

Abstract — This paper gives a clear idea regarding

VHDL implementation of Blowfish algorithm. The Blowfish

cryptosystem is a very fast and useful scheme, even though it

was introduced over a decade ago. Blowfish Cryptosystem

hardware implementation is presented in this paper. In

present scenario we are forced to find more and more secured

encryption technique. Blowfish algorithm has no known

cryptanalysis. If this technique is available in hardware, such

a system may be the most powerful tool for any

communication system where high security is needed. This

cryptosystem is designed and is implemented using VHDL.

Here is the approach for high speed embedded applications

such as mobile phone networks. Wireless communication

schemes greatly need highly secured encryption technique. In

many of such applications it is difficult to use software

cryptosystems. Hardware implementation of such a system is

need for most of the wireless applications. Here is the

approach with less hardware requirement and of high speed.

This approach is of high speed and of less area. By

implementing same algorithm in pipelining method speed can

be drastically increased with a cost of area and power

consumption.

Index Terms— VHDL, Cryptosystem, Blowfish Algorithm,

Cryptanalysis, Pipelining

I. INTRODUCTION

Cryptography prior to the modern age was effectively

synonymous with encryption, the conversion of information

from a readable state to apparent nonsense. The originator of

an encrypted message shared the decoding technique needed

to recover the original information only with intended

recipients, thereby precluding unwanted persons to do the

same. Since World War the methods used to carry out

cryptology have become increasingly complex and its

application more widespread.

Modern cryptography is heavily based on mathematical

theory and computer science practice; cryptographic

algorithms are designed around computational hardness

assumptions, making such algorithms hard to break in

practice by any adversary. It is theoretically possible to break

such a system but it is infeasible to do so by any known

practical means. These schemes are therefore termed

computationally secure; theoretical advances (e.g.,

improvements in integer factorization algorithms) and faster

computing technology require these solutions to be

continually adapted. There exist information-theoretically

secure schemes that provably cannot be broken even with

unlimited computing power—an example is the one-time

pad—but these schemes are more difficult to implement than

the best theoretically breakable but computationally secure

mechanisms.

Symmetric-key cryptography refers to encryption methods

in which both the sender and receiver share the same key (or,

less commonly, in which their keys are different, but related in

an easily computable way). This was the only kind of

encryption publicly known until June 1976[1]. Symmetric key

ciphers are implemented as either block ciphers or stream

ciphers. A block cipher enciphers input in blocks of plaintext

as opposed to individual characters, the input form used by a

stream cipher.

The Data Encryption Standard (DES) and the Advanced

Encryption Standard (AES) are block cipher designs which

have been designated cryptography standards by the US

government (though DES's designation was finally withdrawn

after the AES was adopted).[2] Despite its deprecation as an

official standard, DES (especially its still-approved and much

more secure triple-DES variant) remains quite popular; it is

used across a wide range of applications, from ATM

encryption[3] to e-mail privacy[4] and secure remote

access.[5] Many other block ciphers have been designed and

released, with considerable variation in quality. Many have

been thoroughly broken, such as FEAL.[7][6]

Stream ciphers, in contrast to the 'block' type, create an

arbitrarily long stream of key material, which is combined

with the plaintext bit-by-bit or character-by-character,

somewhat like the one-time pad. In a stream cipher, the output

stream is created based on a hidden internal state which

changes as the cipher operates. That internal state is initially

set up using the secret key material. RC4 is a widely used

stream cipher; see Category:Stream ciphers.[7] Block ciphers

can be used as stream ciphers; see Block cipher modes of

operation.

Symmetric-key cryptosystems use the same key for

encryption and decryption of a message, though a message or

group of messages may have a different key than others. A

significant disadvantage of symmetric ciphers is the key

management necessary to use them securely. Each distinct

pair of communicating parties must, ideally, share a different

key, and perhaps each ciphertext exchanged as well. The

number of keys required increases as the square of the number

of network members, which very quickly requires complex

key management schemes to keep them all straight and secret.

The difficulty of securely establishing a secret key between

two communicating parties, when a secure channel does not

already exist between them, also presents a chicken-and-egg

problem which is a considerable practical obstacle for

Swarnandhra College of Engineering & Technology
1,2,3

FPGA Implementation of Blowfish Cryptosystem Using VHDL

L. Kranthi Kiran J. E. N. Abhilash P. Suresh Kumar

 Student Assoc. Professor Assistant Professor

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

cryptography users in the real world.

II. Data Encryption Standard

DES standard is originated go back to the early 1970s. In

1972, after concluding a study on the US government's

computer security needs, the US standards body NBS

(National Bureau of Standards) — now named NIST

(National Institute of Standards and Technology) —

identified a need for a government-wide standard for

encrypting unclassified, sensitive information.[8] After

consulting with the NSA, NBS solicited proposals for a cipher

that would meet rigorous design criteria. None of the

submissions, however, turned out to be upto the mark. A

second request was issued on 27 August 1974. This time,

IBM submitted a candidate which was deemed acceptable —

a cipher developed during the period 1973–1974 based on an

earlier algorithm, Horst Feistel's Lucifer cipher. The team at

IBM involved in cipher design and analysis included Feistel,

Walter Tuchman, Don Coppersmith, Alan Konheim, Carl

Meyer, Mike Matyas, Roy Adler, Edna Grossman, Bill Notz,

Lynn Smith, and Bryant Tuckerman.

Despite the criticisms, DES was approved as a federal

standard in November 1976, and published on 15 January

1977 as FIPS PUB 46, authorized for use on all unclassified

data. It was subsequently reaffirmed as the standard in 1983,

1988 (revised as FIPS-46-1), 1993 (FIPS-46-2), and again in

1999 (FIPS-46-3), the latter prescribing "Triple DES" (see

below). On 26 May 2002, DES was finally superseded by the

Advanced Encryption Standard (AES), following a public

competition. On 19 May 2005, FIPS 46-3 was officially

withdrawn, but NIST has approved Triple DES through the

year 2030 for sensitive government information.[9]

The algorithm is also specified in ANSI X3.92,[10] NIST

SP 800-67[9] and ISO/IEC 18033-3[11] (as a component of

TDEA).

Another theoretical attack, linear cryptanalysis, was

published in 1994, but it was a brute force attack in 1998 that

demonstrated that DES could be attacked very practically,

and highlighted the need for a replacement algorithm. These

and other methods of cryptanalysis are discussed in more

detail later in this article.

The introduction of DES is considered to have been a

catalyst for the academic study of cryptography, particularly

of methods to crack block ciphers. According to a NIST

retrospective about DES,

The DES can be said to have "jump started" the nonmilitary

study and development of encryption algorithms. In the 1970s

there were very few cryptographers, except for those in

military or intelligence organizations, and little academic

study of cryptography. There are now many active academic

cryptologists, mathematics departments with strong programs

in cryptography, and commercial information security

companies and consultants. A generation of cryptanalysts has

cut its teeth analyzing (that is trying to "crack") the DES

algorithm. In the words of cryptographer Bruce Schneier,[12]

"DES did more to galvanize the field of cryptanalysis than

anything else. Now there was an algorithm to study." An

astonishing share of the open literature in cryptography in the

1970s and 1980s dealt with the DES, and the DES is the

standard against which every symmetric key algorithm since

has been compared.[13]

III. Blowfish Algorithm

Blowfish encrypts 64-bit blocks of plaintext into 64-bit

blocks of ciphertext. Blowfish is implemented in numerous

products and has received a fair amount of scrutiny. So far,

the security of Blowfish is unchallenged. Blowfish is a keyed,

symmetric block cipher, designed in 1993 by Bruce Schneier

and included in a large number of cipher suites and encryption

products. Blowfish provides a good encryption rate in

software and no effective cryptanalysis of it has been found to

date. However, the Advanced Encryption Standard now

receives more attention.

Schneier designed Blowfish as a general-purpose

algorithm, intended as an alternative to the ageing DES and

free of the problems and constraints associated with other

algorithms. At the time Blowfish was released, many other

designs were proprietary, encumbered by patents or were

commercial/government secrets. Schneier has stated that,

"Blowfish is unpatented, and will remain so in all countries.

The algorithm is hereby placed in the public domain, and can

be freely used by anyone." Notable features of the design

include key-dependent S-boxes and a highly complex key

schedule.

Blowfish has a 64-bit block size and a variable key length

from 32 bits up to 448 bits.[2] It is a 16-round Feistel cipher

and uses large key-dependent S-boxes. In structure it

resembles CAST-128, which uses fixed S-boxes.

The diagram to the left shows the action of Blowfish. Each

line represents 32 bits. The algorithm keeps two subkey

arrays: the 18-entry P-array and four 256-entry S-boxes. The

S-boxes accept 8-bit input and produce 32-bit output. One

entry of the P-array is used every round, and after the final

round, each half of the data block is XORed with one of the

two remaining unused P-entries.

The diagram to the upper right shows Blowfish's

F-function. The function splits the 32-bit input into four

eight-bit quarters, and uses the quarters as input to the

S-boxes. The outputs are added modulo 232 and XORed to

produce the final 32-bit output.

Decryption is exactly the same as encryption, except that

P1, P2,..., P18 are used in the reverse order. This is not so

obvious because xor is commutative and associative. A

common misconception is to use inverse order of encryption

as decryption algorithm (i.e. first XORing P17 and P18 to the

ciphertext block, then using the P-entries in reverse order).

Blowfish's key schedule starts by initializing the P-array

and S-boxes with values derived from the hexadecimal digits

of pi, which contain no obvious pattern (see nothing up my

sleeve number). The secret key is then, byte by byte, cycling

the key if necessary, XORed with all the P-entries in order. A

64-bit all-zero block is then encrypted with the algorithm as it

stands. The resultant ciphertext replaces P1 and P2. The same

ciphertext is then encrypted again with the new subkeys, and

the new ciphertext replaces P3 and P4. This continues,

replacing the entire P-array and all the S-box entries. In all,

the Blowfish encryption algorithm will run 521 times to

generate all the subkeys - about 4KB of data is processed.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig 1: Structure of Blowfish algorithm (Encryption)

Because the P-array is 576 bits long, and the key bytes are

XORed through all these 576 bits during the initialization,

many implementations support key sizes up to 576 bits. While

this is certainly possible, the 448 bits limit is here to ensure

that every bit of every subkey depends on every bit of the

key,[2] as the last four values of the P-array don't affect every

bit of the ciphertext. This point should be taken in

consideration for implementations with a different number of

rounds, as even though it increases security against an

exhaustive attack, it weakens the security guaranteed by the

algorithm. And given the slow initialization of the cipher with

each change of key, it is granted a natural protection against

brute-force attacks, which doesn't really justify key sizes

longer than 448 bits.

There is no effective cryptanalysis on the full-round

version of Blowfish known to the public as of 2011. A sign

extension bug in one publication of C code has been

identified.[3]

In 1996, Serge Vaudenay found a known-plaintext attack

requiring 28r + 1 known plaintexts to break, where r is the

number of rounds. Moreover, he also found a class of weak

keys that can be detected and broken by the same attack with

only 24r + 1 known plaintexts. This attack cannot be used

against the regular Blowfish; it assumes knowledge of the

key-dependent S-boxes. Vincent Rijmen, in his Ph.D. thesis,

introduced a second-order differential attack that can break

four rounds and no more.[1] There remains no known way to

break the full 16 rounds, apart from a brute-force search.[4]

Bruce Schneier notes that while Blowfish is still in use, he

recommends using the more recent Twofish algorithm

instead.[5]

Fig 2: Implementation of F function

Blowfish is a fast block cipher, except when changing keys.

Each new key requires pre-processing equivalent to

encrypting about 4 kilobytes of text, which is very slow

compared to other block ciphers. This prevents its use in

certain applications, but is not a problem in others. In one

application, it is actually a benefit: the password-hashing

method used in Open BSD uses an algorithm derived from

Blowfish that makes use of the slow key schedule; the idea is

that the extra computational effort required gives protection

against dictionary attacks. See key stretching.

Blowfish has a memory footprint of just over 4 kilobytes of

RAM. This constraint is not a problem even for older desktop

and laptop computers, though it does prevent use in the

smallest embedded systems such as early smartcards.

Blowfish was one of the first secure block ciphers not

subject to any patents and therefore freely available for

anyone to use. This benefit has contributed to its popularity in

cryptographic software.

Keys are stored in K array and the sub keys are stored in P

array. There are four S-boxes. Each S-box has 256 entries

each of width 32 bits. Here the Hexadecimal representation of

π is used for P array and then continued with S-boxes. P array

is XORed with K array for updating the P array. 64 bit plain

text is encrypted now with P array and also using four

S-boxes. Outputs are again encrypted using updated P array

and S-boxes. After 521 iterations of the Blowfish encryption

algorithm final P-array and S-array are generated. After these

many iterations the encrypted data is obtained. That’s why

this encryption standard is of high secure and there is no

software cryptanalysis up to now for this encryption standard.

Decryption algorithm also same structure but the P array must

be supplied in reverse order. Hardware implementation of

such a high secured algorithm is well suited for high speed

applications.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Fig 3: Structure of Blowfish algorithm (Decryption)

IV. Simulation Results

High secured Blowfish algorithm is implemented using

VHDL language and is verified functionally using Xilinx ISE

9.1. The simulated results are presented in this chapter. Xilinx

ISE simulation results shows that the encryption scheme is a

complex encryption scheme and is highly reliable.

Fig 4: Blowfish Encryption module Black box

In order to implement this algorithm first of all 1MB Read

only memory is designed with the Hexadecimal values of π. A

dual port Read Ram is designed for storing P array. Same is

used to store K array also. FIFO is used to read the plain text

and store it temporary.

Fig 5: Simulation results showing Encryption Scheme

Figure 5 shows the simulation results for the Blowfish

algorithm. Here in this figure plain text is supplied through

W_Data_I input terminal. This plain text is a 64 bit plain thext

and is encrypted using 32 bit keys. Figure 5 also shows the

encrypted obtained through R_Data_O output signal at

7000ns. Again the encrypted data is supplied to the

decryption module after 7000ns and the decrypted plain text

is obtained through R_Data_O output signal as shown in

figure 6.

Fig 6: Simulation results showing Decryption Scheme

V. Conclusion

Blowfish Encryption scheme and Decryption is

implemented using VHDL language. This is a high secured

algorithm. Software cryptanalysis of such a complex

algorithm is highly impossible. Hardware implementation of

such a high secured algorithm is highly necessary for high

speed applications. Because of the hardware implementation

of the algorithm there is no need of any external platform to

run the algorithm, and also the plain text is encrypted in

negligible amount of time. Simulation results shows that this

algorithm it can encrypt a plain text in less than 7000 ns of

time. In future we can reduce this figure enormously by

implementing this algorithm using pipelining technique.

VI. REFERENCES

[1] Whitfield Diffie and Martin Hellman, "New Directions in

Cryptography", IEEE Transactions on Information Theory, vol. IT-22,

Nov. 1976, pp: 644–654

[2] FIPS PUB 197: The official Advanced Encryption Standard.

[3] NCUA letter to credit unions, July 2004

[4] RFC 2440 - Open PGP Message Format

[5] SSH at windowsecurity.com by Pawel Golen, July 2004

[6] Bruce Schneier, Applied Cryptography, 2nd edition, Wiley, 1996,

ISBN 0-471-11709-9.

[7] AJ Menezes, PC van Oorschot, and SA Vanstone, Handbook of

Applied Cryptography ISBN 0-8493-8523-7.

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

[8] Walter Tuchman (1997). "A brief history of the data encryption

standard". Internet besieged: countering cyberspace scofflaws. ACM

Press/Addison-Wesley Publishing Co. New York, NY, USA. pp.

275–280.

[9] National Institute of Standards and Technology, NIST Special

Publication 800-67 Recommendation for the Triple Data Encryption

Algorithm (TDEA) Block Cipher, Version 1.1

[10] American National Standards Institute, ANSI X3.92-1981 American

National Standard, Data Encryption Algorithm

[11] "ISO/IEC 18033-3:2010 Information technology — Security

techniques — Encryption algorithms — Part 3: Block ciphers".

Iso.org. 2010-12-14.

[12] Bruce Schneier, Applied Cryptography, Protocols, Algorithms, and

Source Code in C, Second edition, John Wiley and Sons, New York

(1996) p. 267

[13] William E. Burr, "Data Encryption Standard", in NIST's anthology "A

Century of Excellence in Measurements, Standards, and Technology:

A Chronicle of Selected NBS/NIST Publications, 1901–2000

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 1, January- 2013

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

