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Abstract The flow of a couple stress fluid through a porous layer bounded by parallel plates is investigated. The expres-

sions for the velocity and the temperature are obtained in terms of exponential functions. The mass flow rate and its frac-

tional increase are determined. The effect of permeability and couple stress parameters on the velocity and temperature are 

discussed.   
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1. Introduction 

The flow of a non-Newtonian fluid through and 

past porous media is of wide spread importance in various 

branches of science and technology. The flow of a non 

–Newtonian fluid through  and past porous media in of 

wide spread importance in various branches of science and 

Technology. With the growing importance of 

non-Newtonian fluids in modern technology, industries, the 

investigations on such fluids are desirable. During recent 

years the theory of polar fluids has received much attention 

and this is because the traditional Newtonian fluids can’t 

precisely describe the characteristics of the fluid flow with 

suspended particles. The study of such fluids have applica-

tions in a number of processes that occur in industry such as 

the extrusion of polymer fluids, solidification of liquid 

crystals, cooling of metallic plate in a bath, exotic lubrica-

tions and colloidal and suspension solutions. In the category 

of non-Newtonian fluids couple stress fluid has distinct 

features , such as polar effects. The theory of polar fluids 

and related theories are models for fluids whose micro 

structure is mechanically significant. The constitutive equa-

tions for couple stress fluids were given by Stokes (1966). 

The theory proposed by Stokes is the simplest one for micro 

fluids, which allows polar effects such as the presence of 

couple stress, body couples and non-symmetric tensor. 

Couple stresses are found to appear in noticeable magnitude 

in fluids with very large molecules. The couple stress ef-

fects are considered as a result of the action of one part of a 

deforming body on its neighbourhood. This theory has wide 

results and applications in mechanics of bio fluids, colloidal 

fluids, liquid crystals and for pumping fluids such as syn-

thetic lubricants. This theory has wide results and applica-

tions in mechanics of bio-fluids, colloidal –fluids liquid 

crystals and for pumping fluids such as synthetic lubricant. 

The theory of Stokes has applied for the study of some sim-

ple lubrication problems see Bujurke and Jayaraman, (1982). 

Since the long chain  hyaluronic acid molecules are found 

as additives in synovial fluids, they are modeled as couple 

stress fluids in human joints. The presence of small amounts 

of additives in a lubricant can improve the bearing perfor-

mance by increasing the lubricant viscosity and thus pro-

ducing an increase in the load capacity. These additives in a 

lubricant also-reduce the coefficient of friction and increase 

the temperature range in which bearing can operate.  

Based on the couple – stress theory of Stokes, Valanis and 

Sun (1969), Chaturani and Kaloni (1976),  Chaturani and 

Upadthya (1976) have proposed various theoretical models 

obtained from these three models are in good agreement 

with experimental results.  

Further Chaturani and Pralhad (1981) studied a three 

layered flow model for blood flow and they assumed that 

the top and bottom layers consist of plasma and the middle 

layer consist of red-cell suspension (couple-stress fluid).  

Recently Malashetty and Umavathi (1999) discussed the 

effects of couple stresses on the free Convection flow in a 

vertical channel. Free convection flow of an electrically 

conducting couple stress fluid and a couple stress fluid for 

the radiating medium in a vertical channel has been studied 

by Umavathi (1999,2000). 

Keeping in mind the importance and applications of non 

Newtonian (Couple stress) fluids, the flow of a couple stress 

fluid through a porous layer bounded by parallel plates is 

investigated. The expressions for the velocity and the tem-

perature are obtained. The mass flow rate and its fractional 

increase are determined. The effect of permeability and 

couple stress parameters on the velocity and temperature are 

discussed.    

 

2. Mathematical Formulation 

Consider the flow of a couple stress fluid through a porous 

medium bounded by parallel plates. The permeability of the 
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porous medium is taken as k . The lower and upper plates 

are maintained at fixed temperatures T1 and T2 respectively. 

The x-axis is taken along the central line of the channel and 

y-axis perpendicular to it. The width of porous channel is 2h 

as shown in figure 4.1 

To derive the basic equations of the problem, we make the 

following assumptions. 

I. The flow in the x-direction is driven by a constant 

pressure gradient.  

II. The flow is steady and fully developed with neg-

ligible body forces so that all the physical quantities 

except the pressure are functions of y only.  

 

 

 

 

 

 

Figure1: Physical model 

Under these assumptions the basic equations of the flow are 

given below. 

 

Basic Equations 
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Boundary Conditions  

 u = 0 at y = h       (1.4)  

     

 u = 0 at y = - h       (1.5)   

2

2

d u
0 at y h

dy
        (1.6) 

2T T at y h       (1.7)

 1T T at y h       (1.8)  

1.4 Non- dimensionalization of the flow quantities  

 We introduce the following quantities in order to make 

the basic equations and boundary conditions dimensionless.  

2

x y u p
x ; y ; u ; p ;

h h U u
   
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T T
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
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In view of the above dimensionless quantities, the equations 

(1.1)-(1.8) take the following form. The asterisks (*) are 

neglected here after.  
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where  

u = 0   at y = 1     (1.12) 

      

u=0   at y = - 1    (1.13)

 
2

2

u
0

y





  at y = ±1    (1.14) 

0     at y = - 1    (1.15) 

1    at y = 1     (1.16) 

 
 
 
 
 
1.5 Solution of the Problem 
Solving equation (1.10) subject to the boundary conditions 

(1.12) – (1.14) we obtain the velocity field as.  

 

1 1 1 1

2
A y A y B y B y

1 2 3 4 2

Pa
u C e C e C e C e

c

 
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Where 
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Solving equation (1.11) subject to the boundary conditions 

(1.15) – (1.16) we obtain the temperature as.  

 

where  

  

 

 

 

1.6 Results and discussion  
(i) Mass flow rate  

 The dimensionaless  mass flow rate of the flow of a 

couple stress fluid through the porous medium bounded by 

parallel plates is given by  
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(ii)  Inferences   

 From equation 1.17 we have calculated velocity as a  

function of y for different values of couple stress parame-

ter a for fixed Da = 0.1, P = 2, and = 0.5 and is shown in 

figure 1.2. We observe that the velocity increases with the 

increasing in y in 0 0.5y   and it decreases with the 

increasing y for 0.5 1.y   The velocity attains the 

maximum  value at the central line of the channel. For a 

given y, we notice that the velocity increases with increas-

ing couple stress parameter a.  

The variation of velocity U with y is calculated from  equ-

ation 1.17 for different values of porosity    and is 

shown in figure 1.3. for fixed       a = 2,  P = 5 and Da 

= 0.03. We observe that for a given y, the velocity increases 

with the increasing  . This is due to increase in the poros-

ity of the porous layer.  

 The variation of velocity U with y is calculated from 

equation 1.17 for different values of Darcy number Da and 

is shown in figure 1.4. We observe that for a given y, the 

velocity increases with increasing Da. This may be due to 

the increase in the permeability of the porous layer.  

 The variation of velocity U with y is calculated from 

equation 1.17 for different values of P and is shown in fig-

ure 1.5. For fixed a = 2, = 0.2, Da = 0.03, we observe 

that for a given y, the velocity increases with the increasing 

P. This may be due to the increase in the Reynolds number 

of the porous layer.  

 From equation 1.18, we have  calculated temperature 

as a function of y for different values of Darcy number Da, 

for fixed a = 1.2, = 0.01, Pr = 0.7, Ec = 0.01, Q = 5, and 

is shown in figure 1.6. We observe that for a given Da, the 

temperature increases with the increasing in y the tempera-

ture attains the maximum and minimum values at the lower 

and upper boundaries of the porous layer. For a given y, we 

notice that the temperature decreases with the increasing 

Darcy number Da.  

 The variation of temperature   with y is calculated 

from equation 1.18 for different values of  Prandtl number 

Pr and is shown in figure 1.7. We observe that for a given y , 

the temperature   increases with increasing Prandtl num-

ber.  

 The variation of temperature   with y is calculated 

from equation 1.18 for different values of Eckert number Ec 

and is shown in figure 1.8. We observe that for a given y, 

the emperature increases with the increasing Eckert number.  

 

1.7. Graphs and Tables: 
Fig. 1.2 Velocity profiles for different values of couple 

stress parameter a, with fixed values of  

0.2, 0.03, 5,Da P  
 

 

 

 
 

 

Fig. 1.2 Velocity profiles for different values of couple 

stress parameter a, with fixed values of  

0.2, 0.03, 5,Da P  
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Fig. 1.3: Velocity Profiles for different values of  , with 

fixed values of 2, 0.03, 5,a Da P  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4: Velocity profiles for different values of Da, with 

fixed values of 2, 0.002, 5,a P  
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Fig. 1.5: Velocity profiles for different values of P with 

fixed values of 2, 0.002, 0.03a Da  
 

 

 
 

 

Fig. 1.6 : Temperature profiles for different values of Da, 

with fixed values of 

1.2, 0.001, 0.7, 0.1, 0.03, 5a P E Da Q      
 

Fig.1.7: Temperature profiles for different values of Pr with 

Fixed values of  

1.2, 0.001, 1, 0.03, 5a E Da Q     
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 1.8: Temperature profiles for different values of Ec 

with fixed values of 

1.2, 0.001, 0.03, 5a Da Q    
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1.8 Appendix: 
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