

FPGA Implementation of Huffman Encoder and

Decoder for High Performance Data Transmission

 Shireesha Thummala

1
,Thrisul Kumar. J

2
, Swarna latha. E

3

1
 Vignan Institute of Technology and Aeronautical Engineering, Vignan Hills,Hyderabad

2
 Vignan Institute of Technology and Aeronautical Engineering, Vignan Hills,Hyderabad

3
 Vignan Institute of Technology and Aeronautical Engineering,Vignan Hills,Hyderabad

Abstract - In computer science and information theory,

Huffman coding is an entropy encoding algorithm used for

lossless data compression. The purpose of this paper is to

present and analyze HUFFMAN CODING ALGORITHM for

the data compression and decompression. Huffman coding is a

minimal variable character coding based on the frequency of

each character. First, each character becomes a trivial binary

tree, with the character as the only node. The character‘s

frequency is the tree’s frequency. Two trees with the least

frequencies are joined as the sub trees of a new root that is

assigned the sum of their frequencies. This is repeated until all

characters are in one tree. One code bit represents each level.

Thus more frequent characters are near the root and are coded

with few bits, and rare characters are far from the root and

are coded with many bits. In this paper Huffman encoder and

decoder are designed in VHDL. Huffman decoding is done by

using a state diagram approach. ModelSim simulator tool from

Mentor Graphics will be used for functional simulation and

verification of the encoder & decoder modules. The Xilinx

Synthesis Tools (XST) will be used to synthesize the complete

design on Xilinx family FPGA.

Keywords: VHDL,FPGA,XST,ASCII,VLC

1. INTRODUCTION

Compression means storing data in a format that

requires less space than usual. Data compression is

particularly useful in communications because it enables

devices to transmit the same amount of data in fewer

bits.The bandwidth of a digital communication link can be

effectively increased by compressing data at the sending end

and decompressing data at the receiving end. Huffman

coding is a popular compression technique that assigns

variable length codes (VLC) to symbols. On decompression

the symbols are reassigned their original fixed length codes.

The compression or decompression scheme described in this

paper is based on statistical coding. In statistical coding,

variable length code words are used to represent fixed-

length blocks of bits in a data set. For example, if a data are

divided into four-bit blocks, then there are 16 unique four-

bit blocks. Each of the 16 possible four-bit blocks can be

represented by a binary codeword. The size of each

codeword is variable (it need not be four bits). The idea is

to make the code words that occur most frequently have a

smaller number of bits, and those that occur least frequently

to have a larger number of bits. This minimizes the average

length of a codeword. A Huffman code is an optimal

statistical code that is proven to provide the shortest average

codeword length among all uniquely decodable variable

length codes.

A Huffman code is obtained by constructing a

Huffman tree. The path from the root to each leaf gives the

codeword for the binary string corresponding to the

leaf.Huffman decoder uses a lookup table for retrieving the

original or transmitted data from the encoder. This lookup

table consists of all the unique words and their

corresponding code vectors. Once the Huffman coding is

performed, the compressed data is transmitted serially to the

decoder. Once the complete data has been received,

decoding of compressed data has done by the state diagram

approach and the decoded data is said to be decompressed

and the complete process of decoding is called as

decompression of data.

2. DESIGN BLOCK DIAGRAM

Figure 1. Block Diagram of Design

2.1 Input memory element

Figure 2.Input memory element

Input Memory Element consists of twelve locations

of 32 – bit length each. This block stores the data which is

passed down to the Occurrence Calculator. Signal „S‟ is the

745

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20627

status signal, made „1‟ once the complete data is passed on

to the Occurrence Calculator, „clk ‟ is the clock signal

which activates the occurrence calculator on rising edge,

„reset‟ is the reset signal, which when high , initializes all

the memory locations to zero.„en‟ when “ active –high ”

only allows all the transactions from or to the memory

element. „Address (3 down to 0) ‟is the address bus which

takes a number lying in between 0 to 12 , „rw‟ is the read

/write signal, when „1‟, data is written in to the memory

location given by the „Address‟ bus and when „0‟ , data is

read from the location specified by the „Address‟ bus. „in

out‟ is a bidirectional bus, which transfers data from the

memory or into the memory.Memory Element transfers all

the data stored in it as 4-bit blocks to the occurrence

calculator and each 4 –bit block is individually called as a

unique word. Thus the number of unique words is sixteen

(0000 to 1111).

2.2 Occurrence calculator

Figure 3.occurrence calculator

This block calculates the occurrences of the

number of unique words present in the data. It generates a

control signal to the Encoder block as status „S‟ ,to indicate

the completion of occurrence calculation and activates the

Encoder(when S=1) , clk is the clock signal which

activates the occurrence calculator on rising edge, rst is reset

when high, all the occurrence values are initialized to zero,

din (3 down to 0)is the 4 –bit input data fed to the

occurrence calculator from the input memory element , oc1

to oc15 are the occurrence values of the unique words.

2.3 Code Generator

This Block can be treated as the combination of the

following Sub-Modules.

1. Sorter 2. Adder

2.3.1 Sorter

Figure 4.Sorter of code generator

Sorter has si0 , si1 , si2…..si15 as input values that

are taken from the occurrence calculator and sorts them in

descending order, when the enable signal „en‟ is „active-

high‟ and the reset signal „rst‟ is „active -low‟. The sorted

values are passed to the code generator.

2.3.2 Adder

Figure 5.Adder

The functionality of the adder is to calculate the

sum of two values passed to it provide the sum of those two

inputs. The summer is used in encoder so as to calculate the

sum of last two elements after each sort.

2.4 Code Generator

Fig 6.Code generator

This is the block where the actual Huffman code is

generated .The code generated in the code generator is

passed to the encoder block as input where each input data

is encoded with its corresponding code. If the input data is

divided into n-bit blocks, the Huffman Code contains the at

most n+2 number of bits. It performs the compression by

replacing each of the unique word with its equivalent code

words and stores the compressed data.

2.5 .Huffman Decoding

This block receives the encoded data bits in the

form of serial bits and are decoded back to get the original

data. This block consist of Comparator and Look up table.

Comparator compares the received compressed data from

the encoder with the predefined code words stored in LUT.

Look up table (LUT) stores a predefined code sequence

from which the comparator takes the data and uses for

decoding. Huffman decoding is done by using a state

diagram approach and decoding of compressed data is done

based on comparison of each incoming bit with that of the

available lookup table of code vectors. Each bit of data

after reception is compared with the code vectors of the look

up table , if matched its state is returned to initial state else

it state goes to some other state. If the data does not match

746

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20627

with any of the code vectors from the lookup table, it

accepts the next occurring data and tries to match with the

code vector from the lookup table. Once a match of code

vector with the received data pattern occurs, the control is

transferred to the initial state, indicating that the data has

been matched and the decoder is ready to accept the next

bit. If unmatched, control is transferred to next state and

again makes an attempt to match the look up. Similar

process continues till the complete incoming data is

decoded.Once the complete data has been received,decoding

of compressed data has done as said earlier by the state

diagram approach and the decoded data is said to be

decompressed and the complete process of decoding is

called as decompression of data.

Figure 7.

FSM for Huffman Decoder

Figure

8.State diagram

3. EXAMPLE FOR HUFFMAN ENCODER AND

 DECODER

Table 1. Input sequence considered

Table 2.Huffman Encoder output data

747

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20627

Table 3.Look up table

Table 4.Huffman decoder output data.

4. SIMULATION RESULTS

Figure 9.Input memory element

Figure 10. Occurrence SCalculator

Figure 11.Occurrence calculator

Figure 12. Adder sub module

Figure 13.Code generator

Figure 14.Huffman Encoder and Decoder

748

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20627

Figure 15.Huffman Encoder and Decoder

5. CONCLUSIONS

 In this paper, we designed Huffman encoder and

decoder using VHDL. ModelSim simulator tool is used for

functional simulation and verification of the encoder &

decoder modules. The Xilinx Synthesis Tool (XST) is used

to synthesize the complete design on Xilinx family FPGA.

Xilinx Placement & Routing tools will be used for backend,

design optimization and I/O routing. Further work is to

apply Huffman Coding in text, image, and video

compression such as JPEG,MPEG2,etc.,and also used in

digital compression devices. It is often combined with other

coding schemes because of enhanced compression ratio and

entropy.

6. REFERENCES

1) M. Y. Javed and A. Nadeem.: „Data compression through adaptive

huffman coding scheme‟. In Proceedings of TENCON 2000, volume
2, pages 187.190, Sep. 2000.

2) MacKay, D.J.C.: „Information Theory, Inference, and Learning

Algorithms‟. Cambridge University Press, 2003.
3) R. Hashemian,: „Memory efficient and high-speed search Huffman

coding‟. IEEE Trans. Commun. 43 (1995) 2576- 2581.

4) D.A. Huffman.: „A Method for the Construction of Minimum-
Redundancy Codes‟. Proceedings of the I.R.E., September 1952, pp

1098–1102.

5) XILINX Documentation, System Generator User Guide, Version 8.1.
6) Kesab K. Parhi. 1992.: „High-speed VLSI Architectures for Huffman

and Viterbi Decoders‟.IEEE TRANSACTION ON CIRCUITS AND

SYSTEMS-11: ANALOG AND DIGITAL SIGNAL PROCESSING.
39, no. 6 (JUNE): 385-391.

7) Richard W. Hamming, (1986).: „Coding and

8) Information Theory‟. New Jersey: Prentice-Hall.

749

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20627

