  S, T 

commuting with an another  self – map  B . 

 

Theorem 1 

 

Let S, T be two continuous  self-mappings on a complete 2-metric space (X,d) 

into itself  satisfying the following conditions: 

 

(1.1)        is lower semi continuous , 

(1.2)      lim 
n
 (t) = 0 , 

   n 

(1.3)      S and T are surjective , 

(1.4)      S and T  commutes with an another the self – map  B  and 

(1.5)      d(Bx, By, a)   [max {d(Sx, Ty, a), d(Bx, Sx, a), d(By, Ty, a),  

 (d(Bx, Ty, a) d(By, Sx, a))}]   for all x, y, a X.  
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Then S, T and B have a common fixed point. 

Proof: 

 

Since the mappings S and T commutes with the map B we have,  

 

 (SB) (x) = (BS) (x)  

 (TB) (x) = (BT) (x) for each x  X. 

 

Now, we find an arbitrary point xo in X such that , 

                            Bxo  =  Sx1   and  

                            Bx1  =  Tx2    for  x1, x2X. 

Since S and T are surjective, there exists yo, y1X such that,  

       yo = Sx1      and  

                               y1 = Tx2 

Therefore,  

            yo = Sx1 = Bxo  and  

                              y1 = Tx2 = Bx1 

In general, 

                         yn  =  Sxn+1  =  Bxn    n  N U {0} and 

                       yn+1  = Txn+2  =  Bxn+1  n  N                              ( I ) 

 

This theorem can be proved by proving, 

(T.1.a) {yn} and {yn+1} converges to any point say ‘z’ in X as n   , 

(T.1.b) Sz = z , 

(T.1.c) Tz = z    and 

(T.1.d) Bz = z . 

 

Proof of (T.1.a) : 

Taking  x  = x1,  y  = x2     in condition (1.5), 

        d(Bx1, Bx2, a)   [max {d(Sx1, Tx2, a), d(Bx1, Sx1, a), d(Bx2, Tx2, a),  
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             (d(Bx1, Tx2, a) d(Bx2, Sx1, a))}] 

Therefore,      d(y1, y2, a)   [max {d(yo, y1, a), d(y1, yo, a), d(y2, y1, a), 

     (d(y1, y1, a) d(y2, yo, a))}]              [ by ( I ) ] 

                                  

We know that d(y1, y1,a) = 0   [by condition (ii) of Definition 1]. 

 

That is,       d(y1, y2, a)    [max {d(yo, y1, a), d(y1, yo, a), d(y2, y1, a), 0}] 

                            =  [max {d(y1, yo, a), d(y2, y1, a)}] 

Suppose that,  d(y2, y1, a) > d(y1, yo, a) 

Then,           d(y1, y2, a)   [d(y1, y2, a)].  This is a contradiction.  

 

Therefore,       d(y2, y1, a)   [d(yo, y1, a)]                                     ( II ) 

Again  taking x = x3 , y = x2  in condition (1.5), 

      d(Bx3, Bx2, a)   [max {d(Sx3, Tx2, a), d(Bx3, Sx3, a),d(Bx2, Tx2, a), 

                                          (d (Bx3, Tx2, a) d (Bx2, Sx3, a))}]        

This implies,  d(y3, y2, a)   [max {d(y2, y1, a), d(y3, y2, a), d(y2, y1, a), 

                                      (d(y3, y1, a) d(y2, y2, a))}]    [ by ( I ) ] 

                                 =  [max {d(y2, y1, a), d(y3, y2, a), d(y2, y1, a), 0}] 

                              =  [max {d(y2, y1, a), d(y3, y2, a)}] 

Therefore,    d(y3, y2, a)   [d(y2, y1, a)]                                        ( III )  

Similarly for x  =  x3, y  =  x4  the  condition  (1.5)  becomes, 

      d(Bx3, Bx4, a)   [max {d(Sx3, Tx4, a), d(Bx3, Sx3, a),d(Bx4, Tx4, a), 

                                          (d (Bx3, Tx4, a) d (Bx4, Sx3, a))}]        

This implies,  d(y3, y4, a)   [max {d(y2, y3, a), d(y3, y2, a), d(y4, y3, a), 

                                      (d(y3, y3, a) d(y4, y2, a))}]    [ by ( I ) ] 
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                                 =  [max {d(y3, y2, a), d(y4, y3, a), 0}] 

Therefore  d (y4, y3, a)   [d(y2, y3, a)]      (IV) 

By ( IV),     d(y4, y3, a)   [d(y2, y3, a)] 

                              [ d(y1, y2, a)]     [using ( III )]  

       = 
2
 d(y1, y2, a) 

        
2
 [ d(y1, y2, a)]    [using ( II )] 

       = 
3
 d(y1, yo, a) 

Continuing the process, 

 

        d(yn, yn+1, a)     
n
 d(y1, yo, a) 

 

Taking limit as n   , 

    lim   d(yn, yn+1, a) = 0  for  m>n.      [ since  lim 
n  

= 0 ] 
     n                                 n 

 

Therefore, {yn} is a Cauchy sequence in X. 

 

Since (X,d) is complete {yn} converges to any point say zX  as n  . 

 

Consequently, the sequence {yn+1} also converges to zX  as n  . 

 

That is,  

      lim yn   =   lim yn+1   =   z. 

                
n           

n  

Proof of (T.1.b) :        

 

Taking limit as n    in  (I)  and  using (T.1.a), 

 

lim yn   =    z   =    lim Sxn+1   =   lim Bxn                                         
   

n                   n               n 

          
(V) 

lim yn+1    =    z   =    lim Txn+2   =   lim Bxn+1                                         
   

n          n     n 

 

Now setting    x  =  SXn, y = xn+1 in condition 1.5, 
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d(BSxn, Bxn+1, a)   [max{d(S
2
xn, Txn+1, a), d(BSxn, S

2
xn, a), d(Bxn+1, Txn+1, a),                                                                                                                                                                                           

                                (d(BSxn, Txn+1, a) d(Bxn+1, S
2
xn, a))}]      

Since S is continuous and commutes with B, then {SSxn} and {BSxn} converges  

to  Sz  as  n   . 

 

Now  taking limit as n     to the inequality and  also using (V) , 

 

          d(Sz, z, a)   [max{d(Sz, z, a), d(Sz, Sz, a), d(z, z, a), (d(Sz, z, a) d(z, Sz, a))}]   

  =  [max{d(Sz, z, a), 0, 0, d
2
(Sz, z, a), }]        [by Definition 1.] 

              =  [ d
2 

(Sz, z, a) ] 

   d(Sz, z, a)    [ d
2 

(Sz, z, a) ].  This is a contradiction. 

 

This implies,  d(Sz, z, a)  =  0      aX.   Hence Sz  = z. 

 

Proof of (T.1.c) : 

 

Taking   x = xn,  y = Txn+1    in condition  (1.5),  

d(Bxn, BTxn+1, a)   [max{d(Sxn, TTxn+1, a),  d(Bxn, Sxn, a), 

                     d(BTxn+1,  TTxn+1, a),  

        (d(Bxn, TTxn+1, a) d(BTxn+1, Sxn, a))}] 

Since T is continuous and commutes with B, then {TTxn +1} and {BTxn +1}  

converges to Tz as n   . 

 

Now  taking limit as n   and also using (V) , 

 

        d(z, Tz, a)   [max{d(z, Tz, a), d(z, z, a), d(Tz, Tz, a), (d(z, Tz, a) d(Tz, z, a))}] 

                      =  [max { d(Tz, z, a), 0, 0,  d
2
(Tz, z, a)}]      [by Definition 1.]               

            =  [d
2 

(Tz, z, a)]  

 

d(z, Tz, a)    [d
2 

(Tz, z, a)]  which  is a contradiction. 
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Therefore, d(Tz, z, a) = 0      aX.    Hence Tz = z. 

Proof of (T.1.d) : 

 

Consider, 

 

          d(Bz, Bxn+1, a)  [max {d(Sz, Txn+1, a), d(Bz, Sxn+1, a), d(Bxn+1, Txn+1, a), 

      (d(Bz, Txn+1, a) d(Bxn+1, Sz, a))}]   [by condition (1.5)] 

Taking limit as n  , 

                d(Bz, z, a)   [max{d(Sz, z, a), d(Bz, z, a), d(z, z, a),  

(d(Bz, z, a) d(z, Sz, a) )}]     [by (V)] 

                           =  [max{d(z, z, a), d(Bz, z, a), d(z, z, a), (d(Bz, z, a) d(z, z, a))}] 

                         [by (T.1.b)] 

             =  [max {0, d(Bz, z, a), 0, 0}]   [by Definition 1.] 

           =  [d(Bz, z, a)] 

That is,  d(Bz, z, a)    [d(Bz, z, a)] . This is a contradiction. 

Therefore,   d(Bz, z, a)  =  0      aX.    Hence Bz  = z . 

Therefore, z is the common fixed point of  S, T  and  B. 

 

The second fixed point theorem is for two continuous self-maps S and T 

commuting with other two self-maps  A  and  B respectively. 

 

Theorem 2 

  

Let S and T be two  continuous  self-mappings defined on a complete 2-metric 

space (X,d) into itself  which satisfies the following conditions : 

 

(2.1)      is upper semi-continuous, 

(2.2)     S and T commutes with other two self-maps A  and B  respectively     and  

(2.3)     d(Ax, By, a)   [max{d(Sx, Ty, a), d(Sx, Ax, a), d(Sx, By, a), 
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                                           d(Ty, By, a), d(Ty, Ax, a), (d(Sx, Bx, a) d(Ty, Ay,a))}] 

for all x, y, a  X  then S, T, A  and  B have a common fixed point which are unique. 

 

Proof: 

Since the map S commutes with A and T commutes with B we have,  

 

 (SA) (x)  = (AS) (x) 

 (TB) (x) = (BT) (x)  for each xX. 

 

Now, for an arbitrary point in x0 in X there exists a point x1X such that, 

               Sx1  =  Axo    and  

for  x2X ,         Tx2  =  Bx1. 

 

We define two sequences {y2n} and {y2n+1} in X such that, 

          

     y2n+1  =  Sx2n+1  =   Ax2n        nN  {0}    and    

        y2n  =   Tx2n      =  Bx2n-1          nN                                                                  ( I ) 

This theorem can be proved by proving, 

    (T.2.a) (X,d) is bounded , 

    (T.2.b) The sequences {y2n} and {y2n+1}converges to any point say zX  as  n   , 

    (T.2.c) Sz = z , 

    (T.2.d) Tz = z , 

    (T.2.e) Az = z , 

    (T.2.f)  Bz = z   and 

    (T.2.g)  S, T, A  and  B have a unique fixed point z . 

Proof of (T.2.a) : 

 

Let  2r  is a sequence of real number where  0 <  < 1,   r  N. 

First, let  2r  be an  increasing sequence. Suppose if  {y2n} is not bounded  then, 

    d(y2n+1, y2n+2, a)    2r                                       ( II )    

Now  consider, 

 d(y2n+1, y2n+2, y2n)  =  d(Ax2n, Bx2n+1, y2n)     [using (I)] 
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                                  [max{d(Sx2n, Tx2n+1, y2n), d(Sx2n, Ax2n, y2n), d(Sx2n, Bx2n+1, y2n),  

d(Tx2n+1, Bx2n+1, y2n),d(Tx2n+1,Ax2n,y2n), 

(d(Sx2n, Bx2n, y2n) d(Tx2n+1, Ax2n+1, y2n))}]   [by condition (2.3)] 

                                =   [max{d(y2n, y2n+1, y2n), d(y2n, y2n+1, y2n), d(y2n, y2n+2, y2n),   

                                                 d(y2n+1, y2n+2, y2n), d(y2n+1, y2n+1, y2n),  

(d(y2n, y2n+1, y2n) d(y2n+1, y2n+2, y2n))}]       [by ( I )] 

          =  [max {0, 0, 0, d(y2n+1, y2n+2, y2n), 0, 0}]     [by Definition 1.] 

        =  [d(y2n, y2n+1, y2n+2)] 

                < d(y2n, y2n+1, y2n+2)        [since (t)<t] 

This implies,                d(y2n, y2n+1, y2n+2) = 0 . 

 

Hence      d(y2n, y2n+1, y2n+2)    2n . [ since  0 <  < 1]  

This is a contradiction to the assumption ( II ). 

Therefore, {y2n} is a bounded sequence in X. 

Similarly { y2n} is a bounded sequence in X  when  2r  is a decreasing sequence. 

Hence (X,d) is bounded. 

 

Proof of (T.2.b) : 

 

Let  p, m be two positive integers belonging to N. 

 

Let the bound of d(y2n, y2n+1, y2n+p)  be 
2n 

(2n). 

 

That is, 

 

 d(y2n, y2n+1, y2n+p)   
2n 

(2n)     and            

           d(y2n, y2n+1, y2n+p+m)  
2n 

(2n)           ( III ) 

 

Consider, 

 

d(y2n, y2n+p, y2n+p+m)  d(y2n, y2n+1, y2n+p+m) + d(y2n, y2n+p, y2n+1) + d(y2n+1, y2n+p, y2n+p+m) 

     [by Definition 1.] 
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             
2n 

(2n) + 
2n 

(2n) + d(y2n+1, y2n+p, y2n+p+m)     [by (III)] 

           = 2 
2n 

(2n) + d(y2n+1, y2n+p, y2n+p+m) 

            

 2 
2n 

(2n) + d(y2n+1, y2n+2, y2n+p+m) + d(y2n+1, y2n+p, y2n+2) 

                                 + d(y2n+2, y2n+p, y2n+p+m)       [by Definition 1.] 

             2 
2n 

(2n) +  
2n+1

(2n) +  
2n+1

(2n) + d(y2n+2, y2n+p, y2n+p+m)  

[by (III)] 

             = 2 
2n 

(2n) + 2  
2n+1

(2n) + d(y2n+2, y2n+p, y2n+p+m)      

            = 2 [
2n 

(2n) + 
2n+1 

(2n)] + d(y2n+2, y2n+p, y2n+p+m) 

Continuing the process, 

                                                     2n +p -1 

 d(y2n, y2n+p, y2n+p+m)    2        
i 
(2n)       ( IV ) 

  

                             i =2n 

Consider, 

d(Ax2n+m, Bx2n+m+p, y2n+m)       [ max { d(Sx2n+m, Tx2n+m+p, y2n+m), 

                       d(Sx2n+m, Ax2n+m, y2n+m) ,d(Sx2n+m, Bx2n+m+p, y2n+m), 

      d(Tx2n+m+p, Bx2n+m+p, y2n+m), d(Tx2n+m+p, Ax2n+m, y2n+m), 

     (d(Sx2n+m, Bx2n+m, y2n+m) d(Tx2n+p+m, Ax2n+m+p, y2n+m ))}] 

              [by condition (2.3)] 

Therefore, 

d(y2n+m+p , y2n+m+p+1, y2n+m )    [max{d(y2n+m, y2n+m+p, y2n+m), d(y2n+m, y2n+m+1, y2n+m), 

d(y2n+m, y2n+m+p, y2n+m), d(y2n+m+p, y2n+m+p+1, y2n+m),                       

d(y2n+m+p, y2n+m+1, y2n+m), 

                      (d(y2n+m, y2n+1+m, y2n+m) d(y2n+m+p, y2n+m+p+1, y2n+m ))}] 

 

                                                                                                                       [by ( I )] 
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                                 =  [max {0, 0, 0, d(y2n+m+p, y2n+m+p+1, y2n+m), 

                                                             d(y2n+m+p, y2n+m+1, y2n+m),  0 )}]     [by Definition 1.] 

                                           =  [max { d(y2n+m+p, y2n+m+p+1, y2n+m),  d(y2n+m+p, y2n+m+1, y2n+m)} 

 

Suppose that, 

d(y2n+m+p , y2n+m+p+1, y2n+m ) > d(y2n+m+p, y2n+m+1, y2n+m) 

 

Then,  

d(y2n+m+p, y2n+m+p+1, y2n+m)    [d(y2n+m+p , y2n+m+p+1, y2n+m )] 

               < d(y2n+m+p , y2n+m+p+1, y2n+m )         [since (t)<t] 

This is a contradiction. Therefore, 

  d(y2n+m+p, y2n+m+p+1, y2n+m)   [d(y2n+m+p, y2n+m+1, y2n+m)}]                 

                                                       2n+p+m-1 

                                 [2         
i  

(2n) ]       [by ( IV )] 

   
                              i =2n 

                                                   2n+p+m-1 

                                             = 2          
i+1 

(2n)    

          
                             i =2n 

 

                               
 = 2 [

2n+1
+ 

2n+2
 + … +

2n+p+m
] 

 

Since p, m is finite and allowing limit as n  ,  

d(y2n+m, y2n+m+p+1, y2n+p+m)  = 0  .      [since  lim  
n
  = 0] 

                                            n 

Hence {y2n+m} is a Cauchy sequence for mN. 

Therefore, {y2n} is also a Cauchy sequence in X.  

Since (X,d) is complete, {y2n} converges to point zX  as n  . 

The sequence {y2n+1} also converges to zX  as n  . 

That is,                    lim yn   =   lim yn+1   =   z. 

                                
n  

n  

 

Proof of (T.2.c) : 

 

Now taking limit as n   in   ( I ) and using (T.2.b), 
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lim y2n+1    =    z   =    lim Sx2n+1   =   lim Ax2n      nN  {0}    and                                       
n        n       n  

 

lim  y2n     =     z   =     lim  Tx2n     =  lim Bx2n-1    nN                                                   ( V ) 
n          n      n 

 

Consider, 

d(ASx2n, Bx2n+1, a)   [max{ d(S
2
x2n, Tx2n+1, a), d(S

2
x2n, ASx2n, a),  d(S

2
x2n, Bx2n+1, a), 

                                       d(Tx2n+1, Bx2n+1, a), d(Tx2n+1, ASx2n, a), 

                                       (d(S
2
x2n, BSx2n, a) d(Tx2n+1, Ax2n+1, a))}]     [by condition (2.3)] 

Since S is continuous and S commutes with A the sequence {SSx2n} and {ASx2n} 

converges to the point   Sz   as n  . 

Now, taking limit as n    and  also  using ( V ), 

 

              d(Sz, z, a)   [max{d(Sz, z, a), d(Sz, Sz, a), d(Sz, z, a), d(z, z, a), d(z, Sz, a),  

           (d(Sz, Bz, a) d(z, z, a))}]       

                    =  [ max{d(Sz, z, a), 0, d(Sz, z, a), 0, d(z, Sz, a), 0}]        

                           [by Definition 1.] 

                    =  [d(Sz, z, a)] 

d(Sz, z, a)   [d(Sz, z, a)] < d (Sz, z, a)        [since (t)<t] 

This is a contradiction. 

 

This implies d(Sz, z, a) = 0     aX.   Therefore, Sz = z. 

 

Proof of (T.2.d) : 

 

Consider, 

d(Ax2n, BTx2n+1, a)   [max{ d(Sx2n, T
2 
x2n+1, a), d(Sx2n, Ax2n, a), d(Sx2n, BTx2n+1, a),        

                                            d(T
2
x2n+1, BTx2n+1,a), d(T

2
x2n+1, Ax2n, a), 

                                            (d(Sx2n, Bx2n, a), d(T
2 
x2n+1, ATx2n+1, a))}]  [by condition(2.3)]                         
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Since T is continuous and B commutes with T,  then the sequences{TTxn+1} and 

{BTxn+1} converges to Tz  as n   . 

Taking limit as n    and also using ( V), 

 

                  d(z, Tz, a)   [max{d(z, Tz, a), d(z, z, a), d(z, Tz, a), d(Tz, Tz, a), 

                                                   d(Tz, z, a), d((z, z, a) d(Tz, Az, a))}]      

             =  [max{d(z, Tz, a), 0, d(z,Tz, a), 0, d(Tz, z, a), 0}]  

                                                                                      [by Definition 1.] 

                                   =  [d(z, Tz, a)] 

 

d(z, Tz, a)    [d(z, Tz, a)]  < d(z, Tz, a)       [since (t)<t] 

This is a contradiction. 

This implies  d(z, Tz, a) = 0     aX.   Therefore, Tz = z. 

 

Proof of (T.2.e) : 

 

Consider, 

 

         d(Az, Bx2n+1, a)   [max {d(Sz, Tx2n+1, a), d(Sz, Az, a),  

                      d(Sz, Bx2n+1, a), d(Tx2n+1, Bx2n+1, a), d(Tx2n+1, Az, a), 

    (d(Sz, Bz, a), d(Sx2n+1, Ax2n+1, a))}]   [by condition (2.3)] 

Taking limit as n  , 

                 d(Az, z, a)   [max{d(z, z, a), d(z, Az, a), d(z, z, a), d(z, z, a),  

                                                  d(z, Az, a), (d(z, Bz, a) d(z, z, a))}]   [by ( V ) and (T.2.c)] 

            =  [max{0, d(z, Az, a), 0, 0, d(z, Az, a), 0}]   [by Definition 1.] 

                       =  [d(z, Az, a)] 

d(Az, z, a)    [d(z, Az, a)] < d(z, Az, a)  [since (t)<t] 

This is a contradiction. 

This implies d(z, Az, a) = 0   aX.      

Therefore, Az = z. 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

14www.ijert.org

IJ
E
R
T

IJ
E
R
T



 

Proof of (T.2.f) : 

 

Consider, 

           d(Ax2n, Bz, a)   [max{ d(Sx2n, Tz, a), d(Sx2n, Ax2n, a), 

    d(Sx2n, Bz, a),  d(Tz, Bz, a), d(Tz, Ax2n, a), 

    (d(Sx2n, Bx2n, a) d(Tz, Az, a))}]      [by condition (2.3)] 

Taking limit as n  , 

   d(z, Bz, a)   [max{d(z, z, a), d(z, z, a), d(z, Bz, a), d(z, Bz, a),                                                                                                                                       

               d(z, z, a), (d(z, z, a) d(z, Az, a))}]   [by (V) and (T.2.d) ] 

          =  [max{0, 0, d(z, Bz, a), d(z, Bz, a), 0, 0}]    [by Definition 1.] 

                    =  [d(z, Bz, a)] 

d(z, Bz, a)   [d(z, Bz, a)]  < d(z, Bz, a)               [since (t)<t] 

This is a contradiction. 

This implies, d(z, Bz, a) = 0    aX.  Therefore, Bz = z.  

Proof of (T.2.g) : 

 

If possible let z is not unique, let w be another fixed point. 

 Then,            z  =  Az  = Bz  = Sz  = Tz    and  

                       w = Aw =  Bw = Sw = Tw                          ( VI ) 

Consider, 

            d(Aw, Bz, a)   [max{ d(Sw, Tz, a), d(Sw, Aw, a), d(Sw, Bz, a),  

                                                     d(Tz, Bz, a),  d(Tz, Aw, a),  

                                                    (d(Sw, Bw, a) d(Tz, Az, a))}]    [by  condition (2.3)] 

Therefore, d(w, z, a)    [max{d(w, z, a), d(w, w, a), d(w, z, a), d(z, z, a), d(z, w, a),  

   (d(w, w, a) d(z, z, a))}]        [by ( VI )] 

           =  [max{d(w, z, a), 0, d(w, z, a), 0, d(z, w, a), 0}] [by Definition 1.] 

           =  [d(z, w, a)] 

 d(w, z, a)    [d(z, w, a)] < d(z, w, a) [since (t)<t] 

This is a contradiction. 
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This implies, d(w, z, a)  =  0     aX.   Hence w = z. 

Therefore, z is the unique common fixed point of S, T, A and B. 

 

CONCLUSION  

While observing both the theorems we analyse that the property of a self-map, the 

continuity nature of the map is clearly exposed.  Further commutativity plays an essential 

role in obtaining fixed point and its part is more dominant compared to the other two. In 

other words the concept of continuity and the property of commutativity gets binded to 

obtain a fixed point. To conclude we can say that the notion of continuity and 

commutativity is co-related and both plays an effective part for the existence of the fixed 

point. 
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