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Abstract-- In Fractal Image Compression the major 

computational cost goes in comparison of Domain and Range 

blocks. To reduce the complexity, different researchers 

attempted to reduce the number of comparisons which 

ultimately lead to lower the image quality. This paper proposes 

a low complexity algorithm which is based on locality sensitive 

hashing. This fast algorithm finds correct Domain block for a 

Range block with a very high probability, without 

compromising with image quality. The idea is to preprocess the 

image and create an adjacency list data structure using hash 

values generated by Locality Sensitive Hashing when applied 

on all Domain Blocks. Locality Sensitive Hashing generates 

similar hash values for similar Blocks. All the Domain Blocks 

with similar Hash values are kept in same bucket. During 

Comparison a Range Block is compared with only those blocks 

which are in the bucket whose hash value is similar to the 

current Range Block. Complexity of this algorithm is 

approximately O(n) where n is number of pixels. 

 

Keyword – Fractal, Range block, Domain block, Locality 

Sensitive Hashing. 

 

I.   INTRODUCTION 

To Compress an Image using Fractal Image Compression, 

Initially divide it in logical non-overlapping blocks of 

8x8 pixels called Range Blocks. Then logically divide the 

image into logical overlapping blocks of 16x16 pixels. Now 

for each Range block we have to search a Domain block 

which is structurally similar to it. To find the most accurate 

and nearest block for a Range block we Down sample the 

Domain Block to bring it to the size of Range Block 

and then apply some transformations on Domain Block such 

as Rotation, Flip etc.  For each transformation find the Least 

Square Distance between Range block and Transformed 

domain Block. If this distance happens to be less than a 

threshold value then the affine transformation for this 

domain block is stored into a compressed file.  

Affine Transformations are computed using formula 
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Where, (x’, y’, z’) represents the transformed point; 

si represents the scaling of contrast; oi represents the 

brightness offset (or translation of pixel value). ei and fi 

represent the spatial position translations, ai and di represent 

the spatial  scaling; bi and ci represent rotation; and z=f(x, 

y), the pixel value at (x, y). This Transformation has to be 

contractive in all three directions x, y, z.  

 

For each Range and Domain Block pair we can compute 

contrast and brightness using least square regression which 

has the least root mean square (rms) difference.  

  

The square Euclidean’s method used for this purpose is 

 

E =   𝑠. 𝑑𝑖 + 𝑜 − 𝑟𝑖 
2𝑛

𝑖=1
 

 

Where ri is the pixel intensity from range Block Ri and di is 

the pixel intensity from domain block Di, s and o are contrast 

and brightness respectively. To find minimum value of E we 

take partial derivative with respect to s and o. 
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Using the above equation, the value of s and o can be 

calculated as: 
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Each transformation requires 8 bit in each direction to locate 

position of Di, 7 bits for oi and 5 bits for si and 3 bits to 

determine Rotation or flip, making it total of 31 bits for a 

256x256 image. 

II.  LITERATURE SURVEY 

The Idea of Fractal image compression was first introduced 

by Michael F. Barnsley in 1988 [1]. His approach was 

further improved by his PhD student Arnard Jacquin who 

believed an image can be constructed by smaller part of 

itself instead of some other image. To implement this he 

partitioned the image and search for similar blocks in it. 

This approach uses partitioned iterated function system 

(PIFS) in which we have a collection of affine 

transformations which when apply on any set gives back our 

original image. Since this approach, many approaches have 

been proposed to enhance and improve fractal image 

compression. 

Abdelrahman Selim et al. [2] proposed another method in 

which they used spiral architecture instead of square blocks. 

This approach improved the compression ratio but degraded 

the image quality. Jianji Wang and Nanning Zheng [3] 

proposed a way using Pearson’s Correlation Coefficient. 

They used the concept that affine similarity between two 

blocks in FIC is equal to the absolute value of Pearson’s 

Correlation Coefficient, using this they classified domain 

blocks. And for each range block, they searched only a 

domain set whose difference with the Range block was 

minimum. T.K. Truong at al. [4] proposed a method of 

spatial correlation in which properties of a block is used to 

reduce search space. The new method proposed in this paper 

also reduces search space but does not compromise with 

image quality.  [5] and [6] gives two different ways to 

search nearest neighbour using Locality sensitive hashing. 

In [7], Kulis at al. tried to search an image in scalable 

database of images. In [8], Rajaraman et al. gave complete 

details of Locality Sensitive hashing with min-hash 

signature and Jaccard Distance. 

The rest of this paper is organized as follows: Section 3 

provides the basic idea, principles and various parameters 

involved in the proposed method. Section 4 provides 

performance comparison of the proposed approach with 

other methods, and finally, Section 5 draws the conclusions. 

III.   PROPOSED APPROACH 

In this paper two different techniques are combined one, 

Fractal Image Compression and another, Locality Sensitive 

Hashing. Locality sensitive hashing is used in cloud 

databases to find out duplicate or similar document. The 

best thing with locality sensitive hashing is that it gives 

similar hash value for similar documents. To find out 

similar documents, a database of hash values of all the 

documents is created. And whenever we need to find out all 

similar documents to a particular document, say A, then 

hash values of A and the hash values of all documents from 

hash database are matched; if they are found similar then 

these documents are similar. 

 

A.   Basic Idea  
In our approach, we apply Locality Sensitive Hashing on 

each domain block and all transformations (4 rotation and 2 

Flips) of that domain block and for each transformation, 

save a node which contains coordinates and transformation 

applied on that domain block in different buckets such that 

transformation with similar hash values goes in same 

bucket. Create enough buckets to reduce intra bucket search 

but do not create too many bucket as they may increase the 

inter bucket search time. We can use adjacency list as a data 

structure. 
After creating this data structure, for each Range block 

calculate hash value and search a domain block structurally 

similar to it, only in the bucket whose hash value is similar 

to the calculated hash value of Range block and then save 

the affine transformation in a compressed file. 

B.   Locality Sensitive Hashing 

Our approach in Locality Sensitive Hashing is to hash 

Domain blocks several times so that similar domain blocks 

will hash to same bucket. To achieve this goal take a family 

of hash functions called F. Create another Family of hash 

function H of functions h which itself is a collection of 

many hash functions from F. For a domain block d, hi(d)= 

[h1(d), h2(d), .....hk(d)], where h1, h2, ...... hk are k randomly 

chosen functions from F, a set of hash tables L are created 

for each randomly chosen h .In order to classify different 

domain blocks to different buckets, hash all pixel values 

from domain block di into each of the hash table L. 

Now while comparing a range block r, apply all L hash 

functions h. It gives all domain blocks which were hashed to 

the same bucket. Apply the transformation stored in the 

node and find root mean square difference, continue the 

process until we reached a difference which is below some 

threshold value t. After finding the acceptable match save 

the location of domain block, transformation applied and 

other parameters. Complexity of creating the hash tables is 

O(nkLt) where n is the number of pixels in a domain block 

which is constant, k and L are also constant in our case, so 

the complexity of creating hash table depends only on the 

time taken by hash function. Thus, the complexity of the 

algorithm is O(t). For details on Locality sensitive hashing 

read [8]. 

 
 
Figure1: Classification of Domain blocks using Locality Sensitive Hashing 
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C.   Probability of similar Domain blocks in same 

bucket 

For the successful completion of our algorithm the 

probability of finding similar block, if exists, must be high. 

Let P be the probability for a range block that a similar 

domain block exists. P
k 

is the probability of   matching all 

hash values in a hash table. 1 – P
k
 is the probability that no 

hash function gives same value for a hash table. (1 – P
k
)

L
 

gives probability that none of the hash value matches for 

any of the L hash tables. 1 – (1 – P
k
)

L
 is the probability that 

at least one of the hash value matches in any one Table. For 

example, let the probability P = 0.2 means for a range block 

there is very less probability that it matches with some 

domain block. Let k = 9 and L = 3, then Value of  1 – (1 – 

0.2
9
)

3
 is 0.0000015 which is very less means if two similar 

blocks do not exists then there is hardly any possibility that 

they will match. 

Similarly, if probability P = 0.9, then value of 1 – (1 – 0.9
9
)

3
 

is 0.78; means, if similar blocks exists then with a very high 

probability collision will occur. 

D.   Data structure used during pre-processing 

 
Data structure used during pre-processing is the adjacency 

list. Front node stores the hash value of the bucket, and the 

structure of internal node will contain two things first 

location of the domain block (x and y coordinate) and then 

the transformation applied (3bits for 8 transformations). 

 

Figure 2: Data structure used for pre-processing 

E.   Proposed Algorithms 

Two Algorithms are proposed: first is Pre-processing which 

creates the data structure to speedup the compression 

process. After pre-processing, Encoding algorithm saves the 

affine transformation parameters in the compressed file. 

  Algorithm Pre-processing 

 
Input: Image file. 

Output: Adjacency list with similar items in each bucket. 

 

Logically divide the image into overlapping Domain blocks 

of 16 x 16 pixels 

For each Domain Block 

 Down sample it to 8 x 8 pixels 

Apply all transformations (Rotate 0°, Rotate 90°, 

Rotate 180°, Rotate 270° with 2 Flips) 

Calculate hash on each transformation 

Save a node (which contains location of 

domain block and transformation) in a 

bucket whose hash value is similar to the 

block otherwise create another bucket and 

save in that.  

. 

 

 

  Algorithm Encoding Image 

 

Input: Adjacency list from pre-processing algorithm 

Output: Compressed image file 

 

For each Range block 

Calculate hash value and search a bucket which has 

similar hash. 

While difference between node and range block is 

not less than a threshold t 

 Jump to Domain block 

Apply transformation stored in the node 

Check rms(Range block, Domain block 

with transformation) < t 

Save location of domain block, 

transformation parameter (si, oi, 

rotation, flip)  

 

 
IV.   PERFORMANCE COMPARISON AND 

DISCUSSION 

 

Let us consider a square image with N x N where N is the 

number of rows or columns in the image, so, the total 

number of pixels in the image is P = N
2
. Let the size of 

Range block is 8 x 8 and size of Domain Block is 16 x 16. 

Therefore, total number of Range block is N
2
/64 and total 

number of domain block is (N-16+1)
2
, this is a very big 

number. In the worst case, for each range block we have to 

compare (N-16+1)
2
 blocks which is ineffective. The above 

algorithm reduces these numbers of comparisons to a larger 

extent. According to the above algorithm for a range block, 

only those domain blocks whose probability of matching is 

very good is searched. This reduces the time complexity and 

brings it closer to the number of pixels, i.e. N
2
, the time 

complexity of calculating hash is less than O(N
2
). In this 

algorithm, we should consider the space complexity during 

preprocessing which is O(8(N-16+1)) where 

8(transformations) is constant, so the space complexity is 

O(N-16+1),i.e., the number of Domain blocks. 
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V.   CONCLUSION 

 
This paper proposes a simple method for compressing an 

image using fractal image compression. Initially hash of all 

domain blocks are pre-computed and saved as an adjacency 

list data structure in memory. This will help in reducing the 

number of comparisons to a larger extent. Time complexity 

is linear to the number of pixels which is much better than 

algorithms proposed in [1] and [2]. Future work includes 

finding a simple hash function which will compute faster 

than the series of hash functions used in this paper. It is also 

interesting to investigating techniques to reduce memory 

requirement during preprocessing.  
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