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Abstract— In this paper are presented the current results of 

scientific research of the synthetic and real RR time series for 

healthy subjects. The synthetic RR intervals are generated by 

algorithm [8] and the real RR intervals are obtained from 24-

hour digital Holter ECG records of normal subjects.  The two 

kinds of signals are evaluated by using Rescaled range analysis 

(R/S) and Detrended Fluctuation Analysis (DFA) methods for 

fractal analysis and MF-DFA method for multifractal analysis. 

The obtained results show that the investigated signals have 

fractal and multifractal properties. The results are implemented 

upon the Matlab platform. 

  

I.  INTRODUCTION   

 The recent scientific research of wide range physiological 

signals as electrocardiograms (ECG), electroencephalograms 

(ECC) and more show that they have a fractal structure [1, 2, 

3]. These signals normally are non-linear and non-stationary, 

as the significant part of the information is coded in the 

dynamics of their fluctuation.  Through implementation of the 

conventional analytical methods, based on the statistical 

parameters as mean values, standard deviations and 

harmonically analysis of the energetic spectrum of the signals, 

part of the important signal characteristics are missed [4, 5]. 

From the recent scientific research worldwide follow that 

scale invariance of the fluctuations can be easy identified for 

healthy and pathological cases via implementation of methods 

for fractal and multifractal analysis [6, 7]. Through these 

methods is determine that fluctuation of the physiological 

signals possess hidden information in the form of self-

similarity, scale structure, and multifractality. The fractal and 

multifractal analysis of the fluctuations is useful not only for 

getting the comprehensive information for physiological 

signals of the patients, but give a possibility for foresight, 

prognosis and prevention of the pathological statuses. The 

prevention in the medicine is important not only for the 

human, but for the community as whole. 

Electrocardiography is non-invasive method for analysis of 

the functional status of the cardiovascular activity. By the 

electrocardiogram is measured the electrical activity of the 

heart. The variation of time intervals between heart beats 

(Heart Rate Variability -HRV) is the method for evaluation of 

cardiological intervals. HRV is used to diagnose and estimate 

of alterations in heart rate by measuring the variation of RR 

intervals and it can be used to provide an assessment of 

cardiovascular diseases. The heart rate is not stationary signal 

and it is under the influence of sympathetic and 

parasympathetic activity of the autonomic nervous system, as 

part of the central nervous system.  

In this study, the main objectives are: 

- To generate the RR time series. For the generation is used 

algorithm described in publication [8].  

- Comparative analysis between synthetic and real RR time 

series, obtained from 24-hour Holter ECG recordings of 

healthy subjects by applying fractal and multifractal 

methods. 

II.  SUBJECTS 

The article analyzes these two kinds of signals: 

-   Synthetic signals, consisting of about 100 000 data points, 

corresponding to a 24-hour recordings of ECG RR intervals . 

Signals are generated using the algorithm described in 

publication [8]. This algorithm is based on the Gaussian 

distributions and represents a modification of McSarry 

algorithm [9] in which the Inverse Fourier Transform is 

replaced by the Inverse Wavelet Transform.  

-  Real 24-hour digital Holter ECG records of RR intervals of 

6 healthy adults (3 men and 3 women aged 35 to 62 years). 

The data are taken from the cardiology department of 

Multiprofile District Hospital for Active Treatment "Dr. 

Stefan Cherkezov" AD - Veliko Tarnovo, Bulgaria. 

Figures 1 and 2 show 5- minute series of simulated and real 

RR intervals. Average RR interval is approximately 1 second, 

and the duration of the cardiac interval ranges between 0.8 and 

1.2 sec. 

III.   FRACTAL ANALYSIS 

A.   R/S statistical method 

The rescaled range (R/S) method is suggested by British 

hydrologist Hurst [10]. The R/S for the time series X(n) is 

asymptotically given by a power law: 

Hn∞
)n(S

)n(R
                                 (1) 

Where: 

- R(n) is the range which is the difference between the 

minimum and maximum accumulated values; 

- S(n) is the standard deviation estimated from the observed 

data X(n); 

- H is the Hurst exponent. 
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To estimate the Hurst exponent is plotted R(n)/S(n) versus 

n in log-log axes. The slope of the regression line 

approximates the Hurst exponent. The values of the Hurst 

exponent range between 0 and 1. Based on the Hurst exponent 

value, the following classifications of time series can be 

realized: 

- H=0.5 indicates a random series; 

- 0<H<0.5 – the data in the signal are anti-correlated; 

- 0.5<H<1 – the data in the signal are long-range 

correlated. 

 

B.   DFA method 

 The method DFA (Detrended Fluctuation Analysis) is 

suitable for the study of non-stationary signals [11, 12]. This 

method allows to determine the correlation properties of the 

signal. Fluctuations (F) of the signal can be expressed as a 

function of time intervals (n) by the formula:  
αn)n(F ∞ .                                (1) 

Where α is a scalable parameter, which depends on the 

correlation properties of the signal. By changing the parameter 

n can be studied how to change the fluctuations of the signal. 

Linear behavior of the dependence F (n) is an indicator of the 

presence of a scalable behavior of the signal. From the slope 

of the straight line is determined the value of the parameter α. 

For uncorrelated signals, the value of this parameter is within 

the range (0, 0.5), where α > 0.5-it is an indication for the 

presence of correlation. When α = 1, the signal is 1 / f – noise, 

while α = 1.5 – usually Brownian motion. 

 
Figure 1: Generated 5-minute RR time series 

 

 
Figure 2: Real 5-minute RR time series 

 

IV.  MULTIFRACTAL ANALYSIS 

With R/S and DFA methods can determine only one 

parameter (Hurst exponent-H, scaling exponent-α) 

characterizing the sampled signal. This fact shows that these 

methods are more appropriate for study of monofractal 

signals. Monofractal signals are homogeneous because they 

have the same scaling properties for the entire signal. These 

signals are characterized locally by a single singularity 

exponent h0 and by a single global exponent H≡ h0, which 

suggests that they are stationary. The following definition of 

multifractal is used in the scientific literature [13]: 

Definition: A stochastic process Z(t) is called multifractal if 

it has stationary increments and satisfies: 

( ) ,t)q(c=)t(ZE 1+)q(τq
   for all .Q∈q,T∈t        (2) 

Where: 

- T and Q are intervals on the real line; 

- c(q) is independent of t; 

- τ(q) is scaling function.                                                

As result of the mentioned definition follow that τ(q)  is a 

concave function. If )q(τ is linear in q, then the signal is 

monofractal, otherwise it is multifractal. If the signal is fractal 

(self-similar) with Hurst exponent, then τ(q) =qH-1.  

The multifractal detrended fluctuation analysis (MF-DFA) 

is generalization of DFA to detect multifractal properties of 

time series [14].  The aim of this method is to determine the 

behavior of the q dependent fluctuation functions Fq(n) with 

regard to time scale n, for different values of q. If the time 

series is of long-range correlation, then: 
)q(hn∞)n(Fq .                                  (3) 

Where h(q) is a scalable parameter, which is obtained as 

slope of the linear regression of Log Fq(n) versus Log(n). For 

stationary time series, h(2) is identical to the Hurst exponent 

H, and therefore h(q) is called the generalized Hurst exponent. 

 

A.   Generalized Hurst exponent  

This parameter determines whether the time series is 

monofractal or multifractal. For monofractal time series h(q) is 

independent of q, while for multifractal series small and large 

fluctuations scale differently and this parameter is a 

decreasing function of q. 

B.   Multifractal scaling, Partition function and Legendre 

multifractal spectrum 

The method for estimation of scaling function τ(q) is based 

on the absolute moments of the process and it calculates τ(q) 

directly from the observation data. For a time series Z={Zi, 

i=1,2,…,N} the partition function )q(SZ
m can be given by [14]: 

             q
m/N

1=k

)m(
k

Z
m )Z(=)q(S ∑ .                               (3)       

Where: 

∑
-

m

1=i
i+1)m(k

(m)

k Z=Z .                                  (4) 

The ratio N/m is the number of blocks that cover the 

observation data, and m is the size of blocks. 

From the definition of multifractality, follow if the 

logarithm of partition functions )q(Slog Z
m  is linearly 

depending on logarithm of m, the data exhibits multifractal 
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scaling. The slope of the straight line can be obtained using 

the linear regression and it is denoted by scaling function τ(q)  

[14]: 

const.+)τ(q).log(m(q)logSZ
m ≈              (5)                                                

An important tool in multifractal theory is the Legendre 

transform. The relationship among multifractal scaling 

function τ(q), Legendre multifractal spectrum f(α) and Hölder 

exponent α are following [13]: 

.
dq

)q(τd
=)q(α                                  (6)                                     

f(α)=
α

min (αq- (q)τ ).                      (7)                                                  

The spectrum width on multifractality degree is ∆α=αmax – 

αmin, this quantity is a measure of the range of fractal 

exponents in the time series, so if ∆α is large, the signal is 

multifractal. 

The dimension function D(q) and f(α) are related through a 

Legendre transform. The generalized dimension is defined by 

the following equation [14]: 

)mln(

))m,q(Sln(

1q

1
lim=)q(D

0m -→
                  (8)                                                

D(0) is the capacity dimension; D(1) is the information 

dimension, and D(2) is the correlation dimension. The 

observation process is called monofractal if D(q) is constant 

for all values of q, otherwise is called multifractal. 

 

C.   The algorithm for the multifractal Legendre spectrum 

calculation 

The algorithm for the multifractal Legendre spectrum 

calculation consists of following steps:  

Step 1: Initialization of the input parameters: 

- N – length of the investigated data; 

- m – the size of the non-overlapped blocks; 

- (m_begin, m_end) – the range of deviation of the size of 

blocks; 

- m_step – the step of the deviation of the size of blocks; 

- (q_min, q_max) – range of the deviation of the parameter 

q; 

- q_step – step of the deviation of the parameter q. 

Step 2: The value of the parameter q is equal to the left border 

(q_min) of its deviation. The value of this parameter is 

incremented by the value q_step.  The iterations are repeated, 

when the value of q achieve q_max. 

Step 3: The input data are divided into non-overlapped blocks, 

the size of which during the first iteration is equal to the left 

border of the interval of the scale deviation m (m_begim). The 

size of the blocks m is incremented by the value m_step. The 

iterations are repeated, while the size of the block achieves 

value m_end. 

Step 4: For each bock is calculated the sum, using the formula 

(4). 

Step 5: From equation (3) is calculated the partition function

)q(SZ
m . 

Step 6: The scaling function τ(q)  is calculated by the linear 

regression for every parameter q. 

Step 7: The multifractal Legendre spectrum is calculated by 

the formulas (6) and (7). 

V.   RESULTS AND DISCUSSION 

In the paper are used two methods: R/S and DFA for fractal 

analysis of two RR-time series: synthetic and real RR-time 

series of healthy subjects.  

The results of the R/S method applied to the two studied 

signals to determine the value of the Hurst exponent are 

shown in Figure 3. The determined values of the Hurst 

exponent are: 

- H=0.5978 for synthetic RR-time series; 

- H=0.6048 for real RR-time series for healthy subject. 

The obtained results show that both RR-time series are 

correlated, i.e. they are fractal time series. 

 

 
 

Figure 3: Hurst exponent of synthetic and real RR time series of healthy 

subject 

 

By DFA method are calculated the scaling exponents of 

both investigated RR-time series by plotting detrended 

fluctuations function F(n) against the box size (n). Figure 4 

shows the plots of F(n) against n for synthetic and real RR-

time series of healthy subject.  The scaling exponent for the 

real RR-time series is 0.63102 and for synthetic RR-time 

series is 0.61015. In both case the scaling exponent is 

0.5<α<1.0 and thus show that investigated time series have 

long-range correlation. 

Figure 5 shows the generalized Hurst exponent of synthetic 

and real RR time series of healthy subject. Hurst exponents h 

are not a constant and hence the two RR-time series have 

multifractal properties. 

Figure 6 shows the relation of scaling function τ(q) on q of 

synthetic and real RR time series of healthy subject. The 

graphics are not linear; hence the two signals have multifractal 

behavior. 
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Figure 4: Results of DFA method applied to synthetic and real RR time series 

of healthy subject 

 

 

 
Figure 5: The generalized Hurst exponent of synthetic and real RR time series 

of healthy subject 

 

Figure 7 shows the multifractal spectrum of synthetic and 

real RR time series of healthy subject.  The two curves have 

multifractal behaviour, due to  the wide range of local values 

of the Hölder exponent α (∆α=αmax – αmin). The range of 

values of the Hölder exponent α for real RR time series is 

∆α=0.5162, and for synthetic RR time series is ∆α=0.5249.  

The values of α, f(α) and ∆α  for different values of q of 

synthetic and real RR series are reported in Table 1. 

 

 
Figure 6: The scaling function of synthetic and real RR time series of healthy 

subject 

 

 
Table1: The values of  α, f(α) and ∆α  for different values of q of synthetic 

and real RR series 
 

q Synthetic RR series Real RR series 

α f(α) ∆α α f(α) ∆α 

q=0 0.54 1  

0.525 

0.54 1  

0.516 q=10 0.24 0.19 0.24 0.243 

q=-10 0.77 0.29 0.771 0.464 

 

 

Figure 8 and Figure 9 show the multifractal spectrum and 

the scaling function of real RR time series for all healthy 

subjects.   

 

 
Figure 7: The multifractal spectrum of synthetic and real RR time series of 

healthy subject 
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Figure 8: The scaling function of real RR time series for all healthy subjects  

 

 
Figure 9: The multifractal spectrum of the real RR time series for all healthy 

subjects 
 

VI.   CONCLUSION  

In the recent years, the nonlinear analysis of 

Electrocardiogram signals using fractal and multifractal theory 

has been proved to be effective. 

In this paper, a detailed analysis of the fractal and 

multifractal properties of the synthetic and real RR time series 

for healthy subjects are investigated. Both signals are 

evaluated by using R/S and DFA methods for fractal analysis 

and MF-DFA method for multifractal analysis. The obtained 

results from all these methods show that the investigated 

signals have fractal and multifractal properties.  

The existence of the long-range correlations and 

multifractal properties in synthetic RR interval time series 

verifies that algorithm [8] generates data for healthy subjects. 

From a practical point of view, the fractal and the 

multifractal methods may have potential application for 

ambulatory monitoring of subjects. Fractal and multifractal 

analysis of the RR time series are suitable non invasive 

methods of diagnostics, forecast and prevention of the 

pathological statuses. 
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