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ABSTRACT 

Error correction codes provides a mean to 

detect and correct errors introduced by the 

transmission channel.  

This paper presents a high-speed parallel 

cyclic redundancy check (CRC) implementation 

based on unfolding, pipelining, and retiming 

algorithms. CRC architectures are first pipelined to 

reduce the iteration bound by using novel look-ahead 

pipelining methods and then unfolded and retimed to 

design high-speed parallel circuits. The study and 

implementation using  Verilog HDL. Modelsim Xilinx 

Edition (MXE) will be used for simulation and 

functional verification. Xilinx ISE will be used for 

synthesis and bit file generation. The Xilinx Chip 

scope will be used to test the results on Spartan 3E 

500K FPGA board.  

 

KEYWORDS: CRC, LFSR, Pipelining, Retiming, 

Unfolding, ISE, MXE, FPGA 

 

I.INTRODUCTION 

A CRC (Cyclic Redundancy Check) 

is a popular error detecting code computed 

through binary polynomial division. To 

generate a CRC, the sender treats binary 

data as a binary polynomial and performs 

the modulo-2 division of the polynomial by 

a standard generator (e.g., CRC-32). The 

remainder of this division becomes the CRC 

of the data, and it is attached to the original 

data and transmitted to the receiver. 

Receiving the data and CRC, the receiver 

also performs the modulo-2 division with 

the received data and the same generator 

polynomial. Errors are detected by 

comparing the computed CRC with the 

received one. The CRC algorithm only adds 

a small number of bits (32 bits in the case of 

CRC-32) to the message regardless of the 

length of the original data, and shows good 

performance in detecting a single error as 

well as an error burst. Because the CRC 

algorithm is good at detecting errors and is 

simple to implement in hardware, CRCs are 

widely used today for detecting corruption 

in digital data which may have occurred 

during production, transmission, or storage. 

And CRCs have recently found a new 

application in universal mobile 

telecommunications system standard for 

message length detection of variable-length 

message communications. 

 In this paper, we present a fast 

cyclic redundancy check (CRC) algorithm 

that performs CRC computation for any 

length of message in parallel. For a given 

message with any length, the algorithm first 

chunks the message into blocks, each of 

which has a fixed size equal to the degree of 

the generator polynomial. Then it performs 

CRC computation using only lookup tables 

among the chunked blocks in parallel and 

the results are combined together by XOR 

operations. It was feedback in the traditional 

implementation that makes pipelining 

problematic. In the proposed algorithm, we 

solve this problem and implement a 

pipelined calculation of 32-bit CRC in 

SMIC 0.13 m CMOS technology. Our 

algorithm allows calculation over data that is 

not the full width of the input. Furthermore, 
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the pipeline latency is very short in our 

algorithm, and this method allows easy 

scaling of the parallelism while only slightly 

affecting timing. 

Traditionally, the LFSR (Linear 

Feedback Shift Register) circuit is 

implemented in VLSI (Very-Large-Scale 

Integration) to perform CRC calculation 

which can only process one bit per cycle. 

Recently, parallelism in the CRC calculation 

becomes popular, and typically one byte or 

multiple bytes can be processed in parallel.A 

Common method used to achieve 

parallelism is to unroll the serial 

implementation. Unfortunately, the 

algorithms used for parallelism increase the 

length of the worst case timing path, which 

falls short of ideal speedups in practice. 

Furthermore, the required area and power 

consumption increases with the higher 

degree of parallelism. Therefore, we seek an 

alternative way to implement CRC hardware 

to speed up the CRC calculation while 

maintaining reasonable area and power 

consumption. 

In summary, this paper proposes a 

hardware architecture for calculating CRC 

that offers a number of benefits. First of all, 

it calculates the CRC of a message in 

parallel to achieve better throughput. It does 

not use LFSRs and does not need to know 

the total length of the message before 

beginning the CRC calculation. While the 

algorithm is based on lookup tables, it 

adopts multiple small tables instead of a 

single large table so that the overall required 

area remains small. 

A General linear feedback shift 

register (LFSR) is a shift register whose 

input bit is a linear function of its previous 

state. The only linear function of single bits 

is xor, thus it is a shift register whose input 

bit is driven by the exclusive-or (xor) of 

some bits of the overall shift register value. 

The initial value of the LFSR is called the 

seed, and because the operation of the 

register is deterministic, the stream of values 

produced by the register is completely 

determined by its current state. Likewise, 

because the register has a finite number of 

possible states, it must eventually enter a 

repeating cycle. 

 In computing, a pipeline is a set of 

data processing elements connected in 

series, so that the output of one element is 

the input of the next one. The elements of a 

pipeline are often executed in parallel or in 

time-sliced fashion; in that case, some 

amount of buffer storage is often inserted 

between elements.  

Retiming is the technique of moving the 

structural location of  latches or registers in 

a digital circuit to improve its performance, 

area, and/or power characteristicscs in such 

a way that preserves its functional behavior 

at its outputs.[
1
] 

 

Unfolding is a transformation 

technique of duplicating the functional 

blocks to increase the throughput of 

the DSP program in such a way that 

preserves its functional behavior at its 

outputs. Unfolding in general program is as 

known as Loop unrolling. Unfolding has 

applications in designing high-speed and 

low-power ASIC architectures. One 

application is to unfold the program to 

reveal hidden concurrency so that the 

program can be scheduled to a smaller 

iteration period, thus increasing the 

throughput of the implementation. Another 

application is parallel processing in word 

level or bit level. Therefore these 

transformed circuit could increase the 

throughput and decrease the power 

consumption. 
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 II CYCLIC REDUNDANCY CHECK                                                                                                                        

  A cyclic redundancy check (CRC) is 

an error-detecting code commonly used in 

digital networks and storage devices to 

detect accidental changes to raw data. 

Blocks of data entering these systems get a 

short check value attached, based on the 

remainder of a polynomial division of their 

contents; on retrieval the calculation is 

repeated, and corrective action can be taken 

against presumed data corruption if the 

check values do not match. CRCs are so 

called because the check (data verification) 

value is a redundancy (it adds no 

information to the message) and the 

algorithm is based on cyclic codes. CRCs 

are popular because they are simple to 

implement in binary hardware, easy to 

analyze mathematically, and particularly 

good at detecting common errors caused by 

noise in transmission channels. Because the 

check value has a fixed length, the function 

that generates it is occasionally used as a 

hash function.  

 

Cyclic codes are not only simple to 

implement but have the benefit of being 

particularly well suited for the detection of 

burst errors, contiguous sequences of 

erroneous data symbols in messages. This is 

important because burst errors are common 

transmission errors in many communication 

channels, including magnetic and optical 

storage devices. Typically an n-bit CRC 

applied to a data block of arbitrary length, 

will detect any single error burst not longer 

than n bits and will detect a fraction 1−2
−n

 of 

all longer error bursts. [
7
] 

 

Specification of a CRC code requires 

definition of a so-called generator 

polynomial. This polynomial resembles the 

divisor in a polynomial long division, which 

takes the message as the dividend and in 

which the quotient is discarded and the 

remainder becomes the result, with the 

important distinction that the polynomial 

coefficients are calculated according to the 

carry-less arithmetic of a finite field. The 

length of the remainder is always less than 

the length of the generator polynomial, 

which therefore determines how long the 

result can be. 

In practice, all commonly used CRCs 

employ the finite field GF(2). This is the 

field of two elements, usually called 0 and 1, 

comfortably matching computer 

architecture. The rest of this article will 

discuss only these binary CRCs, but the 

principles are more general. The simplest 

error-detection system, the parity bit, is in 

fact a trivial 1-bit CRC: it uses the generator 

polynomial x+1. 

 

There are several techniques for 

generating check bits that can be added to a 

message. Perhaps the simplest is to append a 

single bit, called the ―parity bit,‖ which 

makes the total number of 1-bits in the code 

vector (message with parity bit appended) 

even (or odd). If a single bit gets altered in 

transmission, this will change the parity 

from even to odd (or the reverse). The 

sender generates the parity bit by simply 

summing the message bits modulo 2—that 

is, by exclusive oring them together. It then 

appends the parity bit (or its complement) to 

the message. The receiver can check the 

message by summing all the message bits 

modulo 2 and checking that the sum  agree s 

with the parity bit. Equivalently, the receiver 

can sum all the bits (message and parity) and 

check that the result is 0 (if even parity is 

being used). This simple parity technique is 

often said to detect 1-bit errors. Actually it 

detects errors in any odd number of bits 

(including the parity bit), but it is a small 

comfort to know you are detecting 3-bit 

errors if you are missing 2-bit errors as 

shown in Fig1 
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FIG 1. Exclusive or tree. 

The CRC is based on polynomial 

arithmetic, in particular, on computing the 

remainder of dividing one polynomial in 

GF(2) (Galois field with two elements) by 

another. It is a little like treating the message 

as a very large binary number, and 

computing the remainder on dividing it by a 

fairly large prime such as Intuitively, one 

would expect this to give a reliable 

checksum. A polynomial in GF(2) is a 

polynomial in a single variable x whose 

coefficients are 0 or 1. Addition and 

subtraction are done modulo 2—that is, they 

are both the same as the exclusive or 

operator. For example, the sum of the  

polynomials  

 

X
3
+X+1 

  

X
4
+X

3
+X

2
 

 

is as is their difference. These polynomials 

are not usually written with minus signs, but 

they could be, because a coefficient of –1 is 

equivalent to a coefficient of 1. 

Multiplication of such polynomials is 

straightforward. The product of one 

coefficient by another is the same as their 

combination by the logical and operator, and 

the partial products are summed using 

exclusive or. Multiplication is not needed to 

compute the CRC checksum. 

Division of polynomials over GF(2) 

can be done in much the same way as long 

division of polynomials over the integers. 

 

The reader might like to verify that 

the quotient of x4 + x3 + 1   multiplied by 

the divisor x3 + x + 1,of plus the remainder 

of x2 + 1,equals  the dividend. For bit serial 

sending and receiving, the hardware to 

generate and check a single parity bit is very 

simple. It consists of a single exclusive or 

gate together with some control circuitry. 

For bit parallel transmission, an exclusive or 

tree may be used, as illustrated in Figure 

Efficient ways to compute the parity bit in 

software are given. Other techniques for 

computing a checksum are to form the 

exclusive or of all the bytes in the message, 

or to compute a sum with end-around carry 

of all the bytes. In the latter method the 

carry from each 8-bit sum is added into the 

least significant bit of the accumulator. It is 

believed that this is more likely to detect 

errors than the simple exclusive or, or the 

sum of the bytes with carry discarded. A 

technique that is believed to be quite good in 

terms of error detection, and which is easy 

to implement in hardware, is the cyclic 

redundancy check. This is another way to 

compute a checksum, usually eight, 16, or 

32 bits in length,  that is appended to the 

message. We will briefly review the theory 

and then give some algorithms for 

computing in software a commonly used 32-

bit CRC checksum. [
7
] 

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T



III MATHEMATICAL BACKGROUND 

  We shall first introduce the binary 

field and binary polynomials that facilitate 

the definition of cyclic redundancy codes. In 

simple terms, a field is an algebraic system 

in which the operation of addition, 

subtraction, multiplication and division can 

be performed. The set of real numbers for 

example forms a field.  Fields can be finite 

or infinite. The smallest finite field is the 

binary field that has just two elements 

denoted usually by 0 and 1.The table below 

defines the addition and multiplication 

operations in this field. 

 

 

FIG 2. Addition and multiplication tables 

From the addition table, we see that 

an EXOR gate is all that we need to perform 

the addition operation in the binary field. 

Moreover we see 0 and 1 to be their own 

additive inverses, and so subtraction in the 

binary field is the same as addition. 

Multiplication in the binary field can be 

performed simply by means of a AND gate. 

we must define division in this field single 

non zero element 1,and we do this trivially 

by noting that division by 1 leaves both 0 

and 1 unchanged. [
7
] 

  A binary polynomial is a polynomial 

with coefficients from the binary field. For 

example, 0,1, x,1+x,x
2
,1+x+x

2
,are all binary 

polynomials in the dummy variable x. Given 

any sequence of bits, we can associate a 

binary polynomial with it by regarding the 

different bits representing the coefficients of 

the polynomial. For instance, with the 

sequence 101011, we can   associate  the 

fifth  degree  polynomial 

1.x
0
+0.x

1
+1.x

2
+0.x

3
+1.x

4
+1.x

5
=1+x

2
+x

4
+x

5
.  

  According to the convention used 

here, the rightmost bit of a sequence 

represents the coefficients of the highest 

degree terms of the associated polynomial. 

A left-to-right shift sequence of bits by i 

positions (with the vacated positions filled 

with 0’s), therefore, corresponds to 

multiplying the associated  polynomial by 

xi. We perform operations involving binary 

polynomials in exactly the same manners we 

do with ordinary polynomials with real 

number coefficients. However, we 

manipulate the coefficients using the rules of 

the binary field.  

 

IV LINEAR FEEDBACK SHIFT 

REGISTER 

Register (LFSR) structures are 

widely used in digital signal processing and 

communication systems, such as BCH, 

CRC. Many current functions such as 

Scrambling, Convolutional Coding, CRC 

and even Cordic or Fast Fourier Transform 

can be derived as Linear Feedback Shift 

Registers (LFSR) In high-rate digital 

systems such as optical communication 

system, throughput of 1Gbps is usually 

desired. The serial input/output operation 

property of LFSR structure is a bottleneck in 

such systems and parallel LFSR architecture 

is thus required.This work presents a three-

step high-speed VLSI architecture for LFSR 

structures, this paper proposes improved 

three-step LFSR architecture with both 

higher hardware efficiency and speed. This 

architecture can be applied to any LFSR 

structure for high-speed parallel 

implementation.[
1
] 
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FIG 3  A General LFSR based CRC circuit 

In computing, a linear feedback 

shift register (LFSR) is a shift 

register whose input bit is a linear function 

of its previous state.The most commonly 

used linear function of single bits is XOR. 

Thus, an LFSR is most often a shift register 

whose input bit is driven by the exclusive-

or (XOR) of some bits of the overall shift 

register value. 

  The initial value of the LFSR is 

called the seed, and because the operation of 

the register is deterministic, the stream of 

values produced by the register is 

completely determined by its current (or 

previous) state. Likewise, because the 

register has a finite number of possible 

states, it musteventually enter a repeating 

cycle. However, an LFSR with a well-

chosen feedback function can produce a 

sequence of bits which appears random and 

which has a very long cycle. 

The mathematics of a cyclic 

redundancy check, used to provide a quick 

check against transmission errors, are 

closely related to those of an LFSR.  [
7
]                                                                    

 

LFSR IN CRC 

In traditional hardware 

implementations, a simple circuit based on 

shift registers performs the CRC calculation 

by handling the message one bit at a time. A 

typical serial CRC using LFSRs is shown in 

Fig. 3.2.It illustrates one possible structure 

for CRC32. There are a total of 32 registers 

the middle ones are left out for brevity. The 

combinational logic operation in the figure is 

the XOR operation. One bit is shifted in at 

each clock pulse. This circuit operates in a 

fashion similar to manual long division. The 

XOR gates in Fig 4 hold the coefficients of 

the divisor corresponding to the indicated 

powers of x. Although the shift register 

approach to computing CRCs is usually 

implemented in hardware, this algorithm can 

also be used in software when bit-by-bit 

processing is adequate. 

    
FIG 4  Serial CRC circuit using LFSRs 

The proposed design starts from 

LFSR, which is generally used for serial 

CRC. An unfolding algorithm is used to 

realize parallel processing. However, direct 

application of unfolding may lead to a 

parallel CRC circuit with long iteration 

bound, which is the lowest achievable CP . 

Two novel look-ahead pipelining methods 

are developed to reduce the iteration bound 

of the original serial LFSR CRC structures; 

then, the unfolding algorithm is applied to 

obtain a parallel CRC structure with low 

iteration bound. The retiming algorithm is 

then applied to obtain the achievable lowest 

CP. [
7
] 

 

V APPLICATIONS 

The CRC can be applied to data storage 

devices, such as a disk drive in order to 

check bits in each block. 

This can be applied in the both Transmitter 

and Receiver block in order to detect error in 
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digital data. Easy to Implement in hardware. 

Efficient Error Detection in the digital data 

                                                  

VI RESULTS AND DISCUSSIONS 

Each architecture is coded in Verilog and 

simulated. The simulation results and the net 

list simulation are verified for each 

architecture.  

For the message bits: 11010011101100 

and for the generator polynomial 

1+Y+Y
2
+Y

3
 i.e,1011.  

 
(A) Black Box View 

 

 

 
 

 

 

(B) Simulation Results 

 

 

 

 

 

 

(C) Chip scope Result: 

 

 
 

 

(d) SPARTAN_3E 

 

 
 

VII CONCLUSION 

 

                             Our parallel CRC design 

can efficiently reduce the CP and control or 

decrease the required hardware at the same 

time. Although the proposed design is not 

efficiently applicable for the LFSR 

architecture of any generator polynomial, it 

is very efficient for the generator 

polynomials with many zero coefficients 

between the second and third highest order 

nonzero coefficients, as shown in the 
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commonly used generator polynomials. A 

comparison on commonly used generator 

polynomials between the proposed design 

and previously proposed parallel CRC 

algorithms shows that the proposed design 

can increase the speed by up to 25% and 

control or even reduce hardware cost. 
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