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Abstract - In this paper an analytical solution to the flow of a
second order fluid is presented expressing the pressure
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1. INTRODUCTION

In everyday life, we encounter many different
kinds of fluids. The study of flows of Newtonian and non-
Newtonian fluids through pipes and tubes has became
important not only because of their technological
importance’s but also in view of the interesting
mathematical features presented by the equations
governing the flow. Such studies have a considerable
practical relevance because of their applications in petro-
chemical industries, manufacturing of foods and paper and
many other similar activities. Uchida (1) studied the
pulsating flow Newtonian fluid due to the pressure gradient
in the direction of the flow. Rajgopal etal.(2) Pontrelli (3)
made important theoretical studies on these fluids, Rath
and Jena (4) studied the flow of a viscous fluid generated in
response to fluctuations in the axial velocity of the outer
cylinder Biswal etal.(5) studied the above problem incase
of visco-elastic liquid. Lui Ciqun and Huang Jungi (6)
studied the axial flow of second order fluid and analyzed
the flow characters of these fluids. Hayat etal.(7) studied
the Fluctuating flow of a third grade fluid on porous plate
in a rotating medium.Kaloni(8) analyzed the Fluctuating
flow of an elastic viscous fluid past a porous flat

plate.Hayat etal(9),Fetecau(10) studied the above problem
on a porous plate.Ozer etal(11) studied the flow of a second
grade fluid through a cylindrical permeable tube.Hayat
etal(12) considered the MHD flow of the above fluid in a
porous channel.Similar type of flows were investigated by
Wang etal.(13),Tadhg etal.(14), Tiwary etal.(15), Hayat
etal.(16) made analytical studies on transient rotating flow
of a second grade fluid . Hayat etal. (17) studied the
peristaltic flow of a second order fluid in the presence of an
induced magnetic field.Jamil etal. (18), Hayat et al.(19)
studied the flow of a second grade fluid in different
mediums and got very interesting results.In this paper, we
will study the fluctuating flow of a second order fluid in the
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annular region between two coaxial circular pipes and got
the solution using Fourier series.

Il. BASIC EQUATIONS
We work through the cylindrical polar coordinates

(r,@, Z). z-axis coincides with the common axis of the
circular pipes. The radius of the outer pipe is ‘a’ and inner
pipe is ‘b’. Let (0,0, W) be the unsteady rectilinear flow
between the pipes. All physical quantities are independent

of @ because of axial symmetry. The equation of the
continuity reduces to

MW_g @)

oz
Thus w is independent of z and we can write w = w (r, t).
The stress components for the problem under discussion

are given below \
ow)’

., =—p+(2u, + ,u3{§j
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The equations of motion becomes

2
—£%+Z(2a+ﬂ 3(@) +1(8—W] =0-@3)

Yo, or\ or r\or
110

e Y B (4)
proo

ow  1dp oY o'w 1low
— =t vta— |+ -— | (5)
ot \ or r or

www.ijert.org 433

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



Where, p = is the density

« = coefficient of visco-elasticity = Ha
Yo
_ . TR 22
[ = coefficient of cross-viscocity = —
P
And
_ - . N 2]
v = coefficient of kinematic-viscocity = —
Yo

On the basis of the equation (1), (3) & (5) we may assume
10p

————=1f@t) - (6)
p 0z
Equation (5) becomes
2
@:f(t)+[u+agj 8_\;v+18_w ---------- )
ot ot \ or ror

Boundary conditions are

r=a, w(r,t)=0

r=bn, w(r,t)=0 [ -(@)

I1l. SOLUTION OF THE PROBLEM
The pressure-gradient (7) can be expressed in the
form of a Fourier series as

_%% =f(t)=a, +g[aCn cosnot+ag,sinnot]
=a,+ Rpiane'””t ----------- Q)
n=1

Where, @, = steady pressure gradient

a, =a,, —la,,, R, =real part of the expression

and a, & 4a, are constants which represents the
amplitudes of the elemental vibrations of a pulsating
pressure gradient superposed on a, ,where @, is steady
pressure-gradient.

2
We assume the period of excitation as — .
o

In view of the periodic pressure distribution, we
can assume the solution for the velocity field as,

w(r,t)=w,(r)+ i[wCn (r)cosnot +w,, (r)sinnet]

n=1
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The boundary conditions (8) reduced to

w, () = 0} N = 01,2 coremmemmemmece (13)
w,(b)=0

The solution of (12) subject to the boundary conditions
(13) is

&(az ~ rz)— ao(a2 —bZXIoga— logr)

1t =

wlr.1) 4o 4v(loga - logb)
0 an _ 3

+R, ;ina[u{%(knﬂ

In the above J, and K, are Bessel functions of zeroth
order of first and second kind respectively where
No

k=——0 (15)
LU+ INoo

) ) inc
and with m_ = - (16)
v+ INoco
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(14) reduces to

a, (a2 —b? Xlog a—logr)

w(r,t):j—g( o) 4v(loga —logb)
N Rp[g;—;[l+{Jo(imnR)ko(mna)—ko(mnb)

Ky (m,RIJ, (im,) - 3, (im b))/
o (.2}

{3,(im_a)k,(m,b)—J,(im b

To simplify the above equation, we introduce the
following non-dimensional parameters,

k=a, /% = Frequency parameter

1 nao
19

tan =€, =Non-dimensional viscoelastic

parameter

kn =k\/—= Frequency parameter in the nth
mode of excitation.

k .

m, :;”(rnﬂsn) \
(S

Where T, =,/C0S €, cos[%—?")

S, =+/COS €, sin(% —%”j ---- (18)

1JERTV 415020409

International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181
Vol. 4 Issue 02, February-2015

In the above expressions the suffix ‘n’ denote the
quantity in the nth mode of excitation, which is dropped
out in the case of the flow under a signal pulse. With the
help of the above non-dimensional quantities, the velocity
field can be written as

w(r,t)= a,a S-U_n )_ 8,8 S—U_p )|Og(%j
+azz }

¥ ak2 {(p—l)cosnat—Qsin nat}] .......... (19)
U n

where

P = At,(7)-Bt

and

i |

X
L@, (0)+ 1,0 (0)
H60- L) " t1<1>f2<5>—t2<1>f1<p)ﬂ/
[{f, @1, (0)— £, @k, (0)— T, (o), @)+, (o), )}
{00, (0)+ 1,08 ()~ t, @), (0) + t, W), (o) ]

s= 0 1 b

fy (1)t2 ( ) + 1 (l)tl(
~{f,0)- 1, (p)}{_ t) ff( p)-1,( fllo(P)H /

[, @t (0) - £, @k, ()~ F,(p) 4, @)+ f, (o), W)
(1,08 (0)+ 1,0 () -4, ), (o), O, ()]
--------------- (22)
p (1)t1( ) f (1)t2(p)
W=l -w N e o)

fl(l)tz (,0)+ fz(l)tl(P)
N {“(1)‘“‘”}{— L f2<p>—t2<1>f1<p>H/
(.01, (o) £, @1, (0)- F.(PX @)+ T (o)X, @)F +
{fl(l 2(p)+ fz(l 1(;0) tl() ( ) 2 1)f1(p)}2J
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i <11<>—<
LA (0)+ f

/\\,_-(

The mean velocity over one period across the cross-section
is denoted by W and is defined by

1 b

_ a 2 _pn2Ya2 2)_ (az—bz)z
_8ua20—b2 {(a b* fa* +b°) Ioga—logb}

2 2
_ﬁ (a2+b2)_M
80 loga—logh
2
_ 618(;':1S --------------- (25)

2
where S=(:|-+,02)Jr -
cos p

The mean pressure gradient ‘G’ over one period is given

by,

6= Zﬂ'[Z%f()

The mean velocity in the pulsating motion under the
influence of a periodic pressure gradient (9) is identified
with that in the steady-state flow under the same value of
pressure gradient as that in the pulsating flow and is not
affected by the presence of the visco-elastic parameter ¢ .
The non-dimensional expression for the velocity now
reduces to
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2(1—772)—2(1—p2)log[%J+

{@-p)sinnct-Qcosnot}

DI
e

w |
Q
=]

sn

(p—1)cosnot
—-Qsinnot

The expression for the non-dimensional pressure gradient
is as follows

_Lljop|___2a o
e| oz 1 pwz oz
= a z,a .
_ 5 1+) —2cosnot+y —tsinnot
Res n=1 ao n=1 aO
2aw
Where R, = —— =Reynold’s number
v

the starred quantities denote the corresponding non-
dimensional expressions.

IV. SECTIONAL MEAN -VELOCITY

The expression for the instantaneous mass flow
across a section of tubes is derived from the sectional

mean-velocitie. But the sectional-mean velocity "'W,,," is
given as

W, = 21 , j:[w(r,t).an]dr

mla® =b

a0 o oy de" b Fbga
2 |16v 8u(log a —log b)
a’ —b? ao(a2 —b2)2

“160(loga - logh)
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a,(a? —b?)-(a%loga—b? logh)

" 8u(loga —logb)

15t L) pCu e fsnnot

2

n=1 O

2

-2 .o} 0, ossnr|

S [ 15,000 €, 0)- 52 oosna
L0 innt| e @
Where \

2

[ prar = a7[3n(/0)—p<3n(p)]

[[ordr=2 11, (o)~ 70, )]

S, (p)= At, (1)+ Bt/ (1)~ AT, (1)~ BT, (1)

B'f, (/0)

C.(p)= At, (p)+ Bt (0)- AT, (p)-

A

T, (p) = Btzl (1)_ ALy (1)_ B’fzr (1)_ A'fy (1)

B'f, (,0)+ AT, (,0)

--------------- (29)
The sectional mean velocity in dimensionless form is given

by

D,(p)=Bt, (p)- At!(p)-

L+ p%)log p+(1- p)’
Voo Wi _ 1 log p
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S(p)-pC
a, 1 1-
_2
n

2n< >}cosnm
XC -

--------------- (30)
We define the amplitude coefficient and phase lag in the
nth mode of the sectional mean-velocity from the wave of
the pressure-gradient by the following expressions
respectively.

Sn(p)_pcn(p) 1)
1-
As{{ L-p*) }}
MV" T e 2 - (31)
K +{Tn(p)—pDn(p)}2
1-p?
and l
ot Ta(p)=pPDi(p)
G = _(1—p)2—{3n(p)—pDn(p)}}

------------- (32)
with help of the equations (31) and (32) we get the non-
dimensional form of sectional mean-velocity as follows

» an i (HO"[—HMV”)
W, :1+§AMV ; - (33)

(nat—@ My )

a0
V. RESISTANCE COEFFICIENTS

The shearing stress on the wall is given by,

Sk =T:—,ul(dwj (34)
drR

where ¢ is the coefficient of viscosity. We denote the

*

non-dimensional frictional force at the outer wall by S gan
and that at the inner wall by San and get their

corresponding expressions as

S =z a 1 Sk = Fa’
8 e~ 1 —
i Zl ao k2 EpW 2
i 2
1— S(p)- P(jn( p) sinnot 1+(1—p )/2Iogp
1-p _ 16 S
T, () PD,(p) cosnot Re > a°“2 {S,(p)cosnat —T,(p)sinnot}
1— p2 n=1 aokn
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p+(l—p2)/ 2plog p
16 S

TR {fn(p)cos not }

Re = acn
+ .
nZ:;‘ a,k.? |-D,(p)sinnot

Z, a .

+> —"_{D,(p)cosnot +C,(p)sinnot} | (36)
1 ak,

We define the amplitude coefficient and phase lag in the
nth mode of the resistance coefficient behind the wave of
the imposed pressure gradient by the expressions

1 A
ASFa” = KES \/Snz(p)"'Tnz(p)
1
As Z@\/an(PF D,2(p) [ -eeeeeeem (37)
0., =tan™ S,(p) )
"" T (o)
4 Calp)
6., =tant ="
=D (p) 0

Here the suffixes ‘a’ and ‘b’ denote the
corresponding values on the outer and inner wall

respectively.
With these substitutions the equations (35) and

(36) respectively reduce to

(14 (- p?)/2logp T
S
éFa" = E—6 . ch sin(nat - GSFan )
©I D ASF 4 "
i - 6:0” cos(nat 0. )
e — 39
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and
_p+(1—p2)/2plogp ]
S
* a .
S kpr __ 16 < sm(nat—HSan)
R. ~ 8
_ Z:‘ At
" - cos(nat—é?S )
a, R
--------------- (40)
Mean rate of work done is given by
2 2 ap
W, = (a2 —b? Wy [ = L |-ceee (41)
0z
The total mean-rate of work done is
2z
o &
W, = ook W dt - (42)
But

8an sin(nat —HMVn)

. a
" + 5 cos(not -6, )
MV
aO

and the pressure gradient is given by

SuW * = a,., .
_@:”;2 1+Zﬂcosno—t+zﬂsm not
oz a n=1 aO n=1 a-0

0
W, =’ -0, -2

=8ﬂ(1_pz)v%x

S +

Si%ai{l— S”(pl)_pf”(p)}sin not
n 0 - P

n=1

. {Tn (pl): ZE)” (p)} cosnot

438

www.ijert.org

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



International Journal of Engineering Research & Technology (1JERT)
ISSN: 2278-0181

Vol. 4 Issue 02, February-2015

w {s (pl) pc.(p) }cosndt
8y {Tn(p)ppDn(P)}sinnat
1-p?

sin nat} ------- (45)

{1+Z on cosnat+z

1 8 1 8o
On simplification, we get

w? - 1
W, =84, ——(1-p*)is +82Fal

1a, {1—W}sin not

cosnot
1-pt

P
{1 S (p) pC (/D)}Cosndt

a, +{Tn(pl):/;?n(p)}smnat
{1—8”(p)_p5”(p)}sin not

+Zaﬂsinno—t S+8Ziaﬂ P

n1 & n=1 an a _{Tn(p)_pDn(p)}Cosno_t
1-p°

{1_ S, (p)- pZCH(p)}COS ot

0

-8y 2 e

n=1 n

1-p
= K? a, +{Tn(p)_pDn(m}sin not

- (46)

1JERTV 415020409

_8uW (- p?)

www.ijert.org

81y
S
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2
aSn
+ —_—
[ao ) |
------------- 47

The total mean rate of change of kinetic energy across the
Cross section is

where Wk is the rate of increase of kinetic energy of the
fluid in a unit length pipe which is given by

1 cafow)

The total rate of change of dissipation of energy due to
internal friction is given by

P =Tg Or, =W,
Where Wi stands for the total rate of change of dissipation

of energy. The total mean-rate of change of dissipation of
energy due to internal friction is given by

2r
W, = (%j [« dt[ p27RaR

8- p?)| | <
=————715-4
S nz:;‘ il—,o2 ’Kf

Work done = The total mean rate r

Thus we get the mean-rate of work done = The
total mean rate of change of dissipation of energy and this
fact leads to the same conclusions as in Uchida(1) that the
pressure gradient does work equal to the energy loss due to
dissipation of energy after a full cycle of the motion. Also
the kinetic energy changes instantaneously but there is not
loss in it after a complete cycle. Thus we see the energy
loss is caused by the dissipation and is increased by the
existence of the components in the fluctuating motion.

We define the coefficient of excess work as the
extra energy dissipated due to the pulsation of amplitude

which is equal to a, = W/afn + afn .

Then we have in the n-th mode of vibration, the
coefficient of excess work is given by
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(CEW)n — 4 Tn(p)_ZpDnz(p)
[L-p?)K;
V1. DISCUSSION OF THE RESULTS

In this paper we have studied the flow of a second
order fluid in the annual region between two coaxial
circular pipes. The pressure gradient expressed in the form
of Fourier series, The following conclusions are made.

Fig-1 and Fig-2 shows the effect of the amplitude
coefficient of the mean- velocity A,,, for different values
of K which is the frequency of excitation for p = 0.2and

0.4. we see that A, does not rise above the value zero
until K=1.6.

For small values of pie. p=0.2and 0.4, A,
-records larger values in the case of a Newtonian fluid
(i.e e= O), the maximum value occurring for values of K
between 3 and 4, with e=+60° the mean velocity

amplitude coefficient has negligible values whatever be the
values of p . This is also seen in Table-1 and Table- 2.

In the Fig.3 and Fig. 4 we see that for low
frequency there is not much difference in the amplitude

coefficient A,,, when there is change in the values of €

though as a rule the Newtonian value (ez 0° )are smaller
than the corresponding values of the non-Newtonian case

(€¢ 00). It is to be noted that unlike the for going

intermediate frequency case, AMV have their largest-values

with extremely slow pulsation and drop to almost to zero
value when K has a value slightly greater than 1. It records

a slight rise for larger value of K. the value of A,,, for

slow pulsation in the case of low frequency is higher, the
larger the radii ratio.

The effect of k on @y, Aseas Agpand C.EW is
shown in Table 1 &Table 2 for p = 0.2and 0.4.
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Fig. 4
p=02
Low Frequency Variation of A,,
for different values of K
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Table-1
Low frequency
p=02, e=160°
K Ay G Asra An CEW. Gir. b
40 88%0.1200 6.4106° 1066.6572 0.4601 -2192885 -155.2349° | 25.0065°
46 24733.0319 8.7633° 28678318 0.3630 -8295737 -14231¢ 36.8098°
5 442104812 10.6366° 53062294 0.3274 -1760.5468 -308.3636° | 49.4772°
5.6 705641819 141516 10867.552% 0.3028 -4815.4902 -231.8887° [ 83.8542°
6 125668.071% 17.0291° 15560.0668 0.3022 -8185.2480 -192.612¢" | 1283792°
65 834651081 -5.6676° 2665250.50 0.8577 485039.62 2187553 | 62.866°
7 1075262.0034  57499¢° 1290314300 0.2823 -168%40.9010 | -57.047° -27816
7.5 7118282514 2.9138° 85419.7189 1.6012 80205996 -457490° 93.5712°
8 11668125034  104.3661°  140017.6566 0.8348 -226835.8700 | -314296° -26.106°
85 175128535034 -72.8293° 2101562816 40734 -305277.6210 | 45.03%4° 43.3966°
L 1289960.75%2  80279¢° 1547953700 0.3006 -283733.6800 | -7.3500° -4.613°
9.5 15164727534 -9502696° 181978297 74342 -288219.3100 | 34.4306° 33.8766°
10 10961057500 653183° 1315327191 0.1583 -242768.1908 | -2.8639° -1.0420°
105 13076167500 -1180116° 1569166253 131629  -260876.5929 |27.7955° 27.5812°
11 9237641260 236.1645° 1108517033 0.0933 -204809.0019 | 1.1981° 00202
115 11416267500 135.9920° 137000.0316 24.0425 233318.9021 | 24.1204° | 24.0650°
12 7836672500 54.1015°  94040.0780 0.0637  173778.7508 | 0.5002 02634
Table-2
Low frequency
2 =04, e=160°
K Ay Our Asra An CEW. 8:r. L2
40 42308950 461421° 4437784 0.9722 -3228464 28.7480° -70.9608°
46 21708237 20.7376° 2283348 1.6884 -89.8927 5.3326° -157.020°
5 156782538 745876 16464652 0.641 -1905.5364 82044 -2.1606°
56 330463235 48.0554° 36224145 3835247 -2583.5537 09582 68.9375°
6 50025.4454 -19.5858° 55296304 7089641 -1969.7429 -1.9896° 1738215
65 15351.368 116.0598°  66352354.01 3492758 78670117 -3.9244° -110.3475°
7 83333945 116.0598° 875.1004 0.2348 -1013.5915 00507 -0.0981°
75 27096630 2304220° 3051672 1568091 -1092305 95.7303° -6.0746"
8 63820781 -20.1201° 6071931 0.1872 -7776.2529 00287 -0.412°
85 40410810 -2528441° 4545305 76.6686 -4854173 84099 -1.2210°
8 5040.7998 0.1421° 529.3452 0.1531 -613.1131 00045° -0.1527°
95 39168901 22427218 430.6397 483973 4742733 521150° 02384°
10 40812880 185608 4285861 0.1275 -486 4075 -0.0110° -0.1537°
105 34514106 -622166° 3804548 346855 4235268 40732 0.7768°
11 33716855 169.8753° 3540699 0.1077 -410.0883 -0.0198° 0.1512°
115 3075.7612 -305.107¢  333.3399 26.5280 -373.5227 3.1338° 0985%°
12 28322636 43.3008°  207.4245 0.0920  -340.4885 0.0243° -0.2477°
1JERTV 415020409
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