
Fpga Based High Speed Parallel Cyclic Redundancy Check

P. Harika
[1]

, B. V. V .Satyanarayana
 [2]

[1][2]
BVC Engineering College, Odalarevu, Dept.Of.Electronics and Communication Engineering

Andhra Pradesh-533210, INDIA

ABSTRACT

Error correction codes provides a mean to

detect and correct errors introduced by the

transmission channel.

This paper presents a high-speed parallel

cyclic redundancy check (CRC) implementation

based on unfolding, pipelining, and retiming

algorithms. CRC architectures are first pipelined to

reduce the iteration bound by using novel look-ahead

pipelining methods and then unfolded and retimed to

design high-speed parallel circuits. The study and

implementation using Verilog HDL. Modelsim Xilinx

Edition (MXE) will be used for simulation and

functional verification. Xilinx ISE will be used for

synthesis and bit file generation. The Xilinx Chip

scope will be used to test the results on Spartan 3E

500K FPGA board.

KEYWORDS: CRC, LFSR, Pipelining, Retiming,

Unfolding, ISE, MXE, FPGA

I.INTRODUCTION

A CRC (Cyclic Redundancy Check)

is a popular error detecting code computed

through binary polynomial division. To

generate a CRC, the sender treats binary

data as a binary polynomial and performs

the modulo-2 division of the polynomial by

a standard generator (e.g., CRC-32). The

remainder of this division becomes the CRC

of the data, and it is attached to the original

data and transmitted to the receiver.

Receiving the data and CRC, the receiver

also performs the modulo-2 division with

the received data and the same generator

polynomial. Errors are detected by

comparing the computed CRC with the

received one. The CRC algorithm only adds

a small number of bits (32 bits in the case of

CRC-32) to the message regardless of the

length of the original data, and shows good

performance in detecting a single error as

well as an error burst. Because the CRC

algorithm is good at detecting errors and is

simple to implement in hardware, CRCs are

widely used today for detecting corruption

in digital data which may have occurred

during production, transmission, or storage.

And CRCs have recently found a new

application in universal mobile

telecommunications system standard for

message length detection of variable-length

message communications.

 In this paper, we present a fast

cyclic redundancy check (CRC) algorithm

that performs CRC computation for any

length of message in parallel. For a given

message with any length, the algorithm first

chunks the message into blocks, each of

which has a fixed size equal to the degree of

the generator polynomial. Then it performs

CRC computation using only lookup tables

among the chunked blocks in parallel and

the results are combined together by XOR

operations. It was feedback in the traditional

implementation that makes pipelining

problematic. In the proposed algorithm, we

solve this problem and implement a

pipelined calculation of 32-bit CRC in

SMIC 0.13 m CMOS technology. Our

algorithm allows calculation over data that is

not the full width of the input. Furthermore,

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

the pipeline latency is very short in our

algorithm, and this method allows easy

scaling of the parallelism while only slightly

affecting timing.

Traditionally, the LFSR (Linear

Feedback Shift Register) circuit is

implemented in VLSI (Very-Large-Scale

Integration) to perform CRC calculation

which can only process one bit per cycle.

Recently, parallelism in the CRC calculation

becomes popular, and typically one byte or

multiple bytes can be processed in parallel.A

Common method used to achieve

parallelism is to unroll the serial

implementation. Unfortunately, the

algorithms used for parallelism increase the

length of the worst case timing path, which

falls short of ideal speedups in practice.

Furthermore, the required area and power

consumption increases with the higher

degree of parallelism. Therefore, we seek an

alternative way to implement CRC hardware

to speed up the CRC calculation while

maintaining reasonable area and power

consumption.

In summary, this paper proposes a

hardware architecture for calculating CRC

that offers a number of benefits. First of all,

it calculates the CRC of a message in

parallel to achieve better throughput. It does

not use LFSRs and does not need to know

the total length of the message before

beginning the CRC calculation. While the

algorithm is based on lookup tables, it

adopts multiple small tables instead of a

single large table so that the overall required

area remains small.

A General linear feedback shift

register (LFSR) is a shift register whose

input bit is a linear function of its previous

state. The only linear function of single bits

is xor, thus it is a shift register whose input

bit is driven by the exclusive-or (xor) of

some bits of the overall shift register value.

The initial value of the LFSR is called the

seed, and because the operation of the

register is deterministic, the stream of values

produced by the register is completely

determined by its current state. Likewise,

because the register has a finite number of

possible states, it must eventually enter a

repeating cycle.

 In computing, a pipeline is a set of

data processing elements connected in

series, so that the output of one element is

the input of the next one. The elements of a

pipeline are often executed in parallel or in

time-sliced fashion; in that case, some

amount of buffer storage is often inserted

between elements.

Retiming is the technique of moving the

structural location of latches or registers in

a digital circuit to improve its performance,

area, and/or power characteristicscs in such

a way that preserves its functional behavior

at its outputs.[
1
]

Unfolding is a transformation

technique of duplicating the functional

blocks to increase the throughput of

the DSP program in such a way that

preserves its functional behavior at its

outputs. Unfolding in general program is as

known as Loop unrolling. Unfolding has

applications in designing high-speed and

low-power ASIC architectures. One

application is to unfold the program to

reveal hidden concurrency so that the

program can be scheduled to a smaller

iteration period, thus increasing the

throughput of the implementation. Another

application is parallel processing in word

level or bit level. Therefore these

transformed circuit could increase the

throughput and decrease the power

consumption.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

 II CYCLIC REDUNDANCY CHECK

 A cyclic redundancy check (CRC) is

an error-detecting code commonly used in

digital networks and storage devices to

detect accidental changes to raw data.

Blocks of data entering these systems get a

short check value attached, based on the

remainder of a polynomial division of their

contents; on retrieval the calculation is

repeated, and corrective action can be taken

against presumed data corruption if the

check values do not match. CRCs are so

called because the check (data verification)

value is a redundancy (it adds no

information to the message) and the

algorithm is based on cyclic codes. CRCs

are popular because they are simple to

implement in binary hardware, easy to

analyze mathematically, and particularly

good at detecting common errors caused by

noise in transmission channels. Because the

check value has a fixed length, the function

that generates it is occasionally used as a

hash function.

Cyclic codes are not only simple to

implement but have the benefit of being

particularly well suited for the detection of

burst errors, contiguous sequences of

erroneous data symbols in messages. This is

important because burst errors are common

transmission errors in many communication

channels, including magnetic and optical

storage devices. Typically an n-bit CRC

applied to a data block of arbitrary length,

will detect any single error burst not longer

than n bits and will detect a fraction 1−2
−n

 of

all longer error bursts. [
7
]

Specification of a CRC code requires

definition of a so-called generator

polynomial. This polynomial resembles the

divisor in a polynomial long division, which

takes the message as the dividend and in

which the quotient is discarded and the

remainder becomes the result, with the

important distinction that the polynomial

coefficients are calculated according to the

carry-less arithmetic of a finite field. The

length of the remainder is always less than

the length of the generator polynomial,

which therefore determines how long the

result can be.

In practice, all commonly used CRCs

employ the finite field GF(2). This is the

field of two elements, usually called 0 and 1,

comfortably matching computer

architecture. The rest of this article will

discuss only these binary CRCs, but the

principles are more general. The simplest

error-detection system, the parity bit, is in

fact a trivial 1-bit CRC: it uses the generator

polynomial x+1.

There are several techniques for

generating check bits that can be added to a

message. Perhaps the simplest is to append a

single bit, called the ―parity bit,‖ which

makes the total number of 1-bits in the code

vector (message with parity bit appended)

even (or odd). If a single bit gets altered in

transmission, this will change the parity

from even to odd (or the reverse). The

sender generates the parity bit by simply

summing the message bits modulo 2—that

is, by exclusive oring them together. It then

appends the parity bit (or its complement) to

the message. The receiver can check the

message by summing all the message bits

modulo 2 and checking that the sum agree s

with the parity bit. Equivalently, the receiver

can sum all the bits (message and parity) and

check that the result is 0 (if even parity is

being used). This simple parity technique is

often said to detect 1-bit errors. Actually it

detects errors in any odd number of bits

(including the parity bit), but it is a small

comfort to know you are detecting 3-bit

errors if you are missing 2-bit errors as

shown in Fig1

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

FIG 1. Exclusive or tree.

The CRC is based on polynomial

arithmetic, in particular, on computing the

remainder of dividing one polynomial in

GF(2) (Galois field with two elements) by

another. It is a little like treating the message

as a very large binary number, and

computing the remainder on dividing it by a

fairly large prime such as Intuitively, one

would expect this to give a reliable

checksum. A polynomial in GF(2) is a

polynomial in a single variable x whose

coefficients are 0 or 1. Addition and

subtraction are done modulo 2—that is, they

are both the same as the exclusive or

operator. For example, the sum of the

polynomials

X
3
+X+1

X
4
+X

3
+X

2

is as is their difference. These polynomials

are not usually written with minus signs, but

they could be, because a coefficient of –1 is

equivalent to a coefficient of 1.

Multiplication of such polynomials is

straightforward. The product of one

coefficient by another is the same as their

combination by the logical and operator, and

the partial products are summed using

exclusive or. Multiplication is not needed to

compute the CRC checksum.

Division of polynomials over GF(2)

can be done in much the same way as long

division of polynomials over the integers.

The reader might like to verify that

the quotient of x4 + x3 + 1 multiplied by

the divisor x3 + x + 1,of plus the remainder

of x2 + 1,equals the dividend. For bit serial

sending and receiving, the hardware to

generate and check a single parity bit is very

simple. It consists of a single exclusive or

gate together with some control circuitry.

For bit parallel transmission, an exclusive or

tree may be used, as illustrated in Figure

Efficient ways to compute the parity bit in

software are given. Other techniques for

computing a checksum are to form the

exclusive or of all the bytes in the message,

or to compute a sum with end-around carry

of all the bytes. In the latter method the

carry from each 8-bit sum is added into the

least significant bit of the accumulator. It is

believed that this is more likely to detect

errors than the simple exclusive or, or the

sum of the bytes with carry discarded. A

technique that is believed to be quite good in

terms of error detection, and which is easy

to implement in hardware, is the cyclic

redundancy check. This is another way to

compute a checksum, usually eight, 16, or

32 bits in length, that is appended to the

message. We will briefly review the theory

and then give some algorithms for

computing in software a commonly used 32-

bit CRC checksum. [
7
]

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

III MATHEMATICAL BACKGROUND

 We shall first introduce the binary

field and binary polynomials that facilitate

the definition of cyclic redundancy codes. In

simple terms, a field is an algebraic system

in which the operation of addition,

subtraction, multiplication and division can

be performed. The set of real numbers for

example forms a field. Fields can be finite

or infinite. The smallest finite field is the

binary field that has just two elements

denoted usually by 0 and 1.The table below

defines the addition and multiplication

operations in this field.

FIG 2. Addition and multiplication tables

From the addition table, we see that

an EXOR gate is all that we need to perform

the addition operation in the binary field.

Moreover we see 0 and 1 to be their own

additive inverses, and so subtraction in the

binary field is the same as addition.

Multiplication in the binary field can be

performed simply by means of a AND gate.

we must define division in this field single

non zero element 1,and we do this trivially

by noting that division by 1 leaves both 0

and 1 unchanged. [
7
]

 A binary polynomial is a polynomial

with coefficients from the binary field. For

example, 0,1, x,1+x,x
2
,1+x+x

2
,are all binary

polynomials in the dummy variable x. Given

any sequence of bits, we can associate a

binary polynomial with it by regarding the

different bits representing the coefficients of

the polynomial. For instance, with the

sequence 101011, we can associate the

fifth degree polynomial

1.x
0
+0.x

1
+1.x

2
+0.x

3
+1.x

4
+1.x

5
=1+x

2
+x

4
+x

5
.

 According to the convention used

here, the rightmost bit of a sequence

represents the coefficients of the highest

degree terms of the associated polynomial.

A left-to-right shift sequence of bits by i

positions (with the vacated positions filled

with 0’s), therefore, corresponds to

multiplying the associated polynomial by

xi. We perform operations involving binary

polynomials in exactly the same manners we

do with ordinary polynomials with real

number coefficients. However, we

manipulate the coefficients using the rules of

the binary field.

IV LINEAR FEEDBACK SHIFT

REGISTER

Register (LFSR) structures are

widely used in digital signal processing and

communication systems, such as BCH,

CRC. Many current functions such as

Scrambling, Convolutional Coding, CRC

and even Cordic or Fast Fourier Transform

can be derived as Linear Feedback Shift

Registers (LFSR) In high-rate digital

systems such as optical communication

system, throughput of 1Gbps is usually

desired. The serial input/output operation

property of LFSR structure is a bottleneck in

such systems and parallel LFSR architecture

is thus required.This work presents a three-

step high-speed VLSI architecture for LFSR

structures, this paper proposes improved

three-step LFSR architecture with both

higher hardware efficiency and speed. This

architecture can be applied to any LFSR

structure for high-speed parallel

implementation.[
1
]

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

FIG 3 A General LFSR based CRC circuit

In computing, a linear feedback

shift register (LFSR) is a shift

register whose input bit is a linear function

of its previous state.The most commonly

used linear function of single bits is XOR.

Thus, an LFSR is most often a shift register

whose input bit is driven by the exclusive-

or (XOR) of some bits of the overall shift

register value.

 The initial value of the LFSR is

called the seed, and because the operation of

the register is deterministic, the stream of

values produced by the register is

completely determined by its current (or

previous) state. Likewise, because the

register has a finite number of possible

states, it musteventually enter a repeating

cycle. However, an LFSR with a well-

chosen feedback function can produce a

sequence of bits which appears random and

which has a very long cycle.

The mathematics of a cyclic

redundancy check, used to provide a quick

check against transmission errors, are

closely related to those of an LFSR. [
7
]

LFSR IN CRC

In traditional hardware

implementations, a simple circuit based on

shift registers performs the CRC calculation

by handling the message one bit at a time. A

typical serial CRC using LFSRs is shown in

Fig. 3.2.It illustrates one possible structure

for CRC32. There are a total of 32 registers

the middle ones are left out for brevity. The

combinational logic operation in the figure is

the XOR operation. One bit is shifted in at

each clock pulse. This circuit operates in a

fashion similar to manual long division. The

XOR gates in Fig 4 hold the coefficients of

the divisor corresponding to the indicated

powers of x. Although the shift register

approach to computing CRCs is usually

implemented in hardware, this algorithm can

also be used in software when bit-by-bit

processing is adequate.

FIG 4 Serial CRC circuit using LFSRs

The proposed design starts from

LFSR, which is generally used for serial

CRC. An unfolding algorithm is used to

realize parallel processing. However, direct

application of unfolding may lead to a

parallel CRC circuit with long iteration

bound, which is the lowest achievable CP .

Two novel look-ahead pipelining methods

are developed to reduce the iteration bound

of the original serial LFSR CRC structures;

then, the unfolding algorithm is applied to

obtain a parallel CRC structure with low

iteration bound. The retiming algorithm is

then applied to obtain the achievable lowest

CP. [
7
]

V APPLICATIONS

The CRC can be applied to data storage

devices, such as a disk drive in order to

check bits in each block.

This can be applied in the both Transmitter

and Receiver block in order to detect error in

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

digital data. Easy to Implement in hardware.

Efficient Error Detection in the digital data

VI RESULTS AND DISCUSSIONS

Each architecture is coded in Verilog and

simulated. The simulation results and the net

list simulation are verified for each

architecture.

For the message bits: 11010011101100

and for the generator polynomial

1+Y+Y
2
+Y

3
 i.e,1011.

(A) Black Box View

(B) Simulation Results

(C) Chip scope Result:

(d) SPARTAN_3E

VII CONCLUSION

 Our parallel CRC design

can efficiently reduce the CP and control or

decrease the required hardware at the same

time. Although the proposed design is not

efficiently applicable for the LFSR

architecture of any generator polynomial, it

is very efficient for the generator

polynomials with many zero coefficients

between the second and third highest order

nonzero coefficients, as shown in the

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

commonly used generator polynomials. A

comparison on commonly used generator

polynomials between the proposed design

and previously proposed parallel CRC

algorithms shows that the proposed design

can increase the speed by up to 25% and

control or even reduce hardware cost.

REFERENCES

[1] High speed parallel CRC based on unfolding,

pipelining, retiming IEEE transactions on circuits and

systems—ii: express briefs, vol. 53, no. 10, october

2006

[2] G. Campobello, G. Patané, and M. Russo,

―Parallel CRC realization,‖IEEE Trans. Comput.,

vol. 52, no. 10, pp. 1312–1319, Oct. 2003.

[3] K. K. Parhi, ―Eliminating the fan out bottleneck

in parallel long BCH encoders,‖ IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 51, no. 3, pp.512–516, Mar.

2004.

[4] X. Zhang and K. K. Parhi, ―High-speed

architectures for parallel long BCH encoders,‖ in

Proc. ACM Great Lakes Symp. VLSI, Boston,

MA,Apr. 2004, pp. 1–6.

[5] K. K. Parhi, VLSI Digital Signal Processing

Systems: Design and Implementation.

Hoboken, NJ: Wiley, 1999.

[6] T. V. Ramabadran and S. S Gaitonde, ―A tutorial

on CRC computations,‖IEEE Micro, vol. 8, no. 4, pp.

62–75, Aug. 1988.

[7] T.-B. Pei and C. Zukowski, ―High-speed parallel

CRC circuits in VLSI,‖ IEEE Trans. Commun., vol.

40, no. 4, pp. 653–657, Apr. 1992.

[8] Basic VLSI design: principles and applications by

Douglas A. Pucknell, Kamran Eshraghian

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 3, March - 2013
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

