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Abstract: This project aim is at increasing the security 

and compression. FPGA implementation of VLSI 

Architecture of Secure Arithmetic Coding improves 

the compression. In the traditional Secure Arithmetic 

Coding has no security.  

Arithmetic Coding is method for lossless data 

compression. Arithmetic Coding is a Variable-length 

entropy encoding that converts a string into another 

representation that represents frequently used 

characters using fewer bits and infrequently used 

characters using more bits, with the goal of fewer bits 

in total. As opposed to other entropy encoding 

techniques that separate the input message into its 

component symbols and replace each symbol with a 

code word, arithmetic coding encodes the entire 

message to a single number. Although arithmetic 

coding provides no security as traditionally 

implemented. In this project modified scheme that 

offers both security and compression. The system 

utilizes an arithmetic coder in which the overall length 

within the range [0, 1) allocated to each symbol is 

preserved. Permutations are applied at the input of the 

Encoder for the security. The overall system provides 

a simultaneous security, compression.  

Key words: security, permutation, compression, 

encoding and decoding, VHDL coding, spanton 3 kid. 

 

I.  INTRODUCTION 

Arithmetic coding has been developed 

extensively since its introduction several decades ago, 

and is notable for offering extremely high coding 

efficiency. While many earlier-generation image and 

video coding standards such as JPEG, H.263, and 

MPEG-2 relied heavily on Huffman coding for the 

entropy coding steps in compression, recent 

generation standards including JPEG2000 and H.264 

utilize arithmetic coding. This has led to increased 

interest in arithmetic coding both in the context of 

image coding, and also more generally for other 

applications. While arithmetic coding is extremely 

efficient, and others have noted, as traditionally 

implemented it is not particularly secure. The issue of 

providing both compression and security 

simultaneously is growing more important given the 

increasing ubiquity of compressed media files in a 

host of applications including the Internet, digital 

cameras, and portable music players, and the common 

desire to provide security in association with these 

files. When both compression and security are sought, 

one approach is to simply use a traditional arithmetic 

coder in combination with a well-known encryption 

method such as the Advanced Encryption Standard 

(AES). However, while this will certainly meet both 

goals, it fails to take advantage of the additional 

design flexibility and potential computational 

simplifications that are available if the coding and 

encryption are performed jointly.  

Traditional arithmetic coding provides 

essentially no security in the face of a chosen plaintext 

attack, in which an attacker has the ability to specify a 

sequence of input symbols and observe the 

corresponding output, and to repeat this process an 

arbitrary number of times. For example, in a binary 

system with two symbols A and B, it is a simple 

matter to choose input sequences that, in combination 

with their outputs, reveal the assumed probabilities of 

each symbol in the arithmetic coder as well as the 

order of the intervals. That information can then be 

used to decode any output from the encoder.  

The issue of increasing the security of arithmetic 

coding has received relatively little attention in the 

literature. Bergen and Hogan have considered the 

problem of inferring the underlying symbol 

probabilities and partitioning of the [0,1) interval 

using observations of an arithmetic encoder output. 

Liu presented a system using table-based bit sequence 

substitutions to provide encryption during arithmetic 

coding. More recently, a randomized arithmetic 

coding (RAC) system based on random swapping of 

the two intervals in a binary arithmetic coder was 

described by Grangetto who utilized this approach to 

encrypt JPEG 2000 coded images. The systems in [7] 

and [8] modify the traditional arithmetic coder by 

randomly permuting the intervals in accordance with a 

key-generated shuffling sequence. The shuffling 

sequence consists of one bit per encoded symbol that 
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determines whether the binary intervals are swapped 

or not when encoding that symbol. The authors of that 

paper were targeting applications to JPEG2000-

encoded images in which a potential attacker would 

not have access to the original image nor be in a 

position to provide a particular image to be encoded. 

Thus, robustness to plaintext attacks was not a goal in 

[7] and [8]. Indeed, if an attacker of the RAC was 

granted access to the RAC encoder, removed from the 

larger JPEG2000 context for which it was designed, 

the number of trials needed to determine an N-bit 

shuffling sequence would be on the order of N, since 

the N output pairs N corresponding to inputs that 

differ in exactly one symbol can be compared. Such 

comparisons, however, would not reveal the 

underlying key used to generate the shuffling 

sequence, so if care was taken to modify the key or 

avoid re-initialization of the shuffling sequence in 

subsequent uses of the RAC encoder, substantially 

higher robustness would result. In [9], we specifically 

consider the goal of encryption, and describe an 

arithmetic coding (Interval Splitting AC) approach in 

which the intervals associated with each symbol, 

which are continuous in a traditional arithmetic coder, 

can be split according to a key known both to the 

encoder and decoder. This removes the constraint that 

the intervals corresponding to each symbol be 

continuous, and instead uses a more generalized 

constraint that the sum of the lengths of the one or 

more intervals associated with each symbol be equal 

to its probability.  

The present work aims to provide an 

arithmetic coding system that is secure against a 

chosen plaintext attack. Interval splitting within the 

arithmetic coder and permutation steps at the input 

and output are utilized to construct a system with 

security that increases exponentially with the length of 

the shorter of the input block size and the key 

sequence. While all of the methods described here can 

be applied for coding of source alphabets with any 

size, we address the case of binary systems here to 

simplify the discussion and illustrations.  

 

II. SYSTEM DESCRIPTION 

 

The  block diagram of the secure arithmetic 

coding system. The system consists of a first 

permutation step applied to the input sequence, 

arithmetic coding using interval splitting, and a 

second permutation step applied to the bits produced 

by the coder. A key sequence is input to a key 

scheduler which in turn provides key information to 

both permutation steps and to the interval splitting 

arithmetic coder. The key scheduler utilizes 

information from the split AC encoder output. The 

permutation steps in this system are similar to the 

Shift Row Transformation in AES in that the rows of 

a block of data are shifted cyclically. The main 

difference is that in the system of Fig. 1 row and 

column shifts are shifted cyclically by different 

amounts according to key values, in contrast to the 

corresponding step in AES in which the shifts are 

predetermined [10]. 

 

Data Compression Techniques: 

Data compression is the "compression ratio", or ratio 

of the size of a compressed file to the original 

uncompressed file. For example, suppose a data file 

takes up 100 kilobytes (KB). Using data compression 

software, that file could be reduced in size to, say, 50 

KB, making it easier to store on disk and faster to 

transmit over an Internet connection. In this specific 

case, the data compression software reduces the size 

of the data file by a factor of two, or results in a 

"compression ratio" of 2:1. 

1.  Lossless data compression 

2.  Lossy data compression 

Lossless data compression is used when the data has 

to be uncompressed exactly as it was before 

compression. Text files are stored using lossless 

techniques, since losing a single character can in the 

worst case make the text dangerously misleading. 

Archival storage of master sources for images, video 

data, and audio data generally needs to be lossless as 

well. However, there are strict limits to the amount of 

compression that can be obtained with lossless 

compression. Lossless compression ratios are 

generally in the range of 2:1 to 8:1. 

Lossy compression, in contrast, works on the 

assumption that the data doesn't have to be stored 

perfectly. Much information can be simply thrown 

away from images, video data, and audio data, and 

when uncompressed such data will still be of 

acceptable quality. Compression ratios can be an 

order of magnitude greater than those available from 

lossless methods.   

The question of which is “better”, lossless or 

lossy technique, is pointless. Each has its own uses, 

with lossless techniques better in some cases and 

lossy techniques better in others. In fact, as this 

document will show, lossless and lossy techniques are 

often used together to obtain the highest compression 

ratios.  

Introduction to Arithmetic Coding: 
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Before jumping into the fray and starting 

with the explanation of the encoding algorithm, first 

we introduce some basic terms commonly used in 

data compression. They will be used throughout the 

whole paper. Our goal is to compress data, which 

might either be stored on a computer-readable media 

or be sent over some form of stream. This data could 

represent anything, reaching from simple text up to 

graphics, binary executable programs etc. However, 

we do not distinguish here between all those data 

types. We simply see them all as binary input. A 

group of such input bits is what we will refer to as a 

symbol. For instance one could think of an input 

stream being read byte wise, leading to 28 = 256 

different input symbols. For raw text compression, it 

could also suffice to take an alphabet of 128 symbols 

only, because the ASCII code is based on a 7-byte 

structure. 

Foundations: 

DEFINITION 1 (ALPHABET AND SYMBOL) 

We call a finite, nonempty set an ALPHABET. The 

LENGTH or cardinality of an alphabet A will be 

referred to as |A|. The elements {a1, . . . ,am} of an 

alphabet are called SYMBOLS. 

Also we assume that A is an ordered set, so giving 

{a1, . . . ,am} a distinct order. We already mentioned 

above that the Arithmetic Coding algorithm works 

sequentially. Thus we need some notion of what the 

sequential input and output of the encode/decoder 

might look like. This leads us directly to the notion of 

a SEQUENCE: 

DEFINITION 2 (SEQUENCE) 

A series S = (s1, s2 . . . ) of symbols si from an 

alphabet A is called SEQUENCE. In the latter we will 

also use the shortcut S = s1s2 . . . 

In analogy to the definition of |A|, |S| is the symbol for 

the length of S, provided that S is of finite length. 

However, |S| < ¥ will be a general assumption 

henceforth, since most of the corollary would 

otherwise make no sense. Please note that this 

representation of data is somehow natural, since most 

human-made media can be read in a sequential order. 

Just think of books, videos, tapes and more. Also, 

when looking at a sequence, one can calculate a 

distinct probability of each symbol of the alphabet to 

occur in this very sequence. This probability might be 

very unevenly distributed, a lot depending on the 

application domain. For instance consider the letter e, 

which is much more common than z in the English 

language.3 Since Arithmetic Coding depends a lot of 

such statistical measures in order to achieve 

compression, we introduce the PROBABILITY of a 

symbol as follows: 

DEFINITION 3 (PROBABILITY) 

Let  S = (s1, . . . , sn) a finite-length sequence with 

 |S| = n over A = {a1, . .,am}.     

Also let  |S|ai the frequency of ai in S. Then we define 

P(ai) :=|S|ai/n  as the PROBABILITY of ai (in S).  

From the definition, we can directly conclude that 

P(ai) is always contained in the interval [0,1) for any 

symbol, whereas the sum over all such probabilities is 

always        

m

i
aiP

1
)( = 1.  

Please note that this interval is open-ended, because it 

would make no sense to encode a constant sequence 

holding only a symbol of probability 1, simply 

because in that case the full content of the sequence 

would have been known beforehand already. We will 

later on make use of this property in certain 

conclusions. 

Recapturing the example of e/z however, we would 

like to emphasize that the probability of a symbol 

might heavily depend on its context. If one considers 

e and z as symbols for bytes in a binary executable for 

example, they might be rather evenly distributed. Also 

one could even show that certain symbols are more 

likely to occur in scientific text than newspaper 

articles and so forth. Some data is subject to 

interpretation: E.g. consider the sequence 

1111131311. It could be interpreted as a sequence of 

symbols 1,3 or 11,13. At least this example proves 

that we need some kind of unambiguous rule of how 

probabilities are related to symbols. This relation 

between symbols of an alphabet and their probability 

is commonly known as a MODEL in terms of data 

compression. 

DEFINITION 4 (MODEL) 

Let A an alphabet. A MODEL M is a function  

             M : A  -→[0,1) : ai  -→PM(ai) , 

which maps a probability PM(ai) to each symbol ai   

A. 

This probability might be estimated / calculated and 

does not necessarily have to match the real probability 

of the symbol, P(ai). Indeed in most cases it does not. 

Please also note that an alphabet is not restricted to 

only hold symbols of length 1. In the example above, 

employing 11 and 13 as symbols we already got a 

picture of that. If one estimates the probability of a 

given symbol not only by looking at the symbol itself 

but also at the context given by the last n symbols 

seen, one speaks of an Order -n model. For instance 

the average probability of the letter u to occur in any 

German text is only about 0.0435. If one considers its 

probability to occur after the letter q however, this 

value raises to nearly 1! As one can see already now, 

an increased value of n might lead to better 

predictions of probabilities.  

As already briefly mentioned above, the probability 

distribution that is given by the interpretation of a 

sequence under a certain model, matches the real 

probability distribution at best by chance. Usually this 

will not be the case. For instance there will be almost 
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no German text fulfilling the distribution given by 

Table 1 exactly, but rather approximately or even 

worse. To distinguish the probability induced by the 

model from the real one, we label the former with 

PM(ai) in order to emphasize the dependency of the 

model and in order to distinguish from the latter, 

given by P(ai).  

So we conclude that a model can be seen as an 

interpretation of an arbitrary dataset. A simple model 

could for instance be given by the probability 

distribution of Table 1. This table shows the 

probabilities of most letters of the German alphabet to 

occur in an average German text. Probably the clever 

reader can already anticipate now, that the 

compression ration will heavily depend on how good 

this model matches the reality.  

This leads to the need to define some kind of measure 

of compression, enabling us to actually compare the 

efficiency of different compression approaches. A 

natural measure of how much information is 

contained in a given sequence of data is called the 

ENTROPY.  

 

DEFINITION 5 (Entropy) 

Let S a sequence over alphabet A = {a1, ...,am}. The 

ENTROPY HM(S) of the sequence S under model M 

is defined as 

           HM(S) = 


m

i

aiP
1

)(  log2 (
)(

1

aiP
)    

The unit of the entropy is [bits/symbol] because the 

formula only refers to probabilities as relative 

frequencies rather than absolute ones. 

By the formula one can easily see that with our 

definition, the entropy of a sequence depends on the 

model M being used, since the PM(ai) are the 

probabilities under that model. Here, log(1/PM(ai)) can 

be interpreted as the minimal length of a binary 

symbol for ai, while the factor P(ai) (being the real 

probability of ai) can be interpreted as probability of 

requiring the encoder to binary encode this very 

symbol. 

Considering a model as perfect, one obtains the 

correct probability distribution leading to the natural 

form of the entropy: 

             H(S) = )
)(

1
(log)( 2

Aa aiP
aiP  

This kind of entropy is depended on the input data 

only and no subject to interpretation. However the 

interested reader might wish to know that most of the 

literature about Arithmetic Coding sloppily does not 

distinguish between both kinds of entropy. 

Encoder and Decoder: 

DEFINITION 6 (Encoder & Decoder) 

An algorithm which encodes a sequence is called an 

ENCODER. The appropriate algorithm decoding the 

sequence again is called a DECODER. In opposite to 

the input sequence S we refer to the encoded sequence 

which is output of the encoder and input for the 

decoder by Code(S) or C(S) for short. The application 

of both algorithms is referred to as ENCODING 

respectively DECODING. We want to emphasize that 

we use the notion of an algorithm in its most natural 

way, meaning a general sequence of steps performed 

by any arbitrary computer. By purpose we do not limit 

ourselves to a certain implementation at this stage. An 

encoder could be any algorithm transforming the input 

in such a way that there is a decoder to reproduce the 

raw input data. However at the end of this paper we 

present the full VHDL source code of a 

encoder/decoder pair (also referred to as CODEC), 

which employs Arithmetic Coding. The following 

code examples are taken from this reference 

implementation. 

In the theory of data compression one often 

distinguishes between lossy and lossless compression 

algorithms. Especially analogous signals are often 

encoded in a lossy way because such data is in the end 

meant to be interpreted by some kind of human organ 

(eye, ear,...) and such organs are very limited in a 

sense that they simply do not recognize certain levels 

of noise or distortion at all. Of course lossy 

compression algorithms can reach better compression 

ratios by losing some accuracy. However we are not 

going to consider any lossy compression in this article 

and rather concentrate on lossless compression, that 

can be applied to all kinds of data in general. Thus we 

are only going to consider codecs that are able to 

reproduce the input data up to the last symbol. In a 

nutshell our resulting Code(S) will be proven lossless 

and optimal. 

 

 Design of Secure Arithmetic Coding: 

The main object of the Secure Arithmetic 

Coding is to implement Security as well as 

Compression of the given input data for the data 

communication. The compression is done by Entropy 

Encoding based Arithmetic coding. In the Arithmetic 

Coding probabilities are calculated for the calculation 

of Entropy (H) units are bits per symbol. 

Specifications: 

 Security 

 Compression(Arithmetic Coding) 

 Encoding  

 Decoding 

Random sequence generation: 

 Input data length is 16bit data, this 16bit data is 

generated by the LFSR (Linear Feed Back Shift 

Register). In this LFSR 16 Flip-Flops and 3 xor gates 

are present to generate 16bit data which is used as a 
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input data. In this LFSR D-FFs are used to store and 

generation of input data for the random 16bit 

sequence generator  

 

Data Security: 

 In the Secure Arithmetic Coding project, 

Arithmetic Coding itself provides security but further 

security purpose permutation based operation which is 

shown in fig 3.2 is performed on input data. In this 

project input data length is 16-bit data, in order to 

keep input data secrecy, applying column and row 

circler shift on the 4x4-matrix form of input data. 

Circler shifting operation is based on key which is 

length of 8-bits. 

For example 

Input 16 bit data             1100000011010101   

Column circular shift key   D1 = 10110001 

Row circular shift key        D2 = 01110110 

 

In the input data 4x4-matrix, 4 columns and 4 rows 

are present Circler shifting range maximum is 3 and 

minimum is 0 circler shifts, bit representation 2bit for 

each column and row. In the above D1 is for column 

shift and D2 is for row shift for the matrix. 

 Input data is secured by this 

permutation based way, this secured data is giving to 

Arithmetic Coding process as a input. 

  

 
 

 

Fig: Permutation operation on the input data 

 

Data Compression: 

 Data Compression comes under lossless data 

compression technique as already described. In this 

compression technique Arithmetic Coding is one of 

the techniques from Entropy Encoding. This Entropy 

Encoding is a one type which is from lossless data 

compression technique.  

 The Arithmetic Coding is completely 

depends on the Entropy calculation. In the Entropy 

calculation, input taken as 16-bit data which is come 

from the permutation output.  

 

Entropy: 

 Entropy nothing but, representation of the 

symbol by the binary bits that means for one symbol 

how many bits are used to represent, the entropy units 

are bits/symbol. The Entropy(H(S)) calculations are 

done by the mathematical formula which is given in 

the below 

                H(S) = 


m

i

aiP
1

)(  log2 (
)(

1

aiP
) 

Where p(ai) represents probability of the symbol that 

is in the given input sequence how many times the 

symbol repeats the probability will tell. Log base 2 

represents the symbol with 2 binary bits. Summation 

for calculation of entropy value that is for i=1 to m. 

Symbol Identification: 

 In the given input 16bit sequence 

00,01,10,11 bits are represented with z0, zL, zG, z1 

symbols respectively. Those given input 16bit 

sequence, what are the symbols present by the 

diagram symbol identification which is shown in fig 

3.3. Here NOR, AND, NOT gates are present for 

identification of symbols. For this circuit 2bits are 

giving as input, to identify the symbol. Form 16bit 

sequence each 2 bits are giving as input, to identify 

the symbols for the entire 16 bit sequence. How many 

symbols are present in the 16bit sequence finding out 

by the symbol identification circuit.       

                                                                                                                                                                                                                                                                                                                                                                           

                           
Symbol Count: 

 Symbol Count diagram which is shown in fig 

3.4 counts the symbols, that is  how many symbols are 

present in the 16bit sequence. Symbol count operation 

one counter for counting perpes and multiplexer is 

used. Multiplexer operation is to select the 2bits at a 

time and it gives to the symbol count. Finally the 

symbol count will count the symbols present in the 

input sequence. The results of the symbol count block 

are z0, zL, zG, z1 respectively.                   

 

Probability Calculation: 

 In the given sequence, occurring of symbols or 

repeated symbols value will tell by the calculation of 

probability. Probability value occurring in between 0 

and 1 that is [0, 1). In the probability calculation every 

symbol value lies between 0 and 1. In above 

mentioned [0, 1) means occurring of probability value 

must be less than zero(0) and less than or equal to 

one(1). In the probability calculation design 

predefined the values of all 8 symbols are kept in the 

LUT (Look Up Table), from the LUT corresponding 
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values for every symbol probabilities are taken 

respectively.  

 Probability calculations are done for z0, zL, 

zG, z1 respectively, with the below fig 3.5. In the 

LUT zero to seven address locations are present and 

in that address location 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 

8/8 values are present respectively. Whenever a 

symbol get repeated or unrepeated for that particular 

symbol get the corresponding probability value from 

the LUT respectively. Then the resultant values are 

P0, PL, PG, P1 are outputs for the probability 

calculation. In this diagram fig 3.5 same as previous 

diagram fig 3.4 but here taking the probability values 

extra.                  

 

All the calculated probability values are giving as 

input to the Entropy calculation diagram which is 

shown in the fig 3.6. Entropy calculation value is bits 

per symbol. That is for one symbol how many bits are 

used to represent that particular symbol. Here 

representation of one symbol with 2bits before 

Entropy calculation. After the Entropy calculation bits 

to represent a symbol are must be less than 2bits 

which are used to represent before Entropy 

calculation, then only compression of bits to represent 

a symbol is down. 

 

VLSI Architecture for Entropy Calculation: 

Entropy calculations are down by the formula  

            H(S) = 


m

i
iaP

1

)(  log2 (
)(

1

ai
P

) 

Here probabilities calculated from the fig 3.5 that is 

probability calculation block diagram. Here total 

symbols are 8, total number of input sequence is 

16bits, and for one symbol representation will take 

2bits as already described above. 

In the Entropy calculation log2 (
)(

1

ai
P

) is 

calculated, and kept in the LUT. The result of log2 (

)(

1

ai
P

)   and p(ai) are multiplied and the final result 

is Entropy value. In the fig 3.6 shows Entropy 

calculation value which is compressed the entire 16bit 

sequence into one number represented in base b for 

one symbol. To calculate the Entropy value to 8 

symbols, then Entropy value per one symbol 

multiplied with 8 symbols then the resultant value is, 

if the resultant value is below the sequence 16bit 

length then that is compressed otherwise not 

compressed. 

For example  

 

Developed Architecture for Compression: 

 The Secure Arithmetic Coding will give the 

input data compression that is how many bits are 

reduced from the given input data sequence. Here 

below shown fig. is VLSI architecture for the 

Compression of input data sequence. After getting 

Entropy value multiplied by total number of symbols 

then the resultant value that is, it represents the bits 

which are present after the compression. In this 

arithmetic coding fixed number of bits are used at the 

input that input sequence length is 16bit, this 16bit 

input sequence length and compressed bits are 

subtracted then the resultant bits are the bits, which 

are compressed from the total number of input bits. In 

the above example after compression, bits are 14bits 

and the input bits are 16bits then these bits are 

subtracted resultant bits are 2bits. These operations 

are down by the developed architecture for 

compression. 

 

  
 

 

Fig: Developed Architecture for Compression 

Encoding: 
 Arithmetic Coding uses a one-dimensional 

table of probabilities instead of a tree. It always 

encodes the whole message at once. This way it is 

possible to encode symbols using fragments of bits. 

However, one have cannot access the code word 

randomly. Using Huffman-coding, one can specify 

marks that allow decoding starting within the bit 

stream. Of course one can also split messages in 

arithmetic coding, but this limits the efficiency since 

use of bit-fragments on the boundaries is impossible. 

 In the Encoding process after getting the 

probabilities of the symbols, all probabilities fall into 

the range [0, 1) while their sum equals 1 in every case. 

This interval contains an infinite amount of real 

numbers, so it is possible to encode every possible 
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sequence to a number in [0, 1). One partitions the 

interval according to the probability of the symbols. 

By iterating this step for each symbol in the message, 

one refines the interval to a unique result that 

represents the message. Any number in this interval 

would be a valid code. 

 The probability P(ai) to each symbol ai that 

appears in the message. Now we can split the interval 

[0, 1) using these values since the sum always equals 

1. The size of the i−th sub-interval corresponds to the 

probability of the symbol ai. 

For the above example S = “1111010100100101” 

Let the probabilities of the symbols in the message be  

    

    P0 = 0.125;    PL = 0.5;   PG = 0.125;   P1 = 0.25; 

 

Now the interval [0, 1) would be split as emphasized  

Upper and lower bounds: 

The upper and lower bounds of the entire current 

interval called as high and low. The bounds of the 

sub-intervals are calculated from the cumulative 

probabilities: 

 
            0               0.125         0.25                             0.5                                                                  1         

 

       

                    00              10                     11                                                   01 

 

 

Fig : Creating an interval for the symbols 

 

The values high and low change during the encoding 

process whereas the cumulative probabilities remain 

constant6. They are used to update high and low. With 

respect to the previous example, we get the following 

values: Subdivision of probabilities in the above 

equation for the intervals constant table containing the 

cumulative probabilities K(ai). 

             
K(ak) = 



k

i
iaP

1

)(

 
 

 

High                 

1.0 

K(0)                  

0.0 

K(2)                

0.25 

Low                  

0.0 

K(1)              

0.125 

K(3)                  

0.5  

Table: Cumulative probabilities of the symbols 

 

The first step in encoding is the initialization 

of the interval I := [low, high) by low =0 and high = 1. 

When the first symbol S1 is read, the interval I can be 

resized to a new interval I′ according to the symbol. 

The boundaries of I′ are also called low and high. We 

choose I′ to equal the boundaries of S1 in the model. 

However, how are these boundaries calculated? Let S1 

= ak be the kth symbol of the alphabet. Then the lower 

bound is  


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1

1
1
)()(
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i
ki aa KPlow  

And the Upper bound is 
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k

i
i

KPhigh 
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The new interval I′ is set to [low, high). This 

calculation is nothing new, it just corresponds to the 

mathematical method of the construction of Figure 

3.8. The most relevant aspect of this method is that 

the sub-interval I′ becomes larger for more probable 

symbols S1. The larger the interval the lower the 

number of fractional places which results in shorter 

code words. All following numbers generated by the 

next iterations will be located in the interval I′ since 

base interval as used [0, 1) before.  

Next proceed with the second symbol S2 = aj . 

However, now the problem that the partition[7] of the 

interval [0,1), not of I′ which was calculated in the 

previous step. Scaling and shifting the boundaries to 

match the new interval. Scaling is accomplished by a 

multiplication with high−low, the length of the 

interval. Shifting is performed by adding low. This 

results in the equation

low))(high
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K(lowlow)(high
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This rule is valid for all steps, especially the first one 

with low = 0 and high−low = 1. Since no need of the 

old boundaries any more for the next iterations, 

overwrite them with new boundaries:  

 

                     
'

'

highhigh

lowlow




 

These above low’ and high’ equations are calculated  

Developed Architecture of Encoder Low value: 

 In the process of Encoding for each symbol 

upper and lower boundaries are calculated by the low’ 

and high’ equations. Those equations are developed 

by the below diagrams. 

 In the Encoder low value calculation, 

probability values are taken from the cumulative 

probabilities of the symbols which are shown in the 

table 2. Starting low and high values are taken as 0 

and 1 respectively for the first step. And for the next 

steps low and high values are updated from the 

calculation of the low as well as high equations. In the 

Encoder low value diagram high and low values are 

subtracting, and the resulting value and the 
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cumulative probability value are multiplied. Then the 

resultant value and the previous low value are added 

then this is the final value of low’ value. Further 

calculation of low values for the remaining symbols, 

this low values is updating. In the updating process, 

adder having feed back with the register. Here 

calculated low value giving feed back to the low 

which is used for the subtraction with the updated 

value of high value.  

 

Developed Architecture for Encoder High: 

 The same operation is done for the Encoder 

high value calculation which is shown in Encoder low 

is done for the Encoder low value. 

 

Here also high value which is coming as output, 

giving as feed back to the input high value. Here also 

the same operations subtraction and addition feed 

back with register. But here the cumulative 

probabilities are taking differently that is depends on 

the upper and lower boundaries which are taking from 

the cumulative probabilities.  

 

Developed Architecture for Encoder:  
All the values of low and high values for the 

entire symbols, that is for each symbol its 

corresponding low and high values are stored in the 

LUT2(Look Up Table). In this Encoder low, high and 

LUT2 are used. Inputs to these blocks are probability, 

low and high values. The output of this block is 

Encoded value; in the LUT2 for each symbol 

corresponding high and low values are stored along 

with that symbol. All the values are stored in the 

LUT2 for the purpose of Decoding.   

Developed Architecture for Decoder: 

To decode a sequence, one somewhat have to 

apply the encoder backwards. The value V = Code(S) 

is given and with that V restore the original sequence 

S. assume that the message length is known and 

equals l. In the first iteration we compare V with each 

interval I′ = [K(ak −1),K(ak)) to find the one that 

contains V. It corresponds to the first symbol of the 

sequence, S1. To compute the next symbol, modify the 

probability partition in the same way we did while 

encoding: 

))(('
1

lowhighKlowlow ai



 

))((' lowhighKlowhigh ai
  

Where I have to comply 

             
highVlow   

ai is the next symbol in the encoded sequence. This 

time, the start case is again a special case of the 

general formula. The iteration is very similar to the 

encoder. 

          

In the developed architecture for the decoder diagram, 

in this LUT2, comparator and assumed value(V) are 

present. In the LUT2 all the encoded values are 

stored.   

Here assumed value(V) is taking as a average 

value of all low and high values. With V compare the 

low and high values which are in the LUT2 for each 

encoded symbol. If the V present in between the low 

and high value then that corresponding symbol is read 

back. In this manner all the encoded symbols are read 

back with the same procedure. 

 

 

III. EXPERIMENTAL RESULTS 

Compression results: 

Here the wave form fig shows the pre-route 

simulation of the compression block diagram. 

 

 
 

 

Design Implementation summary of the Secure 

Arithmetic Coding: 

The Table 2 shows the Design implementation 

summary of the Secure Arithmetic Coding (SAC). 

This gives a detailed analysis of the number of 

resources available in the FPGA. This Table 2 shows 

the number of resources utilized by the proposed 

architecture. It consists of the Logic Utilization 

summary, Logic Distribution summary, timing 

summary. In this Logic utilization summary consists 

of usage of slices, slice Filp-Flops, Luts, Bonded IO’s 

etc. The Logic Distribution summary shows the 

Additional JTAG gate count for IOBs. The timing 

summary shows the maximum frequency that can be 

generated by using this architecture. 

 

Design Implementation summary of the Secure 

Arithmetic Coding: 
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Table 2: Design Implementation summary of the 

Secure Arithmetic Coding 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

In the present work developed VLSI 

Architecture for Secure Arithmetic Coding can be 

implemented using FPGA based Entropy calculation, 

Encoding and Decoding. The Secure Arithmetic 

Coding is used to compress the given input data and 

also providing the security to the input data. The 

security provided by applying permutations to the 

input data. Compression is done by the Entropy 

calculation. To get the input data back without error 

which is compressed, with the Encoding and 

Decoding operations. By this Secure Arithmetic 

Coding channel band width is reduced by 

compressing the input data. The VLSI architecture of 

the proposed Secure Arithmetic Coding is designed 

using VHDL and is implemented using Xilinx ISE 

navigator and modelsim using Spartan3 device. 

In future, the present work can be extended for 

image compression, reduction in the chip area can be 

achieved this may required a slight increase in hard 

ware requirement. 
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