

FPGA Implementation Of SPI To I2C Bridge

Abhilash S.Warrier

VLSI Design

VNIT Nagpur

Akshay S.Belvadi

VLSI Design

VNIT Nagpur

Dhiraj R.Gawhane

VLSI Design

VNIT Nagpur

Babu Ravi Teja K

VLSI Design

VNIT Nagpur

Abstract

Today’s electronic system is not a standalone

unit instead working in a group, where each

IC communicates with each other very fre-

quently, it is necessary to have an efficient

simple protocol for effective communication

among these components, the major area being

serial communication. SPI and I2C are two widely

accepted and practised global standards for both

inter-chip and intra-chip serial communication for

low/medium bandwidth. The paper discusses the

two protocols in detail and a SPI to I2C Bridge.

Design and FPGA implementation of this bridge is

in conformity with design reuse methodology.

Key words- I2C, SPI, SPI to I2C bridge, FPGA.

1. Introduction

For low end low/medium bandwidth serial

communication the two worldwide accepted

standards are SPI and I2C. The two protocols

have their own prospects and are strong com-

petitors to each other. A comparative study of

the two protocols is discussed in [3]. By and

large there is a high probability that they coexist

in the digital world. With a lot of peripheral de-

vices from a variety of vendors there is always a

choice to be made between the two. The major

emphasis of the paper is to implement a SPI to

I2C Bridge through which there can be a seam-

less communication between the I2C SLAVE

and the SPI MASTER. However, there is a

large area overhead involved in this process.

The paper initially discusses the major aspects

about the I2C and SPI protocols. The detailed

explanation of SPI and I2C and their specifica-

tions can be found in [7] and [6] respectively.

The later part explains the SPI to I2C Bridge

modelled as a FSM.

2. Inter Integrated Circuit (I2C)

 I2C is a serial, short range low level com-

munication protocol with multi master capabil-

ity. It is the simplest of its kind with only two

external world connections viz. SDA (Serial

Data) and SCL (Serial Clock) line.

The three modes of operation of I2C are:

a. Standard mode - data transfer up to 100

Kbps

b. Fast mode - data transfer up to 400 Kbps

c. High Speed mode - data transfer up to 3.4

Mbps.

The maximum device driven capability is lim-

ited just by the total drivable load capacitance

which should not exceed 400pF.

Fig.1. I2C block diagram

 Data transfer takes place via the SDA

and SCL lines. Any data transition can occur on

SDA line only when the SCL line is on Logic

Low and all these transitions have to settle

down before the SCL goes to Logic high. I2C is

a bit oriented bi-directional protocol there by

facilitating a Serial Full Duplex communication

between the master and the slave.

Fig.2 DATA transfer using I2C

Since, it is a bit-oriented protocol there are spe-

cial conditions defined for the START and

STOP conditions of the data transmitted on

SDA line. START is identified when there is a

falling edge (HIGH to LOW) detected on SDA

line when SCL is in Logic HIGH state. STOP is

identified when there is a rising edge (LOW to

HIGH) detected on the SDA line when SCL is

in logic HIGH state.

Fig.3. START and STOP conditions in I2C

2192

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110708

There is another special condition in which a

START condition is repeated instead of a STOP

following a START and it is treated as a Re-

peated START case which is logically equal to

a fresh data transfer state. At any given point of
time the I2C bus can be in any of the two states

BUSY: A state after START and before STOP.

IDLE: A state after STOP and before the next

START.

MASTER is any device that which has

control over the SCL line and has the capability

to initiate and terminate a data transfer, it can

also control the addressing of other devices

connected as slaves. SLAVE is just any device

which is just capable of sending or receiving

data and addressed by a MASTER. I2C allows

the master both to transmit as well as receive

data to or from a slave. Multi MASTER Mode

is also allowed. In such a case an ARBITRA-

TION process takes place to decide which mas-

ter is going to control the bus.

2.1 Data transfer on I2C

 Data Transfer is Byte oriented and the num-

ber of data Bytes transmitted per transfer is un-

restricted. Data bits are transferred one bit per

clock cycle after the START condition. Byte is

a combination of eight data bits and an Ac-

knowledgement bit is necessary after every

byte. Transmission takes place as MSBF (Most

Significant Bit First). Initially MASTER sends

the Address of this slave with which it wants to

initiate a communication and the further com-

munication depends on the Acknowledgment

bit from SLAVE.

2.2 Acknowledgement

 When the Master has completed 8 data bits

transmission, it will let the SDA line be in logic

HIGH state. During the next clock pulse if the

SLAVE pulls down the SDA line when the SCL

is high, then it is an Acknowledgement received

from the slave that the data has been received.

The Slave can now Hold the SCL Line in Logic

Low state which will push the master into Wait

state else the master will continue with the next

set of data. To give a NACK (Negative Ac-

knowledgement) the slave will simply let the

SDA line to remain in its logic HIGH state dur-

ing the ninth clock pulse. The Master in such a

case will generate either a STOP or a Repeated

Start condition. In case, if the MASTER is act-

ing as a receiver for a slave transmitter, the

MASTER signals the end of data transmission

by not acknowledging the last Byte of the data

stream. The slave releases the SDA line and

MASTER can now generate a STOP or Re-

peated Start condition.

2.3 Arbitration

I2C being Multi-Master capable, has a well-

defined Arbitration process. Any Master which

wants to transmit data will search for the avail-

ability of a free SDA line, if one or more mas-

ters have data to be sent. They generate the

START bit at the same instant and now there is

a resource conflict. The master which is trying

to drive the SDA line will sample the value of

SDA and compares it with what it has to send.

If they match it continues to transmit, else it has

lost the arbitration process for that Byte transfer

period and may generate clock pulses on SCL

till the end of that Byte period. If the losing

master has a slave mode too then it immediately
switches to its slave mode. Since, the first ever

transmission is the address of the slave with
which the connection is to be established and

both the masters want to communicate with the

same Slave, then the arbitration continues. Ar-

bitration takes place on the data bits if the mas-

ter is the Transmitter or on Acknowledge bits if

the master is working as a receiver. Since the

data on the SDA line is the same as that of the

winning MASTER, ideally no data is lost dur-

ing the Arbitration process. Arbitration is only

for masters and slaves can‟t take part in it.

2.4 Synchronization

All the Masters can generate its own clock but

for a bit by bit arbitration process it is necessary

to have a well-defined clock. For all the devices

that are willing to communicate via the SDA of

I2C, their clock signals are wired together and

the SCL will be in LOW state for duration equal

to the Maximum Clock LOW period and will be

in logic HIGH for a duration which is the

minimum Clock HIGH.

2.5 Frame format

The I2C connected devices are capable of two

way communication with their slave. The

MASTER can either act as a transmitter or a re-

ceiver, in the sense that it can either write data

to a slave or read data from the slave. Every

slave connected to the bus has a unique address

in a 7 bit address format. The eighth bit of the

first transmitted byte will tell whether the

MASTER is going to work as a Transmitter or a

Receiver. If eighth bit is a zero it says that

MASTER is transmitter else it‟s a receiver.

2193

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110708

MASTER acting as transmitter

S Slave address 0 A DATA A DATA N P

MASTER acting as Receiver

S Slave address 1 A DATA A DATA N P

Fig.4. Frame formats of I2C Master acting as transmitter and receiver

S- Start indication

P- Stop condition

A- Acknowledgement

N – Negative Acknowledgement

3. Serial Peripheral Interface (SPI)

 SPI facilitates a Synchronous, Duplex and

Serial Communication between the Peripherals.

It supports up to 400 Mbps Data transfer speed

between various peripherals and the Microproc-

essor. Similar to its counterpart SPI also pro-

vides a simple interface with only four pins to

the external world MISO, MOSI, SCLK and

SSN.

3.1 Pin description

SCLK: Serial Clock line used to synchronize

the data transfer. Master only can generate the

Clock.
MISO: Master In Slave Out also referred as Se-

rial Data Input (SDI) line used to send data to

the master from a slave.

MOSI: Master Out Slave In also referred as Se-

rial Data out (SDO) line used to send the data

from master to slave.

SSN: Slave Select signal which is active low

line and for each device connected on the bus

the master dedicates a special line for each

slave entity. So to drive „n‟ no. of slaves on the

bus master should have „n‟ SSN lines.

3.2 SPI registers

 There are various internal registers in the

SPI they are as follows in the increasing order

of their addresses: SPI Control Register 1, SPI

Control Register 2, SPI Baud Rate Register, SPI

Status Register and SPI Data Register. The De-

tailed Description of these registers is discussed

elsewhere [7].

3.3 Data transfer

Data Transfer between MASTER and SLAVE

takes place with the help of a SPI Data Register.

This Register is connected as a shift register and

is connected to MOSI pin in MASTER and

MISO pin in the slave. The data is clocked in

and out of the register in FIFO format. When a

Device is not selected it has to Tri-state the

MISO line. There is an option of multiple re-

ceivers by Buffering but multiple transmitters is

not allowed because there will be contention

problem on the Bus.

Fig.5. SPI data transfer block diagram

3.4 Synchronization

 During SPI transmission Data is handled se-

rially at both the master and slave sides. The

SCLK line supervises the data transfer on both

the data lines. SPI Control register 1 has two

bits CPOL and CPHA which will decide

whether the clock signal is an active HIGH or

Active LOW signal and on which edge the data

transfer takes place. CPHA = „0‟ indicates the

data is to be sampled on Leading edge and

CPHA=‟1‟ Indicates Data is to be sampled on

trailing edge. Both the MATER and SLAVE are

to be initialized with the same values for com-

munication.

2194

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110708

Fig.6. Synchronization and data transfer in SPI

4. SPI to I2C Bridge

Fig.7 Block diagram of SPI to I2C Bridge

 The SPI MASTER which wants to drive the

I2C slave does so via the interface module. It

includes a SPI SLAVE directly driven by its

MASTER and our SPI to I2C Bridge interfaces

SPI SLAVE and the I2C MASTER which in

turn drives its SLAVE as shown in fig.7. The

designed SPI to I2C Bridge acts a converter and

bridges the SPI slave to an I2C master. The

state diagram of the device is shown in fig. 8.

Fig.8. State diagram of the SPI to I2C Bridge

 The SPI to I2C Bridge waits in READY

state and continues to be in that state as long as

spi_busy is HIGH or spi_ready is LOW. If there

is an event which makes spi_busy LOW (saying

that the SPI slave is not busy) and spi_ready

HIGH (which indicates a new data arrival from

the SPI master) then it receives data from the

SPI Slave thereby entering into SPI_RX state.

Then SPI data is latched. Then it checks for a

I2C transaction enable bit which is 25
th

 bit of

received data and if it is HIGH it proceeds to

the next state the I2C state else it will get back

to the READY state .When in I2C state it waits

for the I2C data transfer to be finished. If the

SPI is not busy then it again moves to the ready

state after writing the I2C transaction to the

slave-transmission-register.

5. Results and discussion

The designed SPI to I2C Bridge has been coded

using VHDL and simulated using Model-sim

SE 6.2b. Synthesis is done using Xilinx ISE

Design suite 14.2 and implemented on Spartan

3E FPGA.

Fig.9. RTL schematic of the SPI to I2C interface

module

6. Conclusions and future scope

 The paper has shown FPGA implementation

of SPI to I2C Bridge. This enables I2C slaves to

be driven by SPI master. This will introduce a

large area over head with the bridge consuming

more area than the I2C and SPI itself .So power

area optimization of this bridge is a challenge

for the designers.

2195

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110708

Fig.10. Design summary for SPI to I2C Bridge generated using Xilinx ISE

Fig.11. Synthesis report – FSM and Timing

summary

Acknowledgement

The Authors would like to thank the Depart-

ment of Electronics Engineering, Visvesvaraya

National Institute of Technology, Nagpur for

Technology Support.

References

[1] Prof. Jai Karan Singh et. al. Design and im-

plementation of I2C master controller on

FPGA using VHDL International Journal of

Engineering and Technology (IJET), Aug-Sep

2012 , 4(4),162-166.

[2] Arvind Sahu et.al. An Implementation of I2C

using VHDL for DATA surveillance. Interna-

tional Journal on Computer Science and Engi-

neering (IJCSE), May 2011,3(5),1857-1865.

[3] A.K. Oudjida, M.L. Berrandjia, R. Tiar,

A.Liacha, K. Tahraoui, “FPGA Implementa-

tion of I2c & SPI Protocols: A Comparative

Study” Electronics, Circuits, and Systems,

2009. ICECS 2009

[4] F. Leens, “An Introduction to I2C and SPI Pro-

tocols,” IEEE Instrumentation & Measurement

Magazine, , February 2009, pp. 8-13.

[5] J.M. Irazabel & S. Blozis, Philips Semiconduc-

tors, “I2C-Manual,”Application Note, ref.

AN10216-0, March 2003.

[6] Philips Semiconductors, “The IIC-Bus Specifi-

cations,” version 2.1, January 2000.

[7] Motorola Inc., SPI Block Guide V03.06, Feb.

2003.

2196

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110708

