

FPGA Implementation Of Distributed Arithmetic For FIR Filter

 M. Keerthi
 1
, Vasujadevi Midasala

2
, S Nagakishore Bhavanam

3
, Jeevan Reddy K

4

 2
Assistant Professor, Associate Professor

4
 ,

1,2,4
Dept. of ECE, TeegalaKrishnaReddy Engineering College, Andhra Pradesh, India

3
Assistant Professor, Dept. of ECE, University College of Engineering & Technology, ANU, Guntur,

Abstract - Digital filters are the essential units for digital

signal processing systems. Traditionally, digital filters are

achieved in Digital Signal Processor (DSP), but DSP-based

solution cannot meet the high speed requirements in some

applications for its sequential structure. Nowadays, Field

Programmable Gate Array (FPGA) technology is widely

used in digital signal processing area because FPGA-based

solution can achieve high speed due to its parallel structure

and configurable logic, which provides great flexibility and

high reliability in the course of design and later

maintenance.

In general, Digital filters are divided into two categories,

including Finite Impulse Response (FIR) and Infinite

Impulse Response (IIR). And FIR filters are widely applied

to a variety of digital signal processing areas for the virtues

of providing linear phase and system stability.

The FPGA-based FIR filters using traditional direct

arithmetic costs considerable multiply-and-accumulate

(MAC) blocks with the augment of the filter order. A new

design and implementation of FIR filters using Distributed

Arithmetic is provided in this project to solve this problem.

Distributed Arithmetic structure is used to increase the

resource usage while pipeline structure is also used to

increase the system speed. In addition, the divided LUT

method is also used to decrease the required memory units.

However, according to Distributed Arithmetic, we can

make a Look-Up-Table (LUT) to conserve the MAC values

and callout the values according to the input data if

necessary. Therefore, LUT can be created to take the place

of MAC units so as to save the hardware resources.

This project provide the principles of Distributed

Arithmetic, and introduce it into the FIR filters design, and

then presents a 31-order FIR low-pass filter using

Distributed Arithmetic, which save considerable MAC

blocks to decrease the circuit scale, meanwhile, divided

LUT method is used to decrease the required memory units

and pipeline structure is also used to increase the system

speed.

Keywords: Digital Filters, DSP, FPGA, FIR, IIR, MAC,

LUT.

I. INTRODUCTION

In the recent years, there has been a growing trend to

implement digital signal processing functions in Field

Programmable Gate Array (FPGA). In this sense, we need

to put great effort in designing efficient architectures for

digital signal processing functions such as FIR filters,

which are widely used in video and audio signal processing,

telecommunications and etc.

Traditionally, direct implementation of a K-tap FIR filter

requires K multiply-and-accumulate (MAC) blocks, which

are expensive to implement in FPGA due to logic

complexity and resource usage. To resolve this issue, we

first present DA, which is a multiplier-less architecture.

 Implementing multipliers using the logic fabric of the

FPGA is costly due to logic complexity and area usage,

especially when the filter size is large. Modern FPGAs have

dedicated DSP blocks that alleviate this problem, however

for very large filter sizes the challenge of reducing area and

complexity still remains.

An alternative to computing the multiplication is to

decompose the MAC operations into a series of lookup

table (LUT) accesses and summations. This approach is

termed distributed arithmetic (DA), a bit serial method of

computing the inner product of two vectors with a fixed

number of cycles.

The original DA architecture stores all the possible binary

combinations of the coefficients w[k] of equation (1) in a

memory or lookup table. It is evident that for large values

of L, the size of the memory containing the pre computed

terms grows exponentially too large to be practical. The

memory size can be reduced by dividing the single large

memory (2Lwords) into m multiple smaller sized memories

each of size 2k where L = m × k. The memory size can be

further reduced to 2L−1 and 2L−2 by applying offset binary

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

coding and exploiting resultant symmetries found in the

contents of the memories.

This technique is based on using 2's complement binary

representation of data, and the data can be pre-computed

and stored in LUT. As DA is a very efficient solution

especially suited for LUT-based FPGA architectures, many

researchers put great effort in using DA to implement FIR

filters in FPGA.

 Patrick Longa introduced the structure of the FIR filter

using DA algorithm and the functions of each part. Sangyun

Hwang analyzed the power consumption of the filter using

DA algorithm. Heejong Yoo proposed a modified DA

architecture that gradually replaces LUT requirements with

multiplexer/adder pairs. But the main problem of DA is that

the requirement of LUT capacity increases exponentially

with the order of the filter, given that DA implementations

need 2Kwords (K is the number of taps of the filter). And if

K is a prime, the hardware resource consumption will cost

even higher. To overcome these problems, this paper

presents a hardware-efficient DA architecture.

This method not only reduces the LUT size, but also

modifies the structure of the filter to achieve high speed

performance. The proposed filter has been designed and

synthesized with ISE 7.1, and implemented with a

4VLX40FF668 FPGA device. Our results show that the

proposed DA architecture can implement FIR filters with

high speed and smaller resource usage in comparison to the

previous DA architecture.

1.1 Objective and goal

Traditionally, direct implementation of a K-tap FIR filter

requires K multiply-and-accumulate (MAC) blocks, which

are expensive to implement in FPGA due to logic

complexity and resource usage. To resolve this issue, we

first present DA, which is a multiplier-less architecture.

An alternative to computing the multiplication is to

decompose the MAC operations into a series of lookup

table (LUT) accesses and summations. This approach is

termed distributed arithmetic (DA), a bit serial method of

computing the inner product of two vectors with a fixed

number of cycles. The original DA architecture stores all

the possible binary combinations of the coefficients w[k] of

equation (1) in a memory or lookup table.

It is evident that for large values of L, the size of the

memory containing the pre computed terms grows

exponentially too large to be practical. This technique is

based on using 2's complement binary representation of

data, and the data can be pre-computed and stored in LUT.

As DA is a very efficient solution especially suited for

LUT-based FPGA architectures, many researchers put great

effort in using DA to implement FIR filters in FPGA.

But the main problem of DA is that the requirement of LUT

capacity increases exponentially with the order of the filter,

given that DA implementations need 2Kwords (K is the

number of taps of the filter). And if K is a prime, the

hardware resource consumption will cost even higher.

II. LITERATURE SURVEY

2.1 Existing System

Existing systems for implementing FIR filter are the

multiplier based designs and Distributed arithmetic based

Designs. For multiplication based Designs number of

multiplications required is large and the hardware

utilization will be high in FPGA solutions. In Distributed

Arithmetic concept FIR filter is implemented using LUT,

add and shift hardware, in which no multiplications will be

there. LUT stores all the possible combinations of the sums

of the coefficients. Add and shift hardware is to implement

the Filter functionality by using LUT contents. This method

is explained in detail in the chapter FIR filter design using

Distributed arithmetic in this thesis.

2.2 Implemented System

Here we present four different architectures analyzing their

advantages and disadvantages. The implemented system

starts from the original DA architecture. We then reduce the

hardware by implementing lut-less and 4-input look up

table architectures. Finally we implement a fully parallel

architecture for high speed fir filters.

We implement this architecture for a 70 tap filter and

compare the results with the original DA architecture. We

apply pipelining to achieve high speed.

III. DISTRIBUTED ARITHMETIC

3.1 Background

 Traditional implementations of the finite impulse

response (FIR) filter equation is

][][][
1

0

knxkwny
L

k

 Typically employ L multiply-accumulate (MAC) units.

Implementing multipliers using the logic fabric of the

FPGA is costly due to logic complexity and area usage,

especially when the filter size is large. Modern FPGAs have

dedicated DSP blocks that alleviate this problem, however

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

for very large filter sizes the challenge of reducing area and

complexity still remains. An alternative to computing the

multiplication is to decompose the MAC operations into a

series of lookup table (LUT) accesses and summations. This

approach is termed distributed arithmetic (DA).

3.2 Theory

Distributed arithmetic (DA) is a bit serial method of

computing the inner product of two vectors with a fixed

number of cycles. The original DA architecture stores all

the possible binary combinations of the coefficients w[k] of

(1) in a memory or lookup table. It is evident that for large

values of L, the size of the memory containing the pre

computed terms grows exponentially too large to be

practical. The memory size can be reduced by dividing the

single large memory (2L words) into m multiple smaller

sized memories each of size 2k where L = m × k. The

memory size can be further reduced to 2L−1 and 2L−2 by

applying offset binary coding and exploiting resultant

symmetries found in the contents of the memories.

However, for very large values of L, the listed approaches

still succumb to the limitations of storing the coefficient

combinations in memory due to the exponential dependence

of memory size on filter length.

A simplified view of a DA FIR is shown in Figure 3.2.1. In

its most obvious and direct form, DA based computations

are bit-serial in nature which means serial distributed

arithmetic (SDA) FIR. Extensions to the basic algorithm

remove this potential throughput limitation. The advantage

of a distributed arithmetic approach is its efficiency of

mechanization. The basic operations required are a

sequence of table look-ups, additions, subtractions and

shifts of the input data sequence. All of these functions

efficiently map to FPGAs. Input samples are presented to

the input parallel-to serial shift register (PSC) at the input

signal sample rate.

Figure 3.1: Serial distributed arithmetic FIR filter.

As the new sample is serialized, the bit wide output is

presented to a bit-serial shift register or time-skew buffer

(TSB). The TSB stores the input sample history in a bit-

serial format and is used in forming the required inner-

product computation. The TSB is itself constructed using a

cascade of shorter bit–serial shift registers. The nodes in the

cascade connection of TSB’s are used as address inputs to a

look-up table. This LUT stores all possible partial products

over the filter coefficient space.

Several observations provide valuable insight into the

operation of a DA FIR filter. In a conventional multiply-

accumulate (MAC) based FIR realization, the sample

throughput is coupled to the filter length. With DA

architecture the system sample rate is related to the bit

precision of the input data samples. Each bit of an input

sample must be indexed and processed in turn before a new

output sample is available. For B-bit precision input

samples, B clock cycles are required to form a new output

sample for a non-symmetrical filter, and B+1 clock cycles

are needed for a symmetrical filter.The rate at which data

bits are indexed occurs at the bit-clock rate. The bit-clock

frequency is greater than the filter sample rate sf and is

equal to B sf for a non-symmetrical filter and (B+1) sf

for a symmetrical filter.

In a conventional instruction-set (processor) approach to the

problem, the required number of multiply-accumulate

operations are implemented using a time-shared or

scheduled MAC unit. The filter sample throughput is

inversely proportional to the number of filter taps. As the

filter length is increased the system sample rate is

proportionately decreased. This is not the case with DA

based architectures. The filter sample rate is de-coupled

from the filter length. The trade off introduced here is one

of silicon area (FPGA logic resources) for time. As the

filter length is increased in a DA FIR filter, more logic

resources are consumed, but throughput is maintained.

Figure 3.2 Throughput (sample rate) comparison of single-MAC

based FIR and DA FIR as a function of filter length. B is the DA

FIR input sample precision. The clock rate is 120 MHz.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 3.2 provides a comparison between a DA FIR

architecture and a conventional scheduled MAC-based

approach. The clock rate is assumed to be 120 MHz for

both filter architectures.

Several values of input sample precision for the DA FIR are

presented. The dependency of the DA filter throughput on

the sample precision is apparent from the plots.

For 8-bit precision input samples, the DA FIR maintains a

higher throughput for filter lengths greater than 8 taps.

When the sample precision is increased to 16 bits, the

crossover point is 16 taps.

IMPLEMENTATION OF FIR FILTER USING

DISTRIBUTED ARITHMETIC

3.4 Distributed Arithmetic FIR filter architecture

Distributed Arithmetic is one of the most well-known

methods of implementing FIR filters. The DA solves the

computation of the inner product equation when the

coefficients are pre knowledge, as happens in FIR filters.

An FIR filter of length K is described as:

1

0

][][][
K

k

knxkhny

………………………..(1)

Where h[k] is the filter coefficient and x[k] is the input

data. For the convenience of analysis, x'[k] =x [n - k] is

used for modifying the equation (1) and we have:

1

0

'][].[
K

k

kxkhy

... (2)

Then we use B-bit two's complement binary numbers to

represent the input data:

1

0

' 2][][2][
B

b

b

bB

B kxkxkx

……………..(3)

where
][kxb denotes the b’th bit of x[k],

][kxb {0, 1}.

Substitution of (3) into (2) yields:

1

0

1

0

)2][][2(][
K

k

B

b

b

bB

B kxkxkhy

1

0

1

0

1

0

][][2][][2
K

k

B

b

K

k

b

b

B

B kxkhkxkh

])[],[(2])[],[(2
1

0

kxkhfkxkhf b

B

b

b

B

B

………… (4)

We have

][][])[],[(

1

0

kxkhkxkhf b

K

k

b

 ……(5)

In equation (4), we observe that the filter coefficients can be

pre-stored in LUT, and addressed by xb = [
]0[bx

,
]1[bx

,...

]1[Kxb]. This way, the MAC blocks of FIR filters are

reduced to access and summation with LUT.

The implementation of digital filters using this arithmetic is

done by using registers, memory resources and a scaling

accumulator.

 Original LUT-based DA implementation of a 4-tap

(K=4) FIR filter is shown in Figure 3.3 The DA architecture

includes three units: the shift register unit, the DA-LUT

unit, and the adder/shifter unit.

Figure 3.3 Original LUT-based DA implementation of a

4-tap filter

IV. LOOK UP TABLE LESS DISTRIBUTED ARITHMETIC

ARCHITECTURE

4.1 Motivation for LUT less Architecture

As the filter order increases, the memory size also

increases. This in turn increases the look up table (LUT)

size. So we use combinational logic in place of look up

table for better performance. The proposed DA-LUT unit

dramatically reduces the memory usage, since all the LUT

units can be replaced by multiplexers and full adders

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

4.2 Proposed DA-LUT unit

In Fig.3.3, we can see that the lower half of LUT (locations

where 3b
=1) is the same with the sum of the upper half of

LUT (locations where 3b
=0) and h [3]. Hence, LUT size

can be reduced 1/2 with an additional 2x1 multiplexer and a

full adder, as shown in Figure 3.4.

By the same LUT reduction procedure, we can have the

final LUT-less DA architectures, as shown in Figure .3.5

On other side, for the use of combination logic circuit, the

filter performance will be affected. But when the taps of the

filter is a prime, we can use 4-input LUT units with

additional multiplexers and full adders to get the trade off

between filter performance and small resource usage.

Figure 4.4: Proposed DA architecture for a 4-tap filter

(
32 word LUT implementation of DA)

Figure 4.5: LUT-less DA architectures for a 4-tap FIR filter

V. RESULTS

 5.1 Implementation

To evaluate the performance of the proposed scheme, a 70-

tap low-pass FIR filter is implemented. The sampling

frequency was defined at 40 MHz, the bandwidth of pass

band equaled 2 MHz, and the precision for inputs and filter

coefficients were 13 and 12 respectively.

Figure 5.1(a): Impulse response

Figure 5.1.(b): Frequency response

Figure 5.1.(c): Phase response

Firstly, the prototype low pass FIR filter was designed

using the McClellan-Parks design algorithm. The impulse

response and the frequency response are shown in Figures

5.1.(a). and 5.1(b).

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

The 70-tap FIR filter had symmetrical structure, so we

could reduce it to 35-tap.Then we divided the 35-tap filter

into 7 smaller filters each having 5-tap DA-LUT units. The

5-tap DA-LUT unit could be implemented by a 4-input

LUT with an additional 2x1 multiplexer and a full adder as

shown in figure 9.2.1. To validate the correct functionality

of the full-parallel DA architecture, we copied each 5-tap

DA-LUT unit 13 times to test whether we could get the

final result every clock cycle or not.

XB[n-3] … X1[n-3] x0[n-3]

XB[n-2] … X1[n-2] x0[n-2]

XB[n-1] … X1[n-1] x0[n-1]

XB[n] … X1[n] x0[n]

+/- Accumulator

0123 bbbb

3b

2b

1b

0b

XB[n-4] … X1[n-4] x0[n-4]

1

0

4b

+

t2

Figure 5.2: 5-Tap Filter

Finally, our implementation was synthesized using ISE7.1

on a 4VLX40FF668 FPGA device. The sampling frequency

fs of the input signal was 40 MHz, it had a carrier frequency

of of 9 MHz and a bandwidth of 2 MHz. As show in

Figure 5.3 after mixed with
)/2cos(0 sfnf

the signal got

into the filter.

Figure 5.3: Simulation system

We validated the result with a Mat lab code. To illustrate

the merits of the proposed DA architecture, the full-parallel

version of the original DA architecture was also

implemented on a 4VLK40FF668 FPGA device.

5.1- results and Analysis

Figure 1 Output

Original LUT-based DA implementation of a 4-tap filter

Figure 2 Output

LUT-less DA architectures for a 4-tap FIR filter

Figure 3 without pipeline registers Output

4-input look up table architecture for high order filters

Without pipelining

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 3 with pipeline registers Output

4-input look up table architecture with pipelining

Figure 4 without pipeline registers Output

Fully parallel DA architecture FIR filter without pipelining

Figure 4 with pipeline registers Output

Fully parallel DA architecture FIR filter with pipelining

5-tap filter Output

5-Tap Filter output

70 tap filter(35 tap) Output

VI. CONCLUSIONS

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

6.1 Conclusion

This paper presents the proposed DA architectures for high-

order filter. The architectures reduce the memory usage by

half at every iteration of LUT reduction at the cost of the

limited decrease of the system frequency. We also divide

the high-order filters into several groups of small filters;

hence we can reduce the LUT size also. As to get the high

speed implementation of FIR filters, a full-parallel version

of the DA architecture is adopted.

We have successfully implemented a high-efficient 70-tap

full-parallel DA filter, using both an original DA

architecture and a modified DA architecture on a

4VLX40FF668 FPGA device. It shows that the proposed

DA architectures are hardware efficient for FPGA

implementation.

REFERENCES

1. Partrick Longa, Ali Miri, "Area-Efficient Fir Filter Design on FPGAs
using Distributed Arithmetic" IEEE International Symposium on

Signal Processing and Information Technology, pp:248-252,2006

2. Sangyun Hwang, Gunhee Han,Sungho Kang, Jaeseok Kim, "New

Distributed Arithmetic Algorithm for Low-Power FIR Filter

Implementation", IEEE Signal Processing Letters, Vol.11, No5,
pp:463-466,May, 2004

3. Heejong Yoo, David V.Anderson, "Hardware-Efficient Distributed
Arithmetic Architecture For High-order Digital Filters", IEEE

International Conference on Acoustics, Speech and Signal

Processing, Vol.5,pp: 125-128,March,2005

4. Wangdian, Xingwang Zhuo "Digital Systems Applications and

Design Based On Verilog HDL", Beijin: National Defence Industry

press, 2006.

5. McClellan , J.H. Parks, T.W. Rabiner, L.R. "A computer program for

designing optimum FIR linear phase digital filters":. IEEE Trans.

Audio Electroacoust. Vol. 21, No.6, pp:506-526, 1973.

6. Httl://cse.stanford.edu/class/sophomore-college/projects-

00/risc/pipelining/index.html

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

