
FPGA Implementation of VLSI Architecture For Data Compression

Ravinder Tirupati CH. Neelima

Asst. Professor in ECE Department Asst. Professor in ECE Department

MLRIT Hyderabad. MLRIT Hyderabad.

Abstract: This project aim is at increasing the security

and compression. FPGA implementation of VLSI

Architecture of Secure Arithmetic Coding improves

the compression. In the traditional Secure Arithmetic

Coding has no security.

Arithmetic Coding is method for lossless data

compression. Arithmetic Coding is a Variable-length

entropy encoding that converts a string into another

representation that represents frequently used

characters using fewer bits and infrequently used

characters using more bits, with the goal of fewer bits

in total. As opposed to other entropy encoding

techniques that separate the input message into its

component symbols and replace each symbol with a

code word, arithmetic coding encodes the entire

message to a single number. Although arithmetic

coding provides no security as traditionally

implemented. In this project modified scheme that

offers both security and compression. The system

utilizes an arithmetic coder in which the overall length

within the range [0, 1) allocated to each symbol is

preserved. Permutations are applied at the input of the

Encoder for the security. The overall system provides

a simultaneous security, compression.

Key words: security, permutation, compression,

encoding and decoding, VHDL coding, spanton 3 kid.

I. INTRODUCTION

Arithmetic coding has been developed

extensively since its introduction several decades ago,

and is notable for offering extremely high coding

efficiency. While many earlier-generation image and

video coding standards such as JPEG, H.263, and

MPEG-2 relied heavily on Huffman coding for the

entropy coding steps in compression, recent

generation standards including JPEG2000 and H.264

utilize arithmetic coding. This has led to increased

interest in arithmetic coding both in the context of

image coding, and also more generally for other

applications. While arithmetic coding is extremely

efficient, and others have noted, as traditionally

implemented it is not particularly secure. The issue of

providing both compression and security

simultaneously is growing more important given the

increasing ubiquity of compressed media files in a

host of applications including the Internet, digital

cameras, and portable music players, and the common

desire to provide security in association with these

files. When both compression and security are sought,

one approach is to simply use a traditional arithmetic

coder in combination with a well-known encryption

method such as the Advanced Encryption Standard

(AES). However, while this will certainly meet both

goals, it fails to take advantage of the additional

design flexibility and potential computational

simplifications that are available if the coding and

encryption are performed jointly.

Traditional arithmetic coding provides

essentially no security in the face of a chosen plaintext

attack, in which an attacker has the ability to specify a

sequence of input symbols and observe the

corresponding output, and to repeat this process an

arbitrary number of times. For example, in a binary

system with two symbols A and B, it is a simple

matter to choose input sequences that, in combination

with their outputs, reveal the assumed probabilities of

each symbol in the arithmetic coder as well as the

order of the intervals. That information can then be

used to decode any output from the encoder.

The issue of increasing the security of arithmetic

coding has received relatively little attention in the

literature. Bergen and Hogan have considered the

problem of inferring the underlying symbol

probabilities and partitioning of the [0,1) interval

using observations of an arithmetic encoder output.

Liu presented a system using table-based bit sequence

substitutions to provide encryption during arithmetic

coding. More recently, a randomized arithmetic

coding (RAC) system based on random swapping of

the two intervals in a binary arithmetic coder was

described by Grangetto who utilized this approach to

encrypt JPEG 2000 coded images. The systems in [7]

and [8] modify the traditional arithmetic coder by

randomly permuting the intervals in accordance with a

key-generated shuffling sequence. The shuffling

sequence consists of one bit per encoded symbol that

2105

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

determines whether the binary intervals are swapped

or not when encoding that symbol. The authors of that

paper were targeting applications to JPEG2000-

encoded images in which a potential attacker would

not have access to the original image nor be in a

position to provide a particular image to be encoded.

Thus, robustness to plaintext attacks was not a goal in

[7] and [8]. Indeed, if an attacker of the RAC was

granted access to the RAC encoder, removed from the

larger JPEG2000 context for which it was designed,

the number of trials needed to determine an N-bit

shuffling sequence would be on the order of N, since

the N output pairs N corresponding to inputs that

differ in exactly one symbol can be compared. Such

comparisons, however, would not reveal the

underlying key used to generate the shuffling

sequence, so if care was taken to modify the key or

avoid re-initialization of the shuffling sequence in

subsequent uses of the RAC encoder, substantially

higher robustness would result. In [9], we specifically

consider the goal of encryption, and describe an

arithmetic coding (Interval Splitting AC) approach in

which the intervals associated with each symbol,

which are continuous in a traditional arithmetic coder,

can be split according to a key known both to the

encoder and decoder. This removes the constraint that

the intervals corresponding to each symbol be

continuous, and instead uses a more generalized

constraint that the sum of the lengths of the one or

more intervals associated with each symbol be equal

to its probability.

The present work aims to provide an

arithmetic coding system that is secure against a

chosen plaintext attack. Interval splitting within the

arithmetic coder and permutation steps at the input

and output are utilized to construct a system with

security that increases exponentially with the length of

the shorter of the input block size and the key

sequence. While all of the methods described here can

be applied for coding of source alphabets with any

size, we address the case of binary systems here to

simplify the discussion and illustrations.

II. SYSTEM DESCRIPTION

The block diagram of the secure arithmetic

coding system. The system consists of a first

permutation step applied to the input sequence,

arithmetic coding using interval splitting, and a

second permutation step applied to the bits produced

by the coder. A key sequence is input to a key

scheduler which in turn provides key information to

both permutation steps and to the interval splitting

arithmetic coder. The key scheduler utilizes

information from the split AC encoder output. The

permutation steps in this system are similar to the

Shift Row Transformation in AES in that the rows of

a block of data are shifted cyclically. The main

difference is that in the system of Fig. 1 row and

column shifts are shifted cyclically by different

amounts according to key values, in contrast to the

corresponding step in AES in which the shifts are

predetermined [10].

Data Compression Techniques:

Data compression is the "compression ratio", or ratio

of the size of a compressed file to the original

uncompressed file. For example, suppose a data file

takes up 100 kilobytes (KB). Using data compression

software, that file could be reduced in size to, say, 50

KB, making it easier to store on disk and faster to

transmit over an Internet connection. In this specific

case, the data compression software reduces the size

of the data file by a factor of two, or results in a

"compression ratio" of 2:1.

1. Lossless data compression

2. Lossy data compression

Lossless data compression is used when the data has

to be uncompressed exactly as it was before

compression. Text files are stored using lossless

techniques, since losing a single character can in the

worst case make the text dangerously misleading.

Archival storage of master sources for images, video

data, and audio data generally needs to be lossless as

well. However, there are strict limits to the amount of

compression that can be obtained with lossless

compression. Lossless compression ratios are

generally in the range of 2:1 to 8:1.

Lossy compression, in contrast, works on the

assumption that the data doesn't have to be stored

perfectly. Much information can be simply thrown

away from images, video data, and audio data, and

when uncompressed such data will still be of

acceptable quality. Compression ratios can be an

order of magnitude greater than those available from

lossless methods.

The question of which is “better”, lossless or

lossy technique, is pointless. Each has its own uses,

with lossless techniques better in some cases and

lossy techniques better in others. In fact, as this

document will show, lossless and lossy techniques are

often used together to obtain the highest compression

ratios.

Introduction to Arithmetic Coding:

2106

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

Before jumping into the fray and starting

with the explanation of the encoding algorithm, first

we introduce some basic terms commonly used in

data compression. They will be used throughout the

whole paper. Our goal is to compress data, which

might either be stored on a computer-readable media

or be sent over some form of stream. This data could

represent anything, reaching from simple text up to

graphics, binary executable programs etc. However,

we do not distinguish here between all those data

types. We simply see them all as binary input. A

group of such input bits is what we will refer to as a

symbol. For instance one could think of an input

stream being read byte wise, leading to 28 = 256

different input symbols. For raw text compression, it

could also suffice to take an alphabet of 128 symbols

only, because the ASCII code is based on a 7-byte

structure.

Foundations:

DEFINITION 1 (ALPHABET AND SYMBOL)

We call a finite, nonempty set an ALPHABET. The

LENGTH or cardinality of an alphabet A will be

referred to as |A|. The elements {a1, . . . ,am} of an

alphabet are called SYMBOLS.

Also we assume that A is an ordered set, so giving

{a1, . . . ,am} a distinct order. We already mentioned

above that the Arithmetic Coding algorithm works

sequentially. Thus we need some notion of what the

sequential input and output of the encode/decoder

might look like. This leads us directly to the notion of

a SEQUENCE:

DEFINITION 2 (SEQUENCE)

A series S = (s1, s2 . . .) of symbols si from an

alphabet A is called SEQUENCE. In the latter we will

also use the shortcut S = s1s2 . . .

In analogy to the definition of |A|, |S| is the symbol for

the length of S, provided that S is of finite length.

However, |S| < ¥ will be a general assumption

henceforth, since most of the corollary would

otherwise make no sense. Please note that this

representation of data is somehow natural, since most

human-made media can be read in a sequential order.

Just think of books, videos, tapes and more. Also,

when looking at a sequence, one can calculate a

distinct probability of each symbol of the alphabet to

occur in this very sequence. This probability might be

very unevenly distributed, a lot depending on the

application domain. For instance consider the letter e,

which is much more common than z in the English

language.3 Since Arithmetic Coding depends a lot of

such statistical measures in order to achieve

compression, we introduce the PROBABILITY of a

symbol as follows:

DEFINITION 3 (PROBABILITY)

Let S = (s1, . . . , sn) a finite-length sequence with

 |S| = n over A = {a1, . .,am}.

Also let |S|ai the frequency of ai in S. Then we define

P(ai) :=|S|ai/n as the PROBABILITY of ai (in S).

From the definition, we can directly conclude that

P(ai) is always contained in the interval [0,1) for any

symbol, whereas the sum over all such probabilities is

always  

m

i
aiP

1
)(= 1.

Please note that this interval is open-ended, because it

would make no sense to encode a constant sequence

holding only a symbol of probability 1, simply

because in that case the full content of the sequence

would have been known beforehand already. We will

later on make use of this property in certain

conclusions.

Recapturing the example of e/z however, we would

like to emphasize that the probability of a symbol

might heavily depend on its context. If one considers

e and z as symbols for bytes in a binary executable for

example, they might be rather evenly distributed. Also

one could even show that certain symbols are more

likely to occur in scientific text than newspaper

articles and so forth. Some data is subject to

interpretation: E.g. consider the sequence

1111131311. It could be interpreted as a sequence of

symbols 1,3 or 11,13. At least this example proves

that we need some kind of unambiguous rule of how

probabilities are related to symbols. This relation

between symbols of an alphabet and their probability

is commonly known as a MODEL in terms of data

compression.

DEFINITION 4 (MODEL)

Let A an alphabet. A MODEL M is a function

 M : A -→[0,1) : ai -→PM(ai) ,

which maps a probability PM(ai) to each symbol ai 

A.

This probability might be estimated / calculated and

does not necessarily have to match the real probability

of the symbol, P(ai). Indeed in most cases it does not.

Please also note that an alphabet is not restricted to

only hold symbols of length 1. In the example above,

employing 11 and 13 as symbols we already got a

picture of that. If one estimates the probability of a

given symbol not only by looking at the symbol itself

but also at the context given by the last n symbols

seen, one speaks of an Order -n model. For instance

the average probability of the letter u to occur in any

German text is only about 0.0435. If one considers its

probability to occur after the letter q however, this

value raises to nearly 1! As one can see already now,

an increased value of n might lead to better

predictions of probabilities.

As already briefly mentioned above, the probability

distribution that is given by the interpretation of a

sequence under a certain model, matches the real

probability distribution at best by chance. Usually this

will not be the case. For instance there will be almost

2107

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

no German text fulfilling the distribution given by

Table 1 exactly, but rather approximately or even

worse. To distinguish the probability induced by the

model from the real one, we label the former with

PM(ai) in order to emphasize the dependency of the

model and in order to distinguish from the latter,

given by P(ai).

So we conclude that a model can be seen as an

interpretation of an arbitrary dataset. A simple model

could for instance be given by the probability

distribution of Table 1. This table shows the

probabilities of most letters of the German alphabet to

occur in an average German text. Probably the clever

reader can already anticipate now, that the

compression ration will heavily depend on how good

this model matches the reality.

This leads to the need to define some kind of measure

of compression, enabling us to actually compare the

efficiency of different compression approaches. A

natural measure of how much information is

contained in a given sequence of data is called the

ENTROPY.

DEFINITION 5 (Entropy)

Let S a sequence over alphabet A = {a1, ...,am}. The

ENTROPY HM(S) of the sequence S under model M

is defined as

 HM(S) = 


m

i

aiP
1

)(log2 (
)(

1

aiP
)

The unit of the entropy is [bits/symbol] because the

formula only refers to probabilities as relative

frequencies rather than absolute ones.

By the formula one can easily see that with our

definition, the entropy of a sequence depends on the

model M being used, since the PM(ai) are the

probabilities under that model. Here, log(1/PM(ai)) can

be interpreted as the minimal length of a binary

symbol for ai, while the factor P(ai) (being the real

probability of ai) can be interpreted as probability of

requiring the encoder to binary encode this very

symbol.

Considering a model as perfect, one obtains the

correct probability distribution leading to the natural

form of the entropy:

 H(S) =)
)(

1
(log)(2

Aa aiP
aiP

This kind of entropy is depended on the input data

only and no subject to interpretation. However the

interested reader might wish to know that most of the

literature about Arithmetic Coding sloppily does not

distinguish between both kinds of entropy.

Encoder and Decoder:

DEFINITION 6 (Encoder & Decoder)

An algorithm which encodes a sequence is called an

ENCODER. The appropriate algorithm decoding the

sequence again is called a DECODER. In opposite to

the input sequence S we refer to the encoded sequence

which is output of the encoder and input for the

decoder by Code(S) or C(S) for short. The application

of both algorithms is referred to as ENCODING

respectively DECODING. We want to emphasize that

we use the notion of an algorithm in its most natural

way, meaning a general sequence of steps performed

by any arbitrary computer. By purpose we do not limit

ourselves to a certain implementation at this stage. An

encoder could be any algorithm transforming the input

in such a way that there is a decoder to reproduce the

raw input data. However at the end of this paper we

present the full VHDL source code of a

encoder/decoder pair (also referred to as CODEC),

which employs Arithmetic Coding. The following

code examples are taken from this reference

implementation.

In the theory of data compression one often

distinguishes between lossy and lossless compression

algorithms. Especially analogous signals are often

encoded in a lossy way because such data is in the end

meant to be interpreted by some kind of human organ

(eye, ear,...) and such organs are very limited in a

sense that they simply do not recognize certain levels

of noise or distortion at all. Of course lossy

compression algorithms can reach better compression

ratios by losing some accuracy. However we are not

going to consider any lossy compression in this article

and rather concentrate on lossless compression, that

can be applied to all kinds of data in general. Thus we

are only going to consider codecs that are able to

reproduce the input data up to the last symbol. In a

nutshell our resulting Code(S) will be proven lossless

and optimal.

 Design of Secure Arithmetic Coding:

The main object of the Secure Arithmetic

Coding is to implement Security as well as

Compression of the given input data for the data

communication. The compression is done by Entropy

Encoding based Arithmetic coding. In the Arithmetic

Coding probabilities are calculated for the calculation

of Entropy (H) units are bits per symbol.

Specifications:

 Security

 Compression(Arithmetic Coding)

 Encoding

 Decoding

Random sequence generation:

 Input data length is 16bit data, this 16bit data is

generated by the LFSR (Linear Feed Back Shift

Register). In this LFSR 16 Flip-Flops and 3 xor gates

are present to generate 16bit data which is used as a

2108

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

input data. In this LFSR D-FFs are used to store and

generation of input data for the random 16bit

sequence generator

Data Security:

 In the Secure Arithmetic Coding project,

Arithmetic Coding itself provides security but further

security purpose permutation based operation which is

shown in fig 3.2 is performed on input data. In this

project input data length is 16-bit data, in order to

keep input data secrecy, applying column and row

circler shift on the 4x4-matrix form of input data.

Circler shifting operation is based on key which is

length of 8-bits.

For example

Input 16 bit data 1100000011010101

Column circular shift key D1 = 10110001

Row circular shift key D2 = 01110110

In the input data 4x4-matrix, 4 columns and 4 rows

are present Circler shifting range maximum is 3 and

minimum is 0 circler shifts, bit representation 2bit for

each column and row. In the above D1 is for column

shift and D2 is for row shift for the matrix.

 Input data is secured by this

permutation based way, this secured data is giving to

Arithmetic Coding process as a input.

Fig: Permutation operation on the input data

Data Compression:

 Data Compression comes under lossless data

compression technique as already described. In this

compression technique Arithmetic Coding is one of

the techniques from Entropy Encoding. This Entropy

Encoding is a one type which is from lossless data

compression technique.

 The Arithmetic Coding is completely

depends on the Entropy calculation. In the Entropy

calculation, input taken as 16-bit data which is come

from the permutation output.

Entropy:

 Entropy nothing but, representation of the

symbol by the binary bits that means for one symbol

how many bits are used to represent, the entropy units

are bits/symbol. The Entropy(H(S)) calculations are

done by the mathematical formula which is given in

the below

 H(S) = 


m

i

aiP
1

)(log2 (
)(

1

aiP
)

Where p(ai) represents probability of the symbol that

is in the given input sequence how many times the

symbol repeats the probability will tell. Log base 2

represents the symbol with 2 binary bits. Summation

for calculation of entropy value that is for i=1 to m.

Symbol Identification:

 In the given input 16bit sequence

00,01,10,11 bits are represented with z0, zL, zG, z1

symbols respectively. Those given input 16bit

sequence, what are the symbols present by the

diagram symbol identification which is shown in fig

3.3. Here NOR, AND, NOT gates are present for

identification of symbols. For this circuit 2bits are

giving as input, to identify the symbol. Form 16bit

sequence each 2 bits are giving as input, to identify

the symbols for the entire 16 bit sequence. How many

symbols are present in the 16bit sequence finding out

by the symbol identification circuit.

Symbol Count:

 Symbol Count diagram which is shown in fig

3.4 counts the symbols, that is how many symbols are

present in the 16bit sequence. Symbol count operation

one counter for counting perpes and multiplexer is

used. Multiplexer operation is to select the 2bits at a

time and it gives to the symbol count. Finally the

symbol count will count the symbols present in the

input sequence. The results of the symbol count block

are z0, zL, zG, z1 respectively.

Probability Calculation:

 In the given sequence, occurring of symbols or

repeated symbols value will tell by the calculation of

probability. Probability value occurring in between 0

and 1 that is [0, 1). In the probability calculation every

symbol value lies between 0 and 1. In above

mentioned [0, 1) means occurring of probability value

must be less than zero(0) and less than or equal to

one(1). In the probability calculation design

predefined the values of all 8 symbols are kept in the

LUT (Look Up Table), from the LUT corresponding

2109

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

values for every symbol probabilities are taken

respectively.

 Probability calculations are done for z0, zL,

zG, z1 respectively, with the below fig 3.5. In the

LUT zero to seven address locations are present and

in that address location 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8,

8/8 values are present respectively. Whenever a

symbol get repeated or unrepeated for that particular

symbol get the corresponding probability value from

the LUT respectively. Then the resultant values are

P0, PL, PG, P1 are outputs for the probability

calculation. In this diagram fig 3.5 same as previous

diagram fig 3.4 but here taking the probability values

extra.

All the calculated probability values are giving as

input to the Entropy calculation diagram which is

shown in the fig 3.6. Entropy calculation value is bits

per symbol. That is for one symbol how many bits are

used to represent that particular symbol. Here

representation of one symbol with 2bits before

Entropy calculation. After the Entropy calculation bits

to represent a symbol are must be less than 2bits

which are used to represent before Entropy

calculation, then only compression of bits to represent

a symbol is down.

VLSI Architecture for Entropy Calculation:

Entropy calculations are down by the formula

 H(S) = 


m

i
iaP

1

)(log2 (
)(

1

ai
P

)

Here probabilities calculated from the fig 3.5 that is

probability calculation block diagram. Here total

symbols are 8, total number of input sequence is

16bits, and for one symbol representation will take

2bits as already described above.

In the Entropy calculation log2 (
)(

1

ai
P

) is

calculated, and kept in the LUT. The result of log2 (

)(

1

ai
P

) and p(ai) are multiplied and the final result

is Entropy value. In the fig 3.6 shows Entropy

calculation value which is compressed the entire 16bit

sequence into one number represented in base b for

one symbol. To calculate the Entropy value to 8

symbols, then Entropy value per one symbol

multiplied with 8 symbols then the resultant value is,

if the resultant value is below the sequence 16bit

length then that is compressed otherwise not

compressed.

For example

Developed Architecture for Compression:

 The Secure Arithmetic Coding will give the

input data compression that is how many bits are

reduced from the given input data sequence. Here

below shown fig. is VLSI architecture for the

Compression of input data sequence. After getting

Entropy value multiplied by total number of symbols

then the resultant value that is, it represents the bits

which are present after the compression. In this

arithmetic coding fixed number of bits are used at the

input that input sequence length is 16bit, this 16bit

input sequence length and compressed bits are

subtracted then the resultant bits are the bits, which

are compressed from the total number of input bits. In

the above example after compression, bits are 14bits

and the input bits are 16bits then these bits are

subtracted resultant bits are 2bits. These operations

are down by the developed architecture for

compression.

Fig: Developed Architecture for Compression

Encoding:
 Arithmetic Coding uses a one-dimensional

table of probabilities instead of a tree. It always

encodes the whole message at once. This way it is

possible to encode symbols using fragments of bits.

However, one have cannot access the code word

randomly. Using Huffman-coding, one can specify

marks that allow decoding starting within the bit

stream. Of course one can also split messages in

arithmetic coding, but this limits the efficiency since

use of bit-fragments on the boundaries is impossible.

 In the Encoding process after getting the

probabilities of the symbols, all probabilities fall into

the range [0, 1) while their sum equals 1 in every case.

This interval contains an infinite amount of real

numbers, so it is possible to encode every possible

2110

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

sequence to a number in [0, 1). One partitions the

interval according to the probability of the symbols.

By iterating this step for each symbol in the message,

one refines the interval to a unique result that

represents the message. Any number in this interval

would be a valid code.

 The probability P(ai) to each symbol ai that

appears in the message. Now we can split the interval

[0, 1) using these values since the sum always equals

1. The size of the i−th sub-interval corresponds to the

probability of the symbol ai.

For the above example S = “1111010100100101”

Let the probabilities of the symbols in the message be

 P0 = 0.125; PL = 0.5; PG = 0.125; P1 = 0.25;

Now the interval [0, 1) would be split as emphasized

Upper and lower bounds:

The upper and lower bounds of the entire current

interval called as high and low. The bounds of the

sub-intervals are calculated from the cumulative

probabilities:

 0 0.125 0.25 0.5 1

 00 10 11 01

Fig : Creating an interval for the symbols

The values high and low change during the encoding

process whereas the cumulative probabilities remain

constant6. They are used to update high and low. With

respect to the previous example, we get the following

values: Subdivision of probabilities in the above

equation for the intervals constant table containing the

cumulative probabilities K(ai).

K(ak) = 



k

i
iaP

1

)(

High

1.0

K(0)

0.0

K(2)

0.25

Low

0.0

K(1)

0.125

K(3)

0.5

Table: Cumulative probabilities of the symbols

The first step in encoding is the initialization

of the interval I := [low, high) by low =0 and high = 1.

When the first symbol S1 is read, the interval I can be

resized to a new interval I′ according to the symbol.

The boundaries of I′ are also called low and high. We

choose I′ to equal the boundaries of S1 in the model.

However, how are these boundaries calculated? Let S1

= ak be the kth symbol of the alphabet. Then the lower

bound is








1

1
1
)()(

k

i
ki aa KPlow

And the Upper bound is

)()(
1

aa k

k

i
i

KPhigh 


The new interval I′ is set to [low, high). This

calculation is nothing new, it just corresponds to the

mathematical method of the construction of Figure

3.8. The most relevant aspect of this method is that

the sub-interval I′ becomes larger for more probable

symbols S1. The larger the interval the lower the

number of fractional places which results in shorter

code words. All following numbers generated by the

next iterations will be located in the interval I′ since

base interval as used [0, 1) before.

Next proceed with the second symbol S2 = aj .

However, now the problem that the partition[7] of the

interval [0,1), not of I′ which was calculated in the

previous step. Scaling and shifting the boundaries to

match the new interval. Scaling is accomplished by a

multiplication with high−low, the length of the

interval. Shifting is performed by adding low. This

results in the equation

low))(high
a j

K(lowlow)(high

j

i

)
ai

P(lowlow' 











1

1

1

low))(high
a j

k(lowlow)(high
j

i
)

ai
P(lowhigh' 




1

This rule is valid for all steps, especially the first one

with low = 0 and high−low = 1. Since no need of the

old boundaries any more for the next iterations,

overwrite them with new boundaries:

'

'

highhigh

lowlow





These above low’ and high’ equations are calculated

Developed Architecture of Encoder Low value:

 In the process of Encoding for each symbol

upper and lower boundaries are calculated by the low’

and high’ equations. Those equations are developed

by the below diagrams.

 In the Encoder low value calculation,

probability values are taken from the cumulative

probabilities of the symbols which are shown in the

table 2. Starting low and high values are taken as 0

and 1 respectively for the first step. And for the next

steps low and high values are updated from the

calculation of the low as well as high equations. In the

Encoder low value diagram high and low values are

subtracting, and the resulting value and the

2111

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

cumulative probability value are multiplied. Then the

resultant value and the previous low value are added

then this is the final value of low’ value. Further

calculation of low values for the remaining symbols,

this low values is updating. In the updating process,

adder having feed back with the register. Here

calculated low value giving feed back to the low

which is used for the subtraction with the updated

value of high value.

Developed Architecture for Encoder High:

 The same operation is done for the Encoder

high value calculation which is shown in Encoder low

is done for the Encoder low value.

Here also high value which is coming as output,

giving as feed back to the input high value. Here also

the same operations subtraction and addition feed

back with register. But here the cumulative

probabilities are taking differently that is depends on

the upper and lower boundaries which are taking from

the cumulative probabilities.

Developed Architecture for Encoder:
All the values of low and high values for the

entire symbols, that is for each symbol its

corresponding low and high values are stored in the

LUT2(Look Up Table). In this Encoder low, high and

LUT2 are used. Inputs to these blocks are probability,

low and high values. The output of this block is

Encoded value; in the LUT2 for each symbol

corresponding high and low values are stored along

with that symbol. All the values are stored in the

LUT2 for the purpose of Decoding.

Developed Architecture for Decoder:

To decode a sequence, one somewhat have to

apply the encoder backwards. The value V = Code(S)

is given and with that V restore the original sequence

S. assume that the message length is known and

equals l. In the first iteration we compare V with each

interval I′ = [K(ak −1),K(ak)) to find the one that

contains V. It corresponds to the first symbol of the

sequence, S1. To compute the next symbol, modify the

probability partition in the same way we did while

encoding:

))(('
1

lowhighKlowlow ai




))((' lowhighKlowhigh ai


Where I have to comply

highVlow 

ai is the next symbol in the encoded sequence. This

time, the start case is again a special case of the

general formula. The iteration is very similar to the

encoder.

In the developed architecture for the decoder diagram,

in this LUT2, comparator and assumed value(V) are

present. In the LUT2 all the encoded values are

stored.

Here assumed value(V) is taking as a average

value of all low and high values. With V compare the

low and high values which are in the LUT2 for each

encoded symbol. If the V present in between the low

and high value then that corresponding symbol is read

back. In this manner all the encoded symbols are read

back with the same procedure.

III. EXPERIMENTAL RESULTS

Compression results:

Here the wave form fig shows the pre-route

simulation of the compression block diagram.

Design Implementation summary of the Secure

Arithmetic Coding:

The Table 2 shows the Design implementation

summary of the Secure Arithmetic Coding (SAC).

This gives a detailed analysis of the number of

resources available in the FPGA. This Table 2 shows

the number of resources utilized by the proposed

architecture. It consists of the Logic Utilization

summary, Logic Distribution summary, timing

summary. In this Logic utilization summary consists

of usage of slices, slice Filp-Flops, Luts, Bonded IO’s

etc. The Logic Distribution summary shows the

Additional JTAG gate count for IOBs. The timing

summary shows the maximum frequency that can be

generated by using this architecture.

Design Implementation summary of the Secure

Arithmetic Coding:

2112

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

Table 2: Design Implementation summary of the

Secure Arithmetic Coding

IV. CONCLUSION

In the present work developed VLSI

Architecture for Secure Arithmetic Coding can be

implemented using FPGA based Entropy calculation,

Encoding and Decoding. The Secure Arithmetic

Coding is used to compress the given input data and

also providing the security to the input data. The

security provided by applying permutations to the

input data. Compression is done by the Entropy

calculation. To get the input data back without error

which is compressed, with the Encoding and

Decoding operations. By this Secure Arithmetic

Coding channel band width is reduced by

compressing the input data. The VLSI architecture of

the proposed Secure Arithmetic Coding is designed

using VHDL and is implemented using Xilinx ISE

navigator and modelsim using Spartan3 device.

In future, the present work can be extended for

image compression, reduction in the chip area can be

achieved this may required a slight increase in hard

ware requirement.

V. REFERENCES

[1] G. Langdon and J. Rissanen, “Compression of

black-white images with arithmetic coding,” IEEE

Trans. Commun., vol. COM-29, no. 6, pp. 858–867,

Jun. 1981.

[2] D. S. Taubman and M. W. Marcellin, JPEG2000:

Image Compression Fundamentals, Standards and

Practice. Norwell, MA: Kluwer Academic, 2002.

[3] T. Wiegand, G. Sullivan, G. Bjontegaard, and

A. Luthra, “Overview of the H.264/AVC video

coding standard,” IEEE Trans. Circuits Syst. Video

Technol., vol. 13, no. 7, pp. 560–576, Jul. 2003.

[4] J. Cleary, S. Irvine, and I. Rinsma-Melchert,

“On the insecurity of arithmetic coding,” Comput.

Secur., vol. 14, no. 2, pp. 167–180, 1995.

[5] H. Bergen and J. Hogan, “A chosen plaintext

attack on an adaptive arithmetic coding algorithm,”

Comput. Secur., vol. 12, no. 2, pp. 157–167, Mar.

1993.

[6] X. Liu, P. Farrell, and C. Boyd, “Unified code,”

in Proc. Int. Conf. Cryptography Coding. Berlin,

Germany: Springer-Verlag, 1999, vol. 1746, Lecture

Notes in Computer Science, pp. 84–93.

[7] M. Grangetto, A. Grosso, and E. Magli,

“Selective encryption of JPEG2000 images by means

of randomized arithmetic coding,” in Proc. IEEE 6th

Workshop on Multimedia Signal Processing, Siena,

Italy, Sep. 2004, pp. 347–350.

[8] M. Grangetto, E. Magli, and G. Olmo,

“Multimedia selective encryption by means of

randomized arithmetic coding,” IEEE Trans.

Multimedia, vol. 8, no. 5, pp. 905–917, Oct. 2006.

[9] J. Wen, H. Kim, and J. D. Villasenor, “Binary

arithmetic coding with key-based interval splitting,”

IEEE Signal Process. Lett., vol. 13, no. 2, pp. 69–72,

Feb. 2006.

[10] Announcing the ADVANCED ENCRYPTION

STANDARD (AES), Fed. Inf. Process. Standards

Pub. 197, 26, NIST, Nov. 2001.

[11] T. Cover and J. Thomas, Elements of

Information Theory. New York: Wiley, 1991.

[12] N. T. Courtois, “General principles of algebraic

attacks and new design criteria for cipher

components,” in Proc. AES 2004. Berlin,

Germany: Springer-Verlag, 2005, vol. 3373, Lecture

Notes in Computer Science, pp. 67–83.

Logic Utilization:

Number of Slice Flip Flops: 20 out of 66560 1%

Number of 4 input LUTs: 33 out of 66,560 1%

Number of IOs 1328

Logic Distribution:

Number of Slices: 19 out of 33,280 1%

Number of Slices containing only related

Logic: 19 out of 19 100%

 Number of Slices containing only unrelated

 Logic: 0 out of 19 0%

Number of 4-input LUTs: 8265 out of 88192 9%

Number of bonded IOBs: 668 out of 784 85%

Number of GCLKs: 2 out of 8 25%

Total equivalent gate count for design: 1,417

Additional JTAG gate count for IOBs: 32,064

Peak Memory Usage:396 MB

Total REAL time to MAP completion: 33 s

Total CPU time to MAP completion: 32 s

Timing Summary:

Maximum output required time after clock 69216 ns

2113

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

[13] D. Marpe and T. Wiegand, “A highly efficient

multiplication-free binary arithmetic coder and its

application in video coding,” in Proc. ICIP 2003,

Barcelona, Spain, Sep. 2003, pp. II-263–II-266.

Commun., vol. 37, no. 2, pp. 93–98, Feb.1989.

[17] A. Moffat, R. M. Neal, and I. H.Witten,

“Arithmetic coding revisited,” ACM Trans. Inf. Sys.,

vol. 16, no. 3, pp. 256–294, Jul. 1998.

[18] A. Hodjat and I. Verbauwhede, “Area-

throughput trade-offs for fully pipelined 30 to 70

Gbits/s AES processors,” IEEE Trans. Comput.,

vol. 55, no. 4, pp. 366–372, Apr. 2006.

[14] M. Dyer, D. Taubman, and S. Nooshabadi,

“Improved throughput thmetic coder for JPEG2000,”

in Proc. Int. Conf. Image Process., Singapore, Oct.

2004, pp. 2817–2820.

[15] R. R. Osorio and J. D. Bruguera, “A

newarchitecture for fast arithmetic coding in H.264

advanced video coder,” in Proc. 8th Euromicro Conf.

Digital System Design, Porto, Portugal, Aug. 2005,

pp. 298–305.

[16] J. Rissanen and K. M. Mohiuddin,

“Amultiplication-free multialphabet arithmetic code,”

IEEE Trans.

[19] M. Powell, 2006, The Canterbury Corpus

[Online].Available:http://corpus.canterbury.ac.nz/inde

x.html

CH. Neelima received B.Tech degree and M.Tech

degree from JNTU Hyderabad in the year of 2006

and 2012. Currently working as Asst. Professor

Research interests are Compression, VLSI

based and Image Processing.

Ravinder Tirupati received

B.Tech degree and M.Tech

degree from JNTU Hyderabad

in the year of 2006 and 2010.

Currently working as Asst.

Professor

Research interests are

Compression, VLSI based and

Image Processing.

2114

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 11, November - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS110671

