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Abstract - The problem of the flow of an incompressible 

non-Newtonian second-order fluid over an enclosed 

torsionally oscillating discs in the presence of the magnetic 

field has been discussed. The obtained differential equations 

are highly non-linear and contain upto fifth order derivatives 

of the flow functions. Hence exact or numerical solutions of 

the differential equations are not possible subject to the given 

natural boundary conditions, therefore the regular 

perturbation technique is applied. The flow functions H, G, L 

and M are expanded in the powers of the amplitude  (taken 

small) of the oscillations. The behaviour of the radial, 

transverse and axial velocities at different values of Reynolds 

number, phase difference, magnetic field and second-order 

parameters has been studied and shown graphically. The 

results obtained are compared with those for the infinite 

torsionally oscillating discs by taking the Reynolds number of 

out-flow Rm and circulatory flow RL equal to zero. The 

transverse shearing stress and moment on the lower and 

upper discs have also been obtained.    
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1 INTRODUCTION 
 

The phenomenon of flow of the fluid over an enclosed 

torsionally oscillating disc (enclosed in a cylindrical 

casing) has important engineering applications. The most 

common practical application of it is the domestic washing 

machine and blower of curd etc.. Soo1) has considered first 

the problem of laminar flow over an enclosed rotating disc 

in case of Newtonian fluid. The torsional oscillations of 

Newtonian fluids have been discussed by Rosenblat2). He 

has also discussed the case when the Newtonian fluid is 

confined between two infinite torsionally oscillating 

discs3). Sharma & Gupta4) have considered a general case 

of a second-order fluid between two infinite torsionally 

oscillating discs. Thereafter Sharma & Singh5) extended the 

same problem for the case of porous discs subjected to 

uniform suction and injection. Hayat6) has considered non-

Newtonian flows over an oscillating plate with variable 

suction. Chawla7) has considered flow past of a torsionally 

oscillating plane Riley & Wybrow8) have considered the 

flow induced by the torsional oscillations of an elliptic 

cylinder. Bluckburn9) has considered a study of two-

dimensional flow past of an oscillating cylinder. Sadhna 

Kahre10) studied the steady flow between a rotating and 

porous stationary disc in the presence of transverse 

magnetic field. B. B. Singh and Anil Kumar11) have 

considered the flow of a second-order fluid due to the 

rotation of an infinite porous disc near a stationary parallel 

porous disc. Present paper is extended work of Reshu 

Agarwal13) who has considered Flow of a Non-Newtonian 

Second-Order Fluid over an Enclosed Torsionally 

Oscillating Disc. 

 Due to complexity of the differential equations 

and tedious calculations of the solutions, no one has tried to 

solve the most practical problems of enclosed torsionally 

oscillating discs so far. The authors have considered the 

present problem of flow of a non-Newtonian second-order 

fluid over an enclosed torsionally oscillating disc in the 

presence of the magnetic field and calculated successfully 

the steady and unsteady part both of the flow functions. 

The flow functions are expanded in the powers of the 

amplitude  (assumed to be small) of the oscillations of the 

disc. The non-Newtonian effects are exhibited through two 

dimensionless parameters 1(=n2/1) and 2(=n3/1), 

where 1, 2, 3 are coefficient of Newtonian viscosity, 

elastico-viscosity and cross-viscosity. n being the uniform 

frequency of the oscillation. The variation of radial, 

transverse and axial velocities with elastico-viscous 

parameter 1, cross-viscous parameter 2, Reynolds number 

R, magnetic field m1 at different phase difference  is 

shown graphically.   

 

2 FORMULATION OF THE PROBLEM 
 

The constitutive equation of an incompressible second-

order fluid as suggested by Colemann and Noll12) can be 

written as: 

 

ij = - pij + 21dij  + 22eij +  43cij            ---------------- ( 1 ) 

where  

    d ij = ½ (ui,j + uj,i),                       

    e ij = ½(ai,j + aj,i) + um
,ium,j,          

               c ij =  dim dm
j.            ----------- ( 2 ) 

p is the hydrostatic pressure, ij is the stress-tensor, u i  and 

a i  are the velocity and acceleration vector. 

The equation (1) together with the momentum equation for 

no extraneous force 

  ( ui/t + um ui,m) = tm
i,m   -----------------------( 3 ) 
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and the equation of continuity for incompressible fluid 

    ui
,i = 0    ---------------------------------------- ( 4 ) 

where  is the density of the fluid and comma (,) represents 

covariant differentiation, form the set of governing 

equations. 

 In the three dimensional cylindrical set of co-

ordinates (r, , z) the system consists of a finite disc of 

radius rs (coinciding with the plane z = 0) performing 

rotatory oscillations on the type rCos of small amplitude 

, about the perpendicular axis r = 0 with angular velocity 

 in an incompressible second-order fluid forming the part 

of a cylindrical casing or housing. The top of the casing 

(coinciding with the plane z = z0 rs) may be considered as 

a stationary disc (stator) placed parallel to and at a distance 

equal to gap length z0 from the oscillating disc. The 

symmetrical radial steady outflow has a small mass rate 

‘m’ of radial outflow ( ‘-m’ for net radial inflow). The inlet 

condition is taken as a simple radial source flow along z-

axis starting from radius r0. A constant magnetic field B0 is 

applied normal to the plane of the oscillating disc. The 

induced magnetic field is neglected.  

   

 Assuming (u, v, w) as the velocity components 

along the cylindrical system of axes (r, , z)the boundary 

conditions of the problem are: 

 z = 0, u = 0, v = r ei(Real part),  

w = 0, 

z = z0, u = 0, v = 0, w = 0,        --------------------( 5 ) 

where the gap z0 is assumed small in comparison with the 

disc radius rs. The velocity components for the 

axisymmetric flow compatible with the continuity criterion 

can be taken as 4).   

U =  - H’(,) + (Rm /Rz) M’(,)/ 

 V = G(,) + (RL/R z)L(,)/,  

 W = 2H(,).        ---------------------------------------- (6) 

where U = u /z0, V = v /z0, W = w /z0,  = r /z0, ,  

are dimensionless quantities and H(,), G(,), L(,), 

M’(,) are dimensionless function of the dimensionless 

variables  = z/z0 and  = nt. Rm(=m/2z 0 1), RL 

(=L/2z01) are dimensionless number to be called the 

Reynolds number of net outflow and circulatory flow 

respectively. Rz(=z0
2/1) be the flow Reynolds number. 

The small mass rate ‘m’ of the radial outflow is represented 

by 
 

                 z0 

m = 2  r u dz                                      -------------- ( 7 ) 

               0              

 

Using expression (6), the boundary condition (5) transform 

for G, L & H into the following form: 

 G(0,) = Real(ei), G(1,) = 0, 

 L(0,) = 0,  L(1,) = 0, 

 H(0,) =0,  H(1,) = 0, 

 H’(0,) = 0,  H’(1,) = 0.                                                                                                                

                                                 ---------------------------- ( 8 ) 

The conditions on M on the boundaries are obtainable form 

the eq.(7) for m as follows: 

 M(1,) - M(0,) = 1,    --------------------------- ( 9 ) 

which on choosing the discs as streamlines reduces to  

 M(1,) = 1,  M(0,) = 0                            

---------------------------------------------------------------- ( 10 ) 

Using eqs.(1) and expression (6)in equation (3) and 

neglecting the squares & higher powers of Rm/Rz (assumed 

small), we have the following equations in dimensionless 

form: 

- (1/z0)(p/) = - nz0{H -(Rm/Rz) (M/)}+ 2z0 

(H2 –2HH-G2)                                        

+2z0(Rm/Rz)(2HM/)–

2z0(RL/Rz)(2LG/)+(1/z0){H-                                         

(Rm/Rz)(M/)}–(22/z0)[(n/2)        

     {( Rm/Rz)(M/)– H}    

 + 2(H2 – HHiv) + (Rm/Rz)( 2/) 

(HM+HM+HM+ HMiv) –( RL/Rz)   (22/)(LG + 

LG)]–(432/z0) {(Rm/Rz)(1/2) (HM +HM +HM) 

–( RL/Rz)(1/2)(2LG + LG) + (/4)(H2 – G2- 

2HH)}+(B0
2z0/){-H+ (Rm/Rz)(M/)} -- --    ( 11 ) 

  

0 = -nz0{G + (RL/Rz)(L/)}-22z0) (HG-HG)–2z0 

(Rm/Rz)(2MG/) –2z0(RL/Rz)(2HL/)+ (1/z0){G + 

(RL/Rz)(L/)}+ (22/z0)[(n/2)  {G+( 

RL/Rz)(L/)}+ (RL/Rz)( 2/) (HL +HL+ HL 

+HL) +(2) (HG- HG)+( Rm/Rz)(22/) 

(MG+MG)]+(232/z0){(HG –HG)+( 

RL/Rz)(1/)(HL + HL + HL)+( Rm/Rz)(1/)(2MG + 

MG) - (B0
2z0/){G+(RL/Rz)(L/)}               ---( 12 ) 

 

-(1/z0)(p/) = 2nz0H+42z0HH– 21H/z0 – 

(22/z0){nH+ 222 (HH+GG)+2(22HH + 

2HH)      –( Rm/Rz)22 (HM+HM) + (RL/Rz ) 

22(LG + LG)}–(232/z0) {2(HH + GG) + 

14HH – (Rm/Rz) (HM + HM) + (RL/Rz)(LG + 

LG)}                                                           ------- ( 13 )    

where B0 and  are intensity of the magnetic field and  

conductivity of the fluid considered. R (=nz0
2/1) is the 

Reynolds number, 1(=n2/1), 2(=n3/1) and (=/n) are 

the dimensionless parameter, m2 =  B0
2z0

2/1 is the 

dimensionless magnetic field. 

Differentiating (11) w.r.t.  and (13 ) w.r.t.  and then 

eliminating 2p/. from the equation thus obtained. We 

get   

-nz0{H’’–(Rm/Rz)M’’/}–22z0 (HH’’’+GG’) 

+(Rm/Rz)(22z0/) (H’M’’+HM)–(RL/Rz)(22z0/) 

(LG’+L’G)-(1/z0){(Rm/Rz)(Miv/)–Hiv}– (22/z0) 

[(n/2){(Rm/Rz)(Miv/) – Hiv}-2(2H’’H’’’+H’Hiv+ 

HHv+4G’G’’)+ (Rm/Rz)( 2/) (2H’’’M’’+ 

HivM’+2H’’M’’’+2H’Miv+HMv)–(RL/Rz)(22/) 

(2L’G’’+L’’G’+LG’’’)]– 

(232/z0){(Rm/Rz)(1/)(HivM’+2H’’’M’’+ 2H’’M’’’+ 

H’Miv) -(RL/Rz)(1/) (3L’G’’+2L’’G’+LG’’’)–(H’Hiv + 

3G’G’’+2H’’H’’’)} + (B0
2z0/)       

 {-H+(Rm/Rz)(M/)}= 0 ---------------------------- ( 14 ) 

On equating the coefficients of  and 1/ from the equation 

(12) & (14), we get the following equations:  
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G’’ = RG + 2R(HG’–H’G)–1G’’-21(HG’’’-H’’G’)-

22(H’G’’-H’’G’) +m2G                       -----------------(15) 

L’’ = RL+2R(M’G + HL’)-1L’’-

21(H’’L’+H’’’L+HL’’’+H’L’’+2M’G’’+  

2M’’G’)-22(H’’L’+H’’’L+H’L’’+2M’’G’ +M’G’’) +m2L                                           

------------- ( 16 )  

Hiv = RH’’+2R(HH’’’+GG’)-1Hiv-

21(H’Hiv+HHV+2H’’H’’’+4G’G’’)- 22   (H’Hiv 

+2H’’H’’’+3G’G’’) +m2H’’   ----------------------------- ( 17 ) 

Miv = RM’’+2R(H’M’’+HM’’’-LG’-L’G)-1Miv-

21(2H’’’M’’+HivM’ +  

2H’’M’’’ +2H’Miv+HMv-4L’G’’-2L’’G’-2LG’’’)-

22(HivM’+2H’’’M’’+  

2H’’M’’’ +H’Miv-3L’G’’-2L’’G’-LG’’’) +m2M’’  ----- ( 18 )     

 

3. SOLUTION OF THE PROBLEM 

Assuming the relationship m2 = m1
2, equations (15)- (18) 

becomes 
G’’ = RG + 2R(HG’–H’G)–1G’’-21(HG’’’-H’’G’)-22(H’G’’-
H’’G’) 

+ m1
2G                                                                      ------------------(19) 

L’’ = RL+2R(M’G + HL’)-1L’’-
21(H’’L’+H’’’L+HL’’’+H’L’’+2M’G’’+  2M’’G’)-

22(H’’L’+H’’’L+H’L’’+2M’’G’ +M’G’’) +m1
2L                  ---- ( 20 )  

Hiv = RH’’+2R(HH’’’+GG’)-1Hiv-

21(H’Hiv+HHv+2H’’H’’’+4G’G’’)- 22  (H’Hiv +2H’’H’’’+3G’G’’) + 

m1
2H’’                ---                                              ----------------- ( 21 ) 

Miv = RM’’+2R(H’M’’+HM’’’-LG’-L’G)-1Miv-21(2H’’’M’’+HivM’ 
+  

2H’’M’’’ +2H’Miv+HMv-4L’G’’-2L’’G’-2LG’’’)-22(H
ivM’+2H’’’M’’+  

 2H’’M’’’+H’Miv-3L’G’’-2L’’G’-LG’’’) + m1
2M’’   ------------- ( 22 )     

Substituting the expressions  

 G(,) = N GN (,) 

 L(,) = N LN (,) 

 H(,) = N HN (,) 

 M(,) = N MN (,)          ------------------------------- ( 23 ) 

into (19) to (22) neglecting the terms with coefficient of 2 

(assumed negligible small) and equating the terms 

independent of  and coefficient of , we get the 

following equations: 
G0’’ = R G0/ - 1 G0’’/    ----- ( 24 ) 

G1’’ = R G1/-2R(H0’G0’-H0G0’)-1G1’’/-21(H0G0’’’-H0’’G0’)-

22(H0’G0’’- H0’’G0’) + m1
2G0      --- ( 25 ) 

 

L0’’ = R L0/ - 1 L0’’/    ------- ( 26 ) 

L1’’ = RL1/-2R(M0’G0 + H0L0’)-1 L1’’/-

21(H0’’’L0+H0’’L0’+H0’L0’’ 

+H0L0’’’+2M0’’G0’+ 2M0’G0’’)-22(H0’’’L0+H0’’L0’+H0’L0’’+2M0’’G0’  

+M0’G0’’) + m1
2L0        ------------( 27 ) 

 

H0
iv = RH0’’/ - 1 H0

iv/       -- ( 28) 

H1
iv = RH1’’/+2R(H0H0’’’ +G0G0’)-1H1

iv/-21(H0’H0
iv 

+H0H0
v+2H0’’H0’’’ +4G0’G0’’)-

22(3G0’G0’’+H0’H0
iv+2H0’’H0’’’) + m1

2H0’’  ------------- ( 29 ) 

 

M0
iv = R M0’’/ - 1 M0

iv/                                                   

-------------------- ( 30 ) 

M1
iv = RM1’’/ + 2R(H0’M0’’+ H0M0’’’-L0’G0-L0G0’) - 

1M1
iv/ - 21(2H0’’’M0’’ +H0

ivM0’+ 2H0’’M0’’’- 4L0’G0’’-

2L0’’G0’-2L0G0’’’+H0M0
v+ 2H0’M0

iv)-22 

(2H0’’’M0’’+H0
ivM0’+2H0’’M0’’’- 3L0’G0’’-2L0’’G0’- L0G0’’’  

 + H0’M0
iv) + m1

2M0’’        ------------------ ( 31 ) 

Taking  Gn(,)= Gns()+ eiGnt() 

  Ln(,)= Lns()+ eiLnt() 

  Hn(,)= Hns()+ e2iHnt() 

   Mn(,)= Mns()+ e2iMnt()------------------ ( 32 ) 

Using (23) and (32), the boundary conditions (8) & (10) for N = 0, 1 

transforms to 

G0s(0) =0,  G0t(0) = 1,           G1s(0) =0,             G1t(0) = 0, 

G0s(1) =0,  G0t(1) = 0,        G1s(1) =0,             G1t(1) = 0, 

H0s(0) =0,  H0t(0) = 0,        H1s(0) =0,             H1t(0) = 0, 
H0s(1) =0,  H0t(1) = 0,        H1s(1) =0,             H1t(1) = 0, 

H’0s(0) =0,  H’0t(0) = 0,       H’1s(0) =0,            H’1t(0) = 0, 

H’0s(1) =0,  H’0t(1) = 0,       H’1s(1) =0,            H’1t(1) = 0, 
L0s(0) =0,  L0t(0) = 0,        L1s(0) =0,              L1t(0) = 0, 

L0s(1) =0,  L0t(1) = 0,        L1s(1) =0,             L1t(1) = 0, 

M’0s(0) =0,  M’0t(0) = 0,      M’1s(0) =0,            
M’1t(0) = 0, 

M’0s(1) =0,  M’0t(1) = 0,      M’1s(1) =0,             

M’1t(1) = 0, 
M0s(0) =0,  M0t(0) = 0,       M1s(0) =0,              M1t(0) = 

0, 

M0s(1) =1,  M0t(1) = 0,       M1s(1) =0,             M1t(1) = 0.                           
                                              ------ ( 33 ) 

Applying (32) & (33) in eqs. (24) to (31), we get 

G0s() = G1s() = 0, 

G0t() = [sinh {d(1-)}]/sinh d,   

where d = {iR/(1+i1)}
1/2 = [R{1+(1+1

2)1/2}/ {2(1+1
2)}]1/2 +              i 

[R{(1+1
2)1/2-1}/{2(1+1

2)}]1/2 = A+ iB, 
 

G0(,) = Real{ei G0t()}, 

= [cos.{cosh{(2-)A}.cosB - coshA.cos{(2-)B}} – sin 

.{sinhA.  sin {(2-)B}- sinh{(2-)A}.sinB}] /(cosh2A-cosh2B), 

 

G1t() = [(m1
2Sinh d)/{2d(1+i1) Sinh2d}] – [{m1

2  Cosh d(1-)}/ 

{2d(1+i1) Sinh d}], 

 

G1(,) = Real{ei G1t()}, 

 = (m1
2/2){(17-19).Cos  -  (18-20).Sin }, 

where, 1 = CosB.SinhA, 

            2 = SinB.CoshA,  

 3 = (Cos2B.Cosh2A–1)/2, 

 4 = (Sin2B.Sinh2A)/2, 

 5 = CosB(1-).CoshA(1-), 

 6 = SinB(1-).SinhA(1-), 

 7 = CosB.SinhA, 

 8 = SinB.CoshA, 

 9 = A3 - B4, 

 10 = B3 + A4, 

 11 = A7 - B8, 

 12 = B7 + A8, 

 13 = 9 - 110, 

 14 = 10 + 19, 

  15 = 11 - 112, 

  16 = 12 + 111, 

17 = (113 + 214)/(13
2+ 14

2), 

            18 = (213 - 114)/(13
2 + 14

2), 

           19 = (515 + 616)/(15
2 + 16

2)          

          20 = (615 - 516)/(15
2 + 16

2), 

G(,) = G0(,) +  G1(,).  

L0s() = L0t() = L1s() = 0, 

L1t() = -{sinh d /sinh d}[{(A1–A3)/2}(1/2d3– 1/6d)+ A2/2d2] 

+  cosh{d(1-)} [{(A1 – A3)/2}{/2d3 - 2/2d + 3/3d} + (A2/2d 2}] + 

sinh{d(1-)} 

[{(A1 – A3)/2}{(2-)/2d2}+ A2(
2-)/2d], 

where,  A1 = 12R/{(1+i1)sinh d}, 

            A2 = 24(1+2)d/{(1+i1)Sinh d}, 

           A3= 6d2(41+22)/ {(1+i1)Sinh d}, 

L1(,) = Real{ei L1t()}, 

= (N7+N9-N5).cos  - (N8+N10-N6).sin , 

  

where, N1 = [{6R-(121+62)(A
2-B2)}(cosB.sinhA-1sinB.coshA)–

2AB(121+62)                                (1.cosB.sinhA+sinB.coshA)] 

/[(cosB.sinhA-1sinB.coshA)2 +          (1.cosB.sinhA+sinB.coshA)2], 

N2 = [{6R-(121+62)(A
2-B2)}(1cosB.sinhA+sinB.coshA)–

2AB(121+62)                                (cosB.sinhA - 1.sinB.coshA)] 

/[(cosB.sinhA-1sinB.coshA) 2 + 

  (1.cosB.sinhA+sinB.coshA)2], 
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N3 = [24A(1+2)(cosB.sinhA-1sinB.coshA)+24B(1+2) 

  (1.cosB.sinhA+sinB.coshA)] /[(cosB.sinhA-1sinB.coshA) 2 + 

 (1.cosB.sinhA+sinB.coshA)2], 

N4 = [24B(1+2)(cosB.sinhA-1sinB.coshA)-24A(1+2) 

 (1.cosB.sinhA+sinB.coshA)] /[(cosB.sinhA-1sinB.coshA)2 + 

 (1.cosB.sinhA+sinB.coshA)2], 

I1 = (cosB.sinhA.cosB.sinhA +sinB.coshA.sinB.coshA)/  

  (sin2B+sinh2A),   

 I2 = (sinB.coshA.cosB.sinhA-cosB.sinhA.sinB.coshA)/  

 (sin2B+sinh2A), 

I3 = [3(A2+B2)( A3-3AB2)-A{(A3-3AB2)2+ (3A2B-B3)2}] / [6(A2+B2) 
{(A3-3AB2)2+ (3A2B-B3)2}],   

I4 = [B(A3-3AB2)2 +(3A2B-B3)2} -3(A2+B2) (3A2B-B3) ] / [6(A2+B2) 

{(A3-3AB2)2+ (3A2B-B3)2}],   
I5 = {(A2-B2)N3+2N4AB}/ [2{( A2-B2)2 + 4A2B2}], 

I6 = {(A2-B2)N4-2N3AB}/ [2{( A2-B2)2 + 4A2B2}],     

I7 = [3( A2+B2)( A3-3AB2)-(3A2-2A3){(A3-3AB2)2+ (3A2B-B3)2}] /  
[6( A2+B2){ (A3-3AB2)2 +(3AB2-B3)2}], 

I8 = [-3( A2+B2)(3A2B-B3)+(3B2-2B3){(A3-3AB2)2+ (3A2B-B3)2}] /  

 [6( A2+B2){ (A3-3AB2)2 +(3AB2-B3)2}], 

I9 = [{N3(A
2-B2)+2ABN4}] / [2{( A2-B2) 2+4A2B2}], 

I10 = [{N4(A
2-B2)-2ABN3}] / [2{( A2-B2) 2+4A2B2}], 

I11 = (A2-B2)/[(A2-B2)2+4A2B2], 
I12 = 2AB/[(A2-B2)2+4A2B2], 

I13 = (AN3+BN4)/( A
2+B2), 

I14 = (AN4-BN3)/( A
2+B2), 

N5 = (N1I1I3+N2I1I4+I1I5-N1I2I4+N2I2I3-I2I6), 

N6 = (N1I2I3+N2I2I4+I2I5+N1I1I4-N2I1I3+ I1I6), 

N7 = (N117+N2I8+I9)cosB(1-).coshA(1-)–(N1I8-N2I7+I10) sinB(1-

).sinhA(1-), 

N8 = (N1I8-N2I7+I10)cosB(1-).coshA(1-)+(N1I7+N2I8+I9) sinB(1-

).sinhA(1-), 

N9 =  [(N1I11-N2I12+I13)cosB(1-) .sinhA(1-)+(N2I11+N1I12-I14)  sinB(1-

).coshA(1-)](2-/2), 

N10 = [(N1I11-N2I12+I13)sinB(1-).coshA(1-)-(N2I11+N1I12-I14)         

cosB(1-).sinhA(1-)](2-/2), 

 

L(,) = L0(,) +  L1(,) = L1(,). 
 

H0s() = H0t() = H1t() = 0, 

H1t() = c1e
f  / f 2 + c2e

-f  / f 2 + A4sinh 2d(1-)/{8d2(4d2-f2)} + c3 + c4, 
Where, 

c1 = [{c2(1-e-f )/(1-ef )} + A4f(cosh 2d-1}]/{4d(4d2-f2)(1-ef ), 

 
c2 = A4f [f(1 – ef )(2d.cosh2d-sinh 2d) – 2d(1+f-ef )(cosh 2d -1)]/{8d2 (4d2-

f2)     (4-2e-f - 2ef - fe-f + fef ), 

c3 = (1/f)[c2 – c1 + {fA4cosh 2d /{4d(4d2-f2)}], 
c4 = -(1/f 2)[c1 + c2 + {A4f 

2sinh 2d/ {8d2(4d2-f2)}], 

A4 = [(81 + 62)d
3 – 2Rd]/{(1+2i1) sinh2d}, 

f = (2iR/(1+2i1}
1/2  

  = [2R{21+(1+41
2) 1/2}/{2(1+41

2)}]1/2    

     +  [2R{(1+41
2)-21}/ {2(1+41

2)}] ½ 

  = C + iD,  

H1(,) = Real{e2i H1t()}, 

= (J1+J3+J5+J7 ).cos 2 - (J2+   

   J4+J6+J8).sin 2, 

where, X1 = (81+62)(A
3-3AB2)-2RA, 

X2 = (81+62)(3A2B-B3)-2RB, 

Y1 = (cos2B.cosh2A-1-21sin2B   
       .sinh2A)/2.    

           Y2 = {21(cos2B.cosh2A-1)+  

                  sin2B.sinh2A}/2. 
Q1 = (X1Y1+X2Y2)/(Y1

2+Y2
2),  

Q2 = (X2Y1-X1Y2)/(Y1
2+Y2

2), 

W1 = Q1C-Q2D, 
W2 = Q2C+Q1D, 

W3 = C(1-eCcosD)+DeCsinD, 

W4 = D(1-eCcosD)-CeCsinD, 
W5 = 2Acos2B.cosh2A- 

         2Bsin2B.sinh2A, 

W6 = 2Bcos2B.cosh2A+  
         2Asin2B.sinh2A, 

 

W7 = cos2B.sinh2A, 

W8 = sin2B.cosh2A, 

W9 = 2A(cos2B.cosh2A-1)– 

         2Bsin2B.sinh2A,  

W10 = 2B(cos2B.cosh2A-1)+  
          2Asin2B.sinh2A, 

W11 = 1+C-eCcosD, 

W12 = D-eCsinD, 
W13 = W3(W5-W7)–W4(W6-W8)- 

           W9W11+W10W12, 

W14 = W4(W5-W7)+W3(W6-W8)- 
           W10W11-W9W12, 

W15 = W1W13-W2W14, 

W16 = W2W13+W1W14, 
            W17 = 4A2-4B2-C2+D2, 

W18 = 8AB-2CD, 

W19 = W17(8A2-8B2)-16ABW18, 
W20 = W18(8A2-8B2)+16ABW17, 

W21 = 4-e-C{(C+2).cosD + D.sinD}   

         +eC{(C-2).cosD-DsinD},  
W22 = eC{(C-2).sinD + D.cosD}                 

         -e-C {DcosD-(C+2).sinD}, 

W23 = W19W21-W20W22, 

W24 = W20W21+W19W22, 

Q3 = (W15W23+W16W24)/(W23
2+W24

2), 

Q4 = (W16W23-W15W24)/(W23
2+W24

2), 
X3 = Q3(1-e-CcosD)-Q4e

-CsinD,  

X4 = Q4(1-e-CcosD)+Q3e
-CsinD, 

X5 = (1-eCcosD), 

X6 = -eCsinD, 

X7 = (X3X5+X4X6)/(X5
2+X6

2); 
X8 = (X4X5-X3X6)/(X5

2+X6
2); 

X9 = W1W9-W2W10, 

X10 = W2W9+W1W10, 
X11 = W19X5-W20X6, 

X12 = W20X5+W19X6, 

X13 = (X9X11+X10X12)/(X11
2+X12

2), 
X14 = (X10X11-X9X12)/(X11

2+X12
2), 

Y3 = {C(Q3-Q5)+D(Q4-Q6)}/(C2+D2), 

Y4 = {C(Q4-Q6)-D(Q3-Q5)}/(C2+D2), 
Y5 = Q1cos2B.cosh2A-Q2sin2B.sinh2A, 

Y6 = Q2cos2B.cosh2A+Q1sin2B.sinh2A, 

Y7 = 4AW17-4BW18, 

Y8 = 4BW17+4AW18, 

Y9 = (Y5Y7+Y6Y8)/(Y7
2+Y8

2), 

Y10 = (Y6Y7-Y5Y8)/(Y7
2+Y8

2), 
Q5 = X7+X13, 

Q6 = X8+X14, 

Q7 = Y3+Y9, 
Q8 = Y4+Y10, 

Y11 = [(Q3+Q5)(C
2-D2)+2CD(Q4+Q6])/  

          [(C2-D2)2+4C2D2], 
Y12 = [(Q4+Q6)(C

2-D2)-2CD(Q3+Q5])/  

          [(C2-D2)2+4C2D2], 

Y13 = [W19(Q1W7-Q2W8)+W20  

              (Q2W7+Q1W8)] /(W19
2+W20

2), 

Y14 = [-W20(Q1W7-Q2W8)+W19  

                (Q2W7+Q1W8)] /(W19
2+W20

2), 
Q9 = -(Y11+Y13), 

Q10 = -(Y12+Y14), 

O1 = eC(Q5cosD-Q6sinD),   

O2 = eC(Q6cosD+Q5sinD), 

O3 = e-C(Q3cosD+Q4sinD), 

O4 = e-C(Q4cosD-Q3sinD), 
J1 = [O1(C

2-D2)+2CDO2]/[(C
2- 

        D2)2+4C2D2], 

J2 = [O2(C
2-D2)-2CDO1]/[(C

2-D2) 2+  
       4C2D2], 

J3 = [O3(C
2-D2)+2CDO4]/[(C

2-D2)2+  

       4C2D2], 
J4 = [O4(C

2-D2)-2CDO3]/[(C
2-D2)2+  

       4C2D2], 

 J5 = Q7+Q9, 

J6 = Q8+Q10, 

Y15 = cos{2B(1-)}.sinh{2A(1-)}, 
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Y16 = sin{2B(1-)}.cosh{2A(1-)}, 

J7 = [W19(Q1Y15-Q2Y16)+W20(Q2Y15+  

       Q1Y16)]/ {W19
2+W20

2}, 

J8 = [-W20(Q1Y15-Q2Y16)+W19(Q2Y15+  

       Q1Y16)]/{W19
2+W20

2}, 

H(,) = H0(,) +  H1(,) = H1(,). 

.M0(,) = M0s() = - 23 + 32, 

M0t() = M1t() = 0, 

M1(,) = M1s() =   - (m1
2/20)(25-54+43-2), 

M(,) = M0(,) +  M1(,). 

 

4.RESULTS AND CONCLUSION 

 

For Rm = RL = 0, the results are in good agreement 

with those obtained by Sharma and Gupta4) (for s1 = s2 = 1 

and B0 = 0) and Sharma and Singh5) (for s1= s2=1 and 

suction parameter = 0).  

The variation of the radial velocity with  for 

different values of elastico-viscous parameter 1 = -0.5, -

0.4, -0.3; when cross-viscous parameter 2 = 2, m1 = 2, R = 

0.5, Rm = 0.05, RL = 0.049, Rz = 2,  = 0.02,  = 5 at phase 

difference  = 2/3, /3 and 0 is shown in fig(1), fig(4) and 

fig(7) respectively. In all these figures, the behaviour of the  

radial velocity is being represented through the 

approximate parabolic curve with vertex upward. It is 

evident from fig (1) that the radial velocity decreases with 

an increase in 1   before the common point of intersection 

which is just before the line  = 0.5 while it increases with 

an increase in 1 after this common point of intersection 

and from fig (4) & fig (7), the radial velocity increases with 

an increase in 1 before the common point of intersection 

and decreases with an increase in 1 after this common 

point of intersection. The value of the radial velocity is 

same approximately in the middle of the gap-length for all 

the values of elastico-viscous and phase difference 

parameters. In fig (1) the point of maxima of radial velocity 

is little beyond the half of the gap-length whenever in 

fig(4) it is in the middle of the gap-length and in fig(7) it is 

being shifted a little towards the oscillating disc from the 

middle of the gap-length.   

 The variation of the transverse velocity with  for 

different values of elastico-viscosity parameter 1 = -0.5,       

-0.4, -0.3; when cross-viscous parameter 2 = 2, m1 = 2, R 

= 0.5, Rm = 0.05, RL = 0.049, Rz = 2,  = 0.02,  = 5 at 

phase difference  = 2/3, /3 and 0 is shown in fig(2), 

fig(5) and fig(8) respectively. In fig (2), the transverse 

velocity increases linearly and in fig(5) & fig(8), it 

decreases linearly throughout the gap-length. It is also 

evident from fig (2) and fig (5) that the transverse velocity 

increases with increase in 1 and from fig(8), the transverse 

velocity decreases with increase in 1 throughout the gap-

length. 

 The variation of the axial velocity with  for 

different values of elastico-viscous parameter 1 = -0.5, -

0.4, -0.3; when cross-viscous parameter 2 = 2, m1 = 2, R = 

0.5, Rm = 0.05, RL = 0.049, Rz = 2,  = 0.02,  = 5 at phase 

difference  = 2/3, /3 and 0 is shown in fig(3), fig(6) and 

fig(9) respectively. In fig(3), the axial velocity increases in 

the first half and then decreases in the second half of the 

gap-length and forming the bell shape curve with point of 

maxima at  = 0.5. It is also evident that the axial velocity 

increases with increase in 1 throughout the gap-length. In 

fig (6) the behaviour of the axial velocity is being 

represented through the bell shape curve with point of 

maxima at  = 0.5 for 1 = -0.5 & -0.4 whenever point of 

minima at  = 0.5 for 1 = -0.3. It is also evident that the 

axial velocity decreases with increase in 1 and values of 

the axial velocity remains negative throughout the gap-

length for 1 = -0.3. In fig(9), the behaviour of the axial 

velocity is being represented through the bell shape curve 

with of minima at  = 0.5. It is also evident that the axial 

velocity decreases with an increase in 1 and remains 

negative throughout the gap-length.    

The variation of the radial velocity with  for 

different values of cross-viscous parameter 2 = 30, 20, 6; 

when elastico-viscous parameter 1 = -2, m1 = 2, R = 

0.5,Rm = 0.05, RL = 0.049, Rz = 2,  = 0.02,  = 5 at phase 

difference  = 2/3, /3 and 0 is shown in fig(10), fig(13) 

and fig(16) respectively. It is evident from fig (10) and 

fig(16) that the radial velocity increases with increase in 2 

before the common point of intersection and it decreases 

with an increase in 2 after the common point of 

intersection  while in fig (13), the radial velocity decreases 

with increase in 2 before the common point of intersection 

(lying approximately the middle of the gap-length) and 

increases with an increase in 2 after the common point of 

intersection. The value of the radial velocity is same 

approximately in the middle of the gap-length for all the 

values of cross-viscous and phase difference parameters. In 

fig (10) the point of maxima of the radial velocity is 

approximately in the middle of the gap-length whenever in 

fig(13) it is little beyond the half of the gap-length and in 

fig(16) it is being shifted a little towards the oscillating disc 

from the middle of the gap-length.   

 The variation of the transverse velocity with  for 

different values of cross-viscous parameter 2 = 30, 20, 6; 

when cross-viscous parameter 1 = -2, m1 = 2, R = 0.5, Rm 

= 0.05, RL = 0.049, Rz = 2,  = 0.02,  = 5 at phase 

difference  = 2/3, /3 and 0 is shown in fig(11), fig(14) 

and fig(17) respectively. In fig(11), the transverse velocity 

increases linearly and in fig(14) & fig(17), it decreases 

linearly throughout the gap-length. It is also evident from 

fig(11) & fig(14) that the transverse velocity slightly 

increases with increase in 2 in the first half and decreases 

with increase in 2 in the second half of the gap-length 

whenever in fig(17) the transverse velocity slightly 

decreases with increase in 2 in the first half and increases 

with increase in 2 in the second half of the gap-length. 

Because of their slightly increment or decrement, these 

figures are being overlapped. 

 The variation of the axial velocity with  at 

different values of cross-viscous parameter 2 = 30, 20, 6; 

when elastico-viscous parameter 1 = -2, m1 = 2, R = 0.5, 

Rm = 0.05, RL = 0.049, Rz = 2,  = 0.02,  = 5, phase 

difference  = 2/3, /3 and 0 is shown in fig(12), fig(15) 

and fig(18) respectively. In above three figures, axial 

velocity increases in the first half and then decreases in the 

second half throughout the gap-length. It is also evident 

from figure (12), the axial velocity decreases with increase 
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in 2 and from fig (15) & fig (18) the axial velocity 

increases with increase in 2. the behaviour of the axial 

velocity is being represented through the normal curve 

symmetric about  = 0.5 line. 

The variation of the radial velocity, transverse 

velocity and axial velocity with  at different Reynolds 

number R = 1, 0.5, 0.1; when cross-viscous parameter 2 = 

10, elastico-viscous parameter 1 = -2, m1 = 2, Rm = 0.05, 

RL = 0.049, Rz = 2,  = 0.02,  = 5, phase difference  = 

/3  is shown in fig(19), fig(20) and fig(21) respectively. It 

is  evident from fig (19) that the radial velocity decreases 

with an increase in Reynolds number R before the common 

point of intersection while increases with an increase in 

Reynolds number R after the common point of intersection. 

In fig (20), transverse velocity decreases linearly 

throughout the gap-length. It is also evident from this 

figure that transverse velocity increases with increase in 

Reynolds number R. In fig (21), the axial velocity increases 

in the first half and decreases in the second half of the gap-

length. It is also evident from this figure that axial velocity 

increases with increase in Reynolds number R.            

The variation of the radial velocity and transverse 

velocity with  at different magnetic field m1 = 1, 30, 40; 

when cross-viscous parameter 2 = 10, elastico-viscous 

parameter 1 = -2, Reynolds number R = 0.5, Rm = 0.05, RL 

= 0.049, Rz = 2,  = 0.02,  = 5, phase difference  = /3  is 

shown in fig(22) and fig(23) respectively. It is seen from 

this figure that the radial velocity increases with increase in 

m1 upto  = 0.28, then it decreases with increase in m1 upto 

 = 0.75 and then it increases with increase in m1 upto  = 

1. 

 In fig (23), the transverse velocity decreases 

linearly for m1 = 1, it increases upto   = 0.28 and decreases 

thereafter for m1 = 30, 40. it is also seen from this figure 

that transverse velocity increases with increase in m1. 

There is no magnetic field term in axial velocity so 

variation of axial velocity at different m1 is not possible. 

The transverse shearing stress on the lower and upper discs 

respectively is obtained as ; 

(z) z = 0 = 1[-(/z 0){1/(cosh2A- cos2B)}{(A sinh2A+ 

Bsin2B).cos +  

 (A sinh2B - Bsin2A).sin} + (RL/Rz) (1/z 0) {N7+N9-

N5}=0. cos 

  - (N8+N10-N6) =0.sin] 

and  

(z) z = z0 = 1[-(2/z 0){1/(cosh2A- cos2B)}{(A 

sinhA.cosB+ BsinB coshA).cos + (A coshA.sinB – 

BsinhA cosB).sin} + (RL/Rz)(1/z 0) {N7+N9- 

N5}=1. cos  - (N8+N10-N6) =1.sin]. 
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Fig(1) variation of radial velocity U with  for 

different elastico-viscous parameter 1 at  = 2/3 
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Fig(2) variation of transverse velocity V with   for different elastico-

viscous parameter 1  at   = 2/3  
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Fig(3) variation of axial velocity W with  for different 

elastico-viscous parameter 1 at  = 2/3 
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Fig(4) variation of radial velocity U with  for different elastico-viscous 

parameter 1 at  = /3 
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Fig(5) variation of transverse velocity V with  for different elastico-viscous 

parameter 1 at  = /3 
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Fig(6) variation of axial velocity W with  for different elastico-viscous 

parameter 1 at  = /3 
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Fig(7) variation of radial velocity U with  for different elastico-

viscous parameter 1 at  = 0 
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Fig(8) variation of transverse velocity V with   for different elastico-

viscous parameter 1  at   = 0  
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Fig(9) variation of axial velocity W with  for different elastico-viscous 

parameter 1 at  = 0 
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Fig(10) variation of radial velocity U with   for different cross-viscous 

parameter 2  at   = 2/3  
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Fig(11) variation of transverse velocity V with   for different cross-viscous 

parameter 2  at   =  2/3  
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Fig(12) variation of axial velocity W with   for different 

cross-viscous parameter 2  at   = 2/3  
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Fig(13) variation of radial velocity U with   for different cross-viscous 

parameter 2  at   = /3  
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Fig(14) variation of transverse velocity V with   for different cross-

viscous parameter 2  at   = /3  
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Fig(15) variation of axial velocity W with  for  different 

cross-viscous parameter 2 at  = /3 
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Fig(16) variation of radial velocity U with  for different cross-viscous 

parameter 2 at  = 0 
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Fig(17) variation of transverse velocity V with  for different cross-

viscous parameter 2 at  = 0 
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Fig(18) variation of axial velocity W with  for different cross-viscous 

parameter 2 at  = 0 
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Fig(19) variation of radial velocity U with  for different Reynolds 

number R at        = /3 

 

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5

Fig(20) variation of transverse velocity V with  for different Reynolds 

number R at  = /3 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 0.5 1 1.5

 Fig(21) variation of axial velocity W with  for different Reynolds 

number R at              = /3 
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Fig(22) variation of radial velocity U with  for different m1 at  = /3 
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Fig(23) variation of transverse velocity V with  for different m1 at  = /3 
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