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Abstract—A multiplier is one of the integral and frequently used 

parts of every digital system. In this paper, a 32x32-bit signed 

multiplier has been implemented using the booth recoding 

algorithm and high-speed compressors. This in turn facilitates 

hardware reduction as partial product rows are significantly 

reduced, thus improving efficiency in terms of speed and power 

consumption. An analytical comparison of this multiplier with the 

conventional multiplier has also been provided. This booth 

recoding multiplier has been designed using the SYSTEM 

VERILOG HDL and FPGA realization has been achieved through 

Xilinx Kintex-7 FPGA in Xilinx Vivado 2021.2 software. 

Keywords—Booth Recoding; 32x32 bit signed multiplier; Agile 

compressors; Parallel addition; Verilog HDL; FPGA. 

I. INTRODUCTION

Low-power VLSI circuits have emerged as critical criteria for 

designing energy-efficient electronic systems tailored for high-

performing portable devices. Across various domains such as 

microprocessors, image and video processing, digital filters, 

error correction and coding, neural networks, and machine 

learning, multipliers play an integral role in enhancing 

computational efficiency. This paper presents the 

implementation of a 32x32-bit signed multiplier using the 

Booth recoding algorithm and high-speed agile compressors to 

improve processing speed. The inputs can be either signed or 

unsigned. 

Conventional multiplication relies on the partial products 

method, where each bit of the multiplier is multiplied with the 

multiplicand to form partial product rows. Subsequently, these 

rows are left-shifted and summed to produce the final result. 

A similarity is observed in case of multiplication of two binary 

numbers. This process is simplified as it involves only two 

digits—1 and 0—whereby multiplication with ‘1’ results in a 

direct copy and same with ‘0’ is discarded. However, for 

numbers with a high number of bits, processing time increases, 

leading to elevated time complexity and hardware demands. 

In this paper, the focus will be on overcoming those major 

drawbacks with the proposed multiplier design. The paper has 

been divided into subsequent sections as follows. Section II 

provides a comprehensive overview of the traditional booth 

recoding algorithm. Section III goes into detail explaining the 

operation of the high-speed, agile compressors. The 

comparative analysis and the experimental results have been 

included in Section IV, followed by the concluding remarks in 

Section V. 

II. CONVENTIONAL BOOTH RECODING

ALGORITHM 

A. Abstract block diagram of  top module of the multiplier

and the signal description

For booth recoding algorithm-based multiplier, two 32-bit 

inputs are required to represent the multiplicand and multiplier. 

In addition to that, two control signals are also fed to indicate 

whether the multiplier and multiplicand are signed or unsigned 

binary values. The output is a 64-bit value. 

Table 1:Signal Description of Top Module 

Signal name Width Source Description 

mplier 32 input 
Top module multiplier 

input 

mplier_s_u 1 input 
 1→multiplier is signed 

 0→multiplier is unsigned 

mplicand 32 input 
Top module multiplicand 

input 

mplicand_s_u 1 input 

 1→multiplicand is signed 

0→multiplicand is 

unsigned 

prod 64 output 
Output of the multiplier 

block 

Figure 1:32-bit Booth Recoding Multiplier 
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2s complement representation of A: 

=−231𝑎31 + 230𝑎30 + (2 − 1)229𝑎29

+228𝑎28 + (2 − 1)227𝑎27

+226𝑎26 + (2 − 1)225𝑎25

 .…………………………. 

 .…………………………. 

+22𝑎2 + (2 − 1)21𝑎1

+20𝑎0 + 20𝑎−1   where 𝑎−1 ≡ 0

=−231𝑎31 + 230𝑎30 + 230𝑎29

−229𝑎29 + 228𝑎28 + 228𝑎27

−227𝑎27 + 226𝑎26 + 226𝑎25

   .…………………………. 

   .…………………………. 

−23𝑎3 + 22𝑎2 + 22𝑎1

−21𝑎1 + 20𝑎0 + 20𝑎−1   where 𝑎−1 ≡ 0 

= 230(−2 𝑎31 +  𝑎30 +  𝑎29)

+228(−2 𝑎29 +  𝑎28 + 𝑎27)

+226(−2 𝑎27 +  𝑎26 +  𝑎25)
   .…………………………. 

   .…………………………. 

+22(−2 𝑎3 +  𝑎2 +  𝑎1)

+20(−2 𝑎1 +  𝑎0 + 𝑎−1)     where 𝑎−1 ≡ 0 

=∑ 22𝑖(15
𝑖=0 − 2 𝑎2𝑖+1 + 𝑎2𝑖 +  𝑎2𝑖−1)

= ∑ 22𝑖15
𝑖=0 𝑓2𝑖        

where 𝑓2𝑖 = −2 𝑎2𝑖+1 +  𝑎2𝑖 +  𝑎2𝑖−1   ...………….(1)

Unsigned number: 

2s complement representation of A: 

=−232𝑎32 + 231𝑎31 + 231𝑎30

−230𝑎30 + 229𝑎29 + 229𝑎28

−228𝑎28 + 227𝑎27 + 227𝑎26

   .…………………………. 

   .…………………………. 

−22𝑎2 + 21𝑎1 + 21𝑎0

−20𝑎0 + 2−1𝑎−1 + 2−1𝑎−2  where 𝑎−1 = 𝑎−2 ≡ 0

=231(−2 𝑎32 + 𝑎31 + 𝑎30)

+229(−2 𝑎30 +  𝑎29 + 𝑎28)

+227(−2 𝑎28 +  𝑎27 +  𝑎26)

   .…………………………. 

   .…………………………. 

+21(−2 𝑎2 +  𝑎1 +  𝑎0)

+2−1(−2 𝑎0 +  𝑎−1 +  𝑎−2)  where 𝑎−1 = 𝑎−2 ≡ 0

=∑ 22𝑖−1(16
𝑖=0 − 2 𝑎2𝑖 + 𝑎2𝑖−1 +  𝑎2𝑖−2)

= ∑ 22𝑖−115
𝑖=0 𝑓2𝑖−1        

where 𝑓2𝑖−1 = −2 𝑎2𝑖 + 𝑎2𝑖−1 +  𝑎2𝑖−2   ………….(2) 

When equations (1) and (2) are compared, it is evident that 

preprocessing of integer A can be done before recoding the 

basic signed and unsigned integer. 

Table 2:Truth Table for F-Block Values 

C. Sub-modules of the Booth Recoding Multiplier

1) 33rd bit extender unit

Here, a signed multiplier is being implemented to performed 
unsigned operations. Thus, in order to cover the complete range 
of unsigned multiplication, 1 extra bit is being extended at MSB 
in the next step. The 33rd bit for unsigned and signed number is 

zero and sign-extended respectively as shown in Fig.2 below. 

𝒂𝟐𝒊+𝟏 𝒂𝟐𝒊 𝒂𝟐𝒊−𝟏 𝒇𝟐𝒊
𝑭 

(+/−) 

𝑭𝟏 

(× 1/0) 

𝑭𝟐 

(× 2/0) 

0 0 0 0 0 0 0 

0 0 1 1 0 1 0 

0 1 0 1 0 1 0 

0 1 1 2 0 1 1 

1 0 0 -2 1 1 1 

1 0 1 -1 1 1 0 

1 1 0 -1 1 1 0 

1 1 1 0 0 0 0 

Figure 2:33rd-bit extender unit block diagram 
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mplicand[31:0] 
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a[32:0] 
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B. Mathematical representation of signed and unsigned

numbers

Signed number: 
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2) Preprocessing/F block formation unit

• In this unit, a “0” is added at the least significant bit (LSB)

of the “a”(Here, a is the 32-bit input to pre-processing

block which is also the output of the 33rd bit extender unit)

• Following that, blocks of 3 bits each are made. The most

significant bit (MSB) of the previous block is made the

least significant bit (LSB) of current one.

• As a 33-bit number “a” is in consideration, so after

addition of extra bit of “0” in the least significant bit (LSB)

position, we have a shortage of one bit needed to form the

F-block.

• To counter this, a bit is again added to the most significant

bit (MSB), which is the same as the 33rd bit, irrespective

of whether the number is signed or unsigned.

Table 3:Values after extension 

Extra bit added 

for F-block 

formation 

Extended 33-bit 

number (output 

of the 33rd bit 

extender unit) 

“0” added in 

LSB 

a[32] a[32:0] 0 

Total width of the number after pre-processing becomes 34-

bits. Pre-processing is just a simple rewiring process. 

Table 4:Grouping for F-Block 

F0 { 𝑎1, 𝑎0, 0}

F2 { 𝑎3, 𝑎2, 𝑎1}

F4 { 𝑎5, 𝑎4, 𝑎3}

F6 { 𝑎7, 𝑎6, 𝑎5}

F8 { 𝑎9, 𝑎8, 𝑎7}

F10 { 𝑎11, 𝑎10, 𝑎9}

F12 { 𝑎13, 𝑎12, 𝑎11}

F14 { 𝑎15, 𝑎14, 𝑎13}

F16 { 𝑎17, 𝑎16, 𝑎15}

F18 { 𝑎19, 𝑎18, 𝑎17}

F20 { 𝑎21, 𝑎20, 𝑎19}

F22 { 𝑎23, 𝑎22, 𝑎21}

F24 { 𝑎25, 𝑎24, 𝑎23}

F26 { 𝑎27, 𝑎26, 𝑎25}

F28 { 𝑎29, 𝑎28, 𝑎27}

F30 { 𝑎31, 𝑎30, 𝑎29}

F32 { 𝑎32, 𝑎32, 𝑎31}

3) Partial product generation unit

There will be 16 rows of partial products of the 16 F-blocks that 

have been generated. Using Table 4, 𝐹, 𝐹1 and 𝐹2 have been
obtained and will be used to do the necessary bit manipulation 
to get the required partial products. The hardware realization for 

𝐹, 𝐹1 and 𝐹2 is given above(Fig.3).

Note: 𝐹  is high when f2i is -ve, otherwise low. 

 𝐹1 is high when f2i≠0, otherwise low.

 𝐹2 is high when f2i = ±2, otherwise low.

All the F-blocks need to be processed individually to find the 

respective 𝐹, 𝐹1 and 𝐹2.

Using booth recoding algorithm, our partial products will be 

reduced. There will only be 17 rows of partial product to be 

added. For example, to generate ROW_0 partial product, we 

will need to operate 𝐹0, 𝐹01 and 𝐹02 in “b”(33-bit

multiplicand; output of preprocessing unit).Similarly, other 

rows are operated upon to get the respective partial product 

rows. 

𝑎2𝑖−1

𝑎2𝑖

𝑎2𝑖+1

𝑎2𝑖−1
𝑎2𝑖𝑎2𝑖+1

𝑎2𝑖−1

𝑎2𝑖

𝑎2𝑖+1
𝐹 

𝐹1

𝐹2

0 

1 

Figure 3:Partial Product Generator 
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4) Partial product addition unit

This unit undertakes the summation of all partial products, 

denoted as ROW#0 through ROW#32. Carries are efficiently 

propagated diagonally leftward and downward to enhance 

computational speed. However, during the processing of the 

final row, ROW#32, which lacks a row beneath it, horizontal 

carry propagation becomes necessary. 

It is imperative to acknowledge that horizontal carry propagation 

is viable due to the unoccupied augend, as evidenced by the 

absence of a subsequent row. Notably, in cases where the value 

of f2i is negative, the computation necessitates the derivation of 

the 2's complement of the number "b". Despite the depiction in 

Fig.4, the operational scope is confined to XOR operations. 

Furthermore, the addition of 1 to the Least Significant Bit (LSB) 

position, in alignment with the binary values of the respective 

ROWs, is indispensable. 

To address this requirement, an additional ROW, denoted as 

ROW#-1, is introduced. This supplementary row serves the 

purpose of facilitating the addition of 1 to the aligned LSB 

position for the relevant ROWs, ensuring computational 

accuracy and integrity within the system architecture. 

Conventional approaches in multiplier design have often relied 

on the utilization of half and full adders. However, our approach 

diverges from tradition as we opt for the integration of high-

speed agile compressors within our multiplier architecture. 

Critical path in conventional addition is longer compared to 

compressors. We use this fact and our strategic choice of 

utilising compressors over traditional adders aims to further 

augment computational speed and efficiency, thereby enhancing 

the overall performance of the multiplier.  

III. COMPRESSORS

Binary multiplication involves the execution of numerous partial 

product additions. In conventional multiplier architectures, full 

adders are conventionally employed for this purpose. However, 

full adders can only accommodate the addition of up to three 

inputs simultaneously. Consequently, when adding all partial 

products, a substantial number of full adders are necessitated. 

To mitigate the requirement for a vast number of adders in this 

operational scheme, we introduce high-speed compressors. 

These compressors are developed based on the principle of 

binary counter properties. Among the various compressor 

designs, the 5-3 compressor stands out, as it allows the addition 

of up to five inputs simultaneously, yielding a three-bit output. 

This innovation serves to streamline the computational process 

and optimize resource utilization within the multiplier 

architecture. Table-5 showcases the counter property of 5-3 

compressor. 

Figure 4:Row#n calculation using Fn2, Fn1 and Fn  

Sign 

Extension 

Region 

𝐹𝑛1

0 1 0 1 0 1 

b[0] b[1] b[32] b[32] 

b[31] 

𝐹𝑛2

𝐹𝑛 

row_n[0] row_n[1] row_n[32] row_n[33] row_n[63] row_n[34] 

𝐹𝑛2

Where n=0,2,4,….,32 
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Table 5:Counter-Property of a 5:3 Compressor 

Input 

Condition 
Out3 Out2 Out1 

Decimal 

value 

All inputs 

are zero 
0 0 0 0 

Any one 

input is one 
0 0 1 1 

Any two 

input are one 
0 1 0 2 

Any three 

input are one 
0 1 1 3 

Any four 

input are one 
1 0 0 4 

Any five 

input are one 
1 0 1 5 

Different compressors:-their design and sub-units 

Some basic different compressors’ architecture are designed and 

implemented by using the same logic. Their block diagrams are 

as follows 

 

Full adder 

Half adder 

Half adder 

Out 3 Out 2 Out 1 

A B C D 

Full adder 

Full adder 

Half adder 

Out 3 Out 2 Out 1 

A B C E D 

 

Full Adder 

B C A 

Full Adder 

E F D 

Full Adder 

H I G 

Full Adder 

K L J 

Full Adder 

N O M 

5:3 compressor 5:3 compressor 

Parallel Addition 

S6 S5 S4 S3 S2 S1 

Out 4 Out 3 Out 2 Out 1 

Figure 7:Structure of a 7:3 Compressor 

Figure 6:Structure of a 5:3 Compressor 

Figure 8:Structure of a 15:4 Compressor 

Figure 5:Structure of a 4:3 compressor 

A 

4:3 compressor Full Adder 

Parallel Addition 

B F E 

S1 S2 S3 S4 S5 

Out 3 Out 2 Out 1 

D C G 
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IV. RESULTS AND COMPARISON

The implemented single cycled, 32-bit signed multiplier using 
booth recoding algorithm and high speed compressors has been 
successfully verified  through a written testbench script. The 
code was written and executed on the Xilinx Vivado 2021.2 
platform. The synthesized design was targeted towards the 
Kintex-7 FPGA, specifically the Device- XC7K70T with 
Package- FBG484 and speed-1. Table-6 presents a comparison 
between the implemented single-cycle 32-bit signed multiplier 
and the 32-bit complex Vedic multiplier [2]. 

Table 6:A Comparison with The Vedic Multiplier 

Parameters 
32-bit
Vedic

Multiplier 

Implemented 
32-bit Signed

Multiplier
Improvement 

Slice LUTs 7874 1978 74.88% 

Bonded 
IOBs 

258 130 49.61% 

Table 7:FPGA Hardware Utilization 

Parameter Utilization 

Bonded IOB 130 

Slice 
SLICEL 310 

SLICEM 243 

LUT as Logic 
Using o6 output only 1713 

Using o5 and o6 264 

Half
 dder

 ull
 dder

Half
 dder

 ut 4  ut 3  ut 2

S2S4S 

 2  1

S1

 ut 1

S3S 

Half
 dder

 ull
 dder

Half
 dder

 ut 3  ut 2  ut 1

S1S3S2S4S 

 1 2

Figure 9:Parallel Addition Unit for 7:3 compressor Figure 10:Parallel Addition Unit for15:4 compressor 

  

row0 3 

  3
  

 4

21  H 

 0 row0 0 
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 1

row0 1 

4 3
 2

row0 2 row2 0  2

 3

row2 1 4 input bits1  input bits

4 carry bits

  3  3  2  1  0

H  Half  dder
    ull  dder

Figure 11:Partial Product Addition Using High-speed Agile Compressor 

Figure 12:Behavioural Simulation Results 
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V. CONCLUSION

The architecture of the multiplier proposed by us in this paper 

can multiply two signed as well as unsigned 32-bit integers using 

booth recoding algorithm and high speed agile compressors. The 

booth recoding algorithm significantly reduces the number of 

partial product rows which in turn improve the speed as 

compared to conventional multipliers and the high speed 

compressors have a much shorter critical path as compared to 

traditional adders. The implemented multiplier's performance 

has been examined using various parameters, including power 

and hardware utilization. Compared to the 32-bit complex Vedic 

multiplier [2], the slice LUTs and bonded IOBs utilizations are 

significantly better, with improvements of 74.88% and 49.61%, 

respectively. 
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Figure 14:On-Chip Power 

(On Chip) 

Figure 13:RTL Schematic of implemented multiplier 
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