
FPGA Realization of Single-Cycle, 32-Bit Booth

Recoding Signed Multiplier Enhanced by High-

Speed Compressors
Prity Mishra

Electronics and Telecommunication Engineering

International Institute of Information Technology,

Bhubaneshwar, Odisha, India

Abstract—A multiplier is one of the integral and frequently used

parts of every digital system. In this paper, a 32x32-bit signed

multiplier has been implemented using the booth recoding

algorithm and high-speed compressors. This in turn facilitates

hardware reduction as partial product rows are significantly

reduced, thus improving efficiency in terms of speed and power

consumption. An analytical comparison of this multiplier with the

conventional multiplier has also been provided. This booth

recoding multiplier has been designed using the SYSTEM

VERILOG HDL and FPGA realization has been achieved through

Xilinx Kintex-7 FPGA in Xilinx Vivado 2021.2 software.

Keywords—Booth Recoding; 32x32 bit signed multiplier; Agile

compressors; Parallel addition; Verilog HDL; FPGA.

I. INTRODUCTION

Low-power VLSI circuits have emerged as critical criteria for

designing energy-efficient electronic systems tailored for high-

performing portable devices. Across various domains such as

microprocessors, image and video processing, digital filters,

error correction and coding, neural networks, and machine

learning, multipliers play an integral role in enhancing

computational efficiency. This paper presents the

implementation of a 32x32-bit signed multiplier using the

Booth recoding algorithm and high-speed agile compressors to

improve processing speed. The inputs can be either signed or

unsigned.

Conventional multiplication relies on the partial products

method, where each bit of the multiplier is multiplied with the

multiplicand to form partial product rows. Subsequently, these

rows are left-shifted and summed to produce the final result.

A similarity is observed in case of multiplication of two binary

numbers. This process is simplified as it involves only two

digits—1 and 0—whereby multiplication with ‘1’ results in a

direct copy and same with ‘0’ is discarded. However, for

numbers with a high number of bits, processing time increases,

leading to elevated time complexity and hardware demands.

In this paper, the focus will be on overcoming those major

drawbacks with the proposed multiplier design. The paper has

been divided into subsequent sections as follows. Section II

provides a comprehensive overview of the traditional booth

recoding algorithm. Section III goes into detail explaining the

operation of the high-speed, agile compressors. The

comparative analysis and the experimental results have been

included in Section IV, followed by the concluding remarks in

Section V.

II. CONVENTIONAL BOOTH RECODING

ALGORITHM

A. Abstract block diagram of top module of the multiplier

and the signal description

For booth recoding algorithm-based multiplier, two 32-bit

inputs are required to represent the multiplicand and multiplier.

In addition to that, two control signals are also fed to indicate

whether the multiplier and multiplicand are signed or unsigned

binary values. The output is a 64-bit value.

Table 1:Signal Description of Top Module

Signal name Width Source Description

mplier 32 input
Top module multiplier

input

mplier_s_u 1 input
 1→multiplier is signed

 0→multiplier is unsigned

mplicand 32 input
Top module multiplicand

input

mplicand_s_u 1 input

 1→multiplicand is signed

0→multiplicand is

unsigned

prod 64 output
Output of the multiplier

block

Figure 1:32-bit Booth Recoding Multiplier

mplier

mplicand

mplicand_s_u

mplier_s_u
prod

32

32

64

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030228
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

2s complement representation of A:

=−231𝑎31 + 230𝑎30 + (2 − 1)229𝑎29

+228𝑎28 + (2 − 1)227𝑎27

+226𝑎26 + (2 − 1)225𝑎25

 .………………………….

 .………………………….

+22𝑎2 + (2 − 1)21𝑎1

+20𝑎0 + 20𝑎−1 where 𝑎−1 ≡ 0

=−231𝑎31 + 230𝑎30 + 230𝑎29

−229𝑎29 + 228𝑎28 + 228𝑎27

−227𝑎27 + 226𝑎26 + 226𝑎25

 .………………………….

 .………………………….

−23𝑎3 + 22𝑎2 + 22𝑎1

−21𝑎1 + 20𝑎0 + 20𝑎−1 where 𝑎−1 ≡ 0

= 230(−2 𝑎31 + 𝑎30 + 𝑎29)

+228(−2 𝑎29 + 𝑎28 + 𝑎27)

+226(−2 𝑎27 + 𝑎26 + 𝑎25)
 .………………………….

 .………………………….

+22(−2 𝑎3 + 𝑎2 + 𝑎1)

+20(−2 𝑎1 + 𝑎0 + 𝑎−1) where 𝑎−1 ≡ 0

=∑ 22𝑖(15
𝑖=0 − 2 𝑎2𝑖+1 + 𝑎2𝑖 + 𝑎2𝑖−1)

= ∑ 22𝑖15
𝑖=0 𝑓2𝑖

where 𝑓2𝑖 = −2 𝑎2𝑖+1 + 𝑎2𝑖 + 𝑎2𝑖−1 ...………….(1)

Unsigned number:

2s complement representation of A:

=−232𝑎32 + 231𝑎31 + 231𝑎30

−230𝑎30 + 229𝑎29 + 229𝑎28

−228𝑎28 + 227𝑎27 + 227𝑎26

 .………………………….

 .………………………….

−22𝑎2 + 21𝑎1 + 21𝑎0

−20𝑎0 + 2−1𝑎−1 + 2−1𝑎−2 where 𝑎−1 = 𝑎−2 ≡ 0

=231(−2 𝑎32 + 𝑎31 + 𝑎30)

+229(−2 𝑎30 + 𝑎29 + 𝑎28)

+227(−2 𝑎28 + 𝑎27 + 𝑎26)

 .………………………….

 .………………………….

+21(−2 𝑎2 + 𝑎1 + 𝑎0)

+2−1(−2 𝑎0 + 𝑎−1 + 𝑎−2) where 𝑎−1 = 𝑎−2 ≡ 0

=∑ 22𝑖−1(16
𝑖=0 − 2 𝑎2𝑖 + 𝑎2𝑖−1 + 𝑎2𝑖−2)

= ∑ 22𝑖−115
𝑖=0 𝑓2𝑖−1

where 𝑓2𝑖−1 = −2 𝑎2𝑖 + 𝑎2𝑖−1 + 𝑎2𝑖−2 ………….(2)

When equations (1) and (2) are compared, it is evident that

preprocessing of integer A can be done before recoding the

basic signed and unsigned integer.

Table 2:Truth Table for F-Block Values

C. Sub-modules of the Booth Recoding Multiplier

1) 33rd bit extender unit

Here, a signed multiplier is being implemented to performed
unsigned operations. Thus, in order to cover the complete range
of unsigned multiplication, 1 extra bit is being extended at MSB
in the next step. The 33rd bit for unsigned and signed number is

zero and sign-extended respectively as shown in Fig.2 below.

𝒂𝟐𝒊+𝟏 𝒂𝟐𝒊 𝒂𝟐𝒊−𝟏 𝒇𝟐𝒊
𝑭

(+/−)

𝑭𝟏

(× 1/0)

𝑭𝟐

(× 2/0)

0 0 0 0 0 0 0

0 0 1 1 0 1 0

0 1 0 1 0 1 0

0 1 1 2 0 1 1

1 0 0 -2 1 1 1

1 0 1 -1 1 1 0

1 1 0 -1 1 1 0

1 1 1 0 0 0 0

Figure 2:33rd-bit extender unit block diagram

1

0

0

1

mplier_s_u

mplier[31:0]

mplicand[31:0]

mplicand_s_u

mplier[31]

mplier[31:0]

mplicand[31:0]

mplicand[31]

mux_out

mux_out

a[32:0]

b[32:0]

B. Mathematical representation of signed and unsigned

numbers

Signed number:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030228
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

2) Preprocessing/F block formation unit

• In this unit, a “0” is added at the least significant bit (LSB)

of the “a”(Here, a is the 32-bit input to pre-processing

block which is also the output of the 33rd bit extender unit)

• Following that, blocks of 3 bits each are made. The most

significant bit (MSB) of the previous block is made the

least significant bit (LSB) of current one.

• As a 33-bit number “a” is in consideration, so after

addition of extra bit of “0” in the least significant bit (LSB)

position, we have a shortage of one bit needed to form the

F-block.

• To counter this, a bit is again added to the most significant

bit (MSB), which is the same as the 33rd bit, irrespective

of whether the number is signed or unsigned.

Table 3:Values after extension

Extra bit added

for F-block

formation

Extended 33-bit

number (output

of the 33rd bit

extender unit)

“0” added in

LSB

a[32] a[32:0] 0

Total width of the number after pre-processing becomes 34-

bits. Pre-processing is just a simple rewiring process.

Table 4:Grouping for F-Block

F0 { 𝑎1, 𝑎0, 0}

F2 { 𝑎3, 𝑎2, 𝑎1}

F4 { 𝑎5, 𝑎4, 𝑎3}

F6 { 𝑎7, 𝑎6, 𝑎5}

F8 { 𝑎9, 𝑎8, 𝑎7}

F10 { 𝑎11, 𝑎10, 𝑎9}

F12 { 𝑎13, 𝑎12, 𝑎11}

F14 { 𝑎15, 𝑎14, 𝑎13}

F16 { 𝑎17, 𝑎16, 𝑎15}

F18 { 𝑎19, 𝑎18, 𝑎17}

F20 { 𝑎21, 𝑎20, 𝑎19}

F22 { 𝑎23, 𝑎22, 𝑎21}

F24 { 𝑎25, 𝑎24, 𝑎23}

F26 { 𝑎27, 𝑎26, 𝑎25}

F28 { 𝑎29, 𝑎28, 𝑎27}

F30 { 𝑎31, 𝑎30, 𝑎29}

F32 { 𝑎32, 𝑎32, 𝑎31}

3) Partial product generation unit

There will be 16 rows of partial products of the 16 F-blocks that

have been generated. Using Table 4, 𝐹, 𝐹1 and 𝐹2 have been
obtained and will be used to do the necessary bit manipulation
to get the required partial products. The hardware realization for

𝐹, 𝐹1 and 𝐹2 is given above(Fig.3).

Note: 𝐹 is high when f2i is -ve, otherwise low.

 𝐹1 is high when f2i≠0, otherwise low.

 𝐹2 is high when f2i = ±2, otherwise low.

All the F-blocks need to be processed individually to find the

respective 𝐹, 𝐹1 and 𝐹2.

Using booth recoding algorithm, our partial products will be

reduced. There will only be 17 rows of partial product to be

added. For example, to generate ROW_0 partial product, we

will need to operate 𝐹0, 𝐹01 and 𝐹02 in “b”(33-bit

multiplicand; output of preprocessing unit).Similarly, other

rows are operated upon to get the respective partial product

rows.

𝑎2𝑖−1

𝑎2𝑖

𝑎2𝑖+1

𝑎2𝑖−1
𝑎2𝑖𝑎2𝑖+1

𝑎2𝑖−1

𝑎2𝑖

𝑎2𝑖+1
𝐹

𝐹1

𝐹2

0

1

Figure 3:Partial Product Generator

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030228
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

4) Partial product addition unit

This unit undertakes the summation of all partial products,

denoted as ROW#0 through ROW#32. Carries are efficiently

propagated diagonally leftward and downward to enhance

computational speed. However, during the processing of the

final row, ROW#32, which lacks a row beneath it, horizontal

carry propagation becomes necessary.

It is imperative to acknowledge that horizontal carry propagation

is viable due to the unoccupied augend, as evidenced by the

absence of a subsequent row. Notably, in cases where the value

of f2i is negative, the computation necessitates the derivation of

the 2's complement of the number "b". Despite the depiction in

Fig.4, the operational scope is confined to XOR operations.

Furthermore, the addition of 1 to the Least Significant Bit (LSB)

position, in alignment with the binary values of the respective

ROWs, is indispensable.

To address this requirement, an additional ROW, denoted as

ROW#-1, is introduced. This supplementary row serves the

purpose of facilitating the addition of 1 to the aligned LSB

position for the relevant ROWs, ensuring computational

accuracy and integrity within the system architecture.

Conventional approaches in multiplier design have often relied

on the utilization of half and full adders. However, our approach

diverges from tradition as we opt for the integration of high-

speed agile compressors within our multiplier architecture.

Critical path in conventional addition is longer compared to

compressors. We use this fact and our strategic choice of

utilising compressors over traditional adders aims to further

augment computational speed and efficiency, thereby enhancing

the overall performance of the multiplier.

III. COMPRESSORS

Binary multiplication involves the execution of numerous partial

product additions. In conventional multiplier architectures, full

adders are conventionally employed for this purpose. However,

full adders can only accommodate the addition of up to three

inputs simultaneously. Consequently, when adding all partial

products, a substantial number of full adders are necessitated.

To mitigate the requirement for a vast number of adders in this

operational scheme, we introduce high-speed compressors.

These compressors are developed based on the principle of

binary counter properties. Among the various compressor

designs, the 5-3 compressor stands out, as it allows the addition

of up to five inputs simultaneously, yielding a three-bit output.

This innovation serves to streamline the computational process

and optimize resource utilization within the multiplier

architecture. Table-5 showcases the counter property of 5-3

compressor.

Figure 4:Row#n calculation using Fn2, Fn1 and Fn

Sign

Extension

Region

𝐹𝑛1

0 1 0 1 0 1

b[0] b[1] b[32] b[32]

b[31]

𝐹𝑛2

𝐹𝑛

row_n[0] row_n[1] row_n[32] row_n[33] row_n[63] row_n[34]

𝐹𝑛2

Where n=0,2,4,….,32

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030228
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

Table 5:Counter-Property of a 5:3 Compressor

Input

Condition
Out3 Out2 Out1

Decimal

value

All inputs

are zero
0 0 0 0

Any one

input is one
0 0 1 1

Any two

input are one
0 1 0 2

Any three

input are one
0 1 1 3

Any four

input are one
1 0 0 4

Any five

input are one
1 0 1 5

Different compressors:-their design and sub-units

Some basic different compressors’ architecture are designed and

implemented by using the same logic. Their block diagrams are

as follows

Full adder

Half adder

Half adder

Out 3 Out 2 Out 1

A B C D

Full adder

Full adder

Half adder

Out 3 Out 2 Out 1

A B C E D

Full Adder

B C A

Full Adder

E F D

Full Adder

H I G

Full Adder

K L J

Full Adder

N O M

5:3 compressor 5:3 compressor

Parallel Addition

S6 S5 S4 S3 S2 S1

Out 4 Out 3 Out 2 Out 1

Figure 7:Structure of a 7:3 Compressor

Figure 6:Structure of a 5:3 Compressor

Figure 8:Structure of a 15:4 Compressor

Figure 5:Structure of a 4:3 compressor

A

4:3 compressor Full Adder

Parallel Addition

B F E

S1 S2 S3 S4 S5

Out 3 Out 2 Out 1

D C G

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030228
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

IV. RESULTS AND COMPARISON

The implemented single cycled, 32-bit signed multiplier using
booth recoding algorithm and high speed compressors has been
successfully verified through a written testbench script. The
code was written and executed on the Xilinx Vivado 2021.2
platform. The synthesized design was targeted towards the
Kintex-7 FPGA, specifically the Device- XC7K70T with
Package- FBG484 and speed-1. Table-6 presents a comparison
between the implemented single-cycle 32-bit signed multiplier
and the 32-bit complex Vedic multiplier [2].

Table 6:A Comparison with The Vedic Multiplier

Parameters
32-bit
Vedic

Multiplier

Implemented
32-bit Signed

Multiplier
Improvement

Slice LUTs 7874 1978 74.88%

Bonded
IOBs

258 130 49.61%

Table 7:FPGA Hardware Utilization

Parameter Utilization

Bonded IOB 130

Slice
SLICEL 310

SLICEM 243

LUT as Logic
Using o6 output only 1713

Using o5 and o6 264

Half
 dder

 ull
 dder

Half
 dder

 ut 4 ut 3 ut 2

S2S4S

 2 1

S1

 ut 1

S3S

Half
 dder

 ull
 dder

Half
 dder

 ut 3 ut 2 ut 1

S1S3S2S4S

 1 2

Figure 9:Parallel Addition Unit for 7:3 compressor Figure 10:Parallel Addition Unit for15:4 compressor

row0 3

 3

 4

21 H

 0 row0 0

H
 1

row0 1

4 3
 2

row0 2 row2 0 2

 3

row2 1 4 input bits1 input bits

4 carry bits

 3 3 2 1 0

H Half dder
 ull dder

Figure 11:Partial Product Addition Using High-speed Agile Compressor

Figure 12:Behavioural Simulation Results

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030228
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

V. CONCLUSION

The architecture of the multiplier proposed by us in this paper

can multiply two signed as well as unsigned 32-bit integers using

booth recoding algorithm and high speed agile compressors. The

booth recoding algorithm significantly reduces the number of

partial product rows which in turn improve the speed as

compared to conventional multipliers and the high speed

compressors have a much shorter critical path as compared to

traditional adders. The implemented multiplier's performance

has been examined using various parameters, including power

and hardware utilization. Compared to the 32-bit complex Vedic

multiplier [2], the slice LUTs and bonded IOBs utilizations are

significantly better, with improvements of 74.88% and 49.61%,

respectively.

REFERENCES

[1] Saha, P., Banerjee, A., Bhattacharyya, P., and Dandapat, A. (2011,

January). “High speed SI design of complex multiplier using
vedicmathematics”. In Students’ Technology Symposium (TechSym),

2011 IEEE (pp. 237-241). IEEE.

[2] Ankush Nikam, Swati Salunke, Sweta Bhurse. “Design and
Implementation of 32bit omplex ultiplier using Vedic lgorithm”

IJERT ,2015 March,Vol 4.
[3] . Dandapat, S. Ghosal, P. Sarkar, D. ukhopadhyay, “ 1.2-ns16×16-

Bit Binary ultiplier Using High Speed ompressors”, International

Journal of Electrical and Electronics Engineering, 2010.
[4] Shubhajit Roy Chowdhury, Aritra Banerjee, Aniruddha Roy, Hiranmay

Saha,”Design, Simulation and Testing of a High Speed Low Power 1 -4

Compressor for High Speed Multiplication pplications”, irst
International Conference on Emerging Trends in Engineering and

Technology, 2008.

[5] . orris ano, “Digital Design”,3rd edition, Prentice Hall,2002..

Figure 14:On-Chip Power

(On Chip)

Figure 13:RTL Schematic of implemented multiplier

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030228
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org

