

Fractal Image Compression using Locality

Sensitive Hashing

Ashutosh Sharma
Department of Computer Science and Engineering,

National Institute of Technology Calicut, India

V K Govindan
Department of Computer Science and Engineering,

National Institute of Technology Calicut, India

Abstract-- In Fractal Image Compression the major

computational cost goes in comparison of Domain and Range

blocks. To reduce the complexity, different researchers

attempted to reduce the number of comparisons which

ultimately lead to lower the image quality. This paper proposes

a low complexity algorithm which is based on locality sensitive

hashing. This fast algorithm finds correct Domain block for a

Range block with a very high probability, without

compromising with image quality. The idea is to preprocess the

image and create an adjacency list data structure using hash

values generated by Locality Sensitive Hashing when applied

on all Domain Blocks. Locality Sensitive Hashing generates

similar hash values for similar Blocks. All the Domain Blocks

with similar Hash values are kept in same bucket. During

Comparison a Range Block is compared with only those blocks

which are in the bucket whose hash value is similar to the

current Range Block. Complexity of this algorithm is

approximately O(n) where n is number of pixels.

Keyword – Fractal, Range block, Domain block, Locality

Sensitive Hashing.

I. INTRODUCTION

To Compress an Image using Fractal Image Compression,

Initially divide it in logical non-overlapping blocks of

8x8 pixels called Range Blocks. Then logically divide the

image into logical overlapping blocks of 16x16 pixels. Now

for each Range block we have to search a Domain block

which is structurally similar to it. To find the most accurate

and nearest block for a Range block we Down sample the

Domain Block to bring it to the size of Range Block

and then apply some transformations on Domain Block such

as Rotation, Flip etc. For each transformation find the Least

Square Distance between Range block and Transformed

domain Block. If this distance happens to be less than a

threshold value then the affine transformation for this

domain block is stored into a compressed file.

Affine Transformations are computed using formula

𝑥′

𝑦′

𝑧′

 =

𝑎𝑖 𝑏𝑖 0

𝑐𝑖 𝑑𝑖 0

0 0 𝑠𝑖

 .

𝑥

𝑦

𝑧

 +

𝑒𝑖

𝑓𝑖

𝑜𝑖

Where, (x’, y’, z’) represents the transformed point;

si represents the scaling of contrast; oi represents the

brightness offset (or translation of pixel value). ei and fi

represent the spatial position translations, ai and di represent

the spatial scaling; bi and ci represent rotation; and z=f(x,

y), the pixel value at (x, y). This Transformation has to be

contractive in all three directions x, y, z.

For each Range and Domain Block pair we can compute

contrast and brightness using least square regression which

has the least root mean square (rms) difference.

The square Euclidean’s method used for this purpose is

E = 𝑠. 𝑑𝑖 + 𝑜 − 𝑟𝑖
2𝑛

𝑖=1

Where ri is the pixel intensity from range Block Ri and di is

the pixel intensity from domain block Di, s and o are contrast

and brightness respectively. To find minimum value of E we

take partial derivative with respect to s and o.

𝜕𝐸

𝜕𝑠
 = 0,

𝜕𝐸

𝜕𝑜
 = 0

Using the above equation, the value of s and o can be

calculated as:

s =
 𝑛2 . 𝑎𝑖𝑏𝑖

𝑛
𝑖=1 − 𝑎𝑖

𝑛
𝑖=1 𝑏𝑖

𝑛
𝑖=1

 𝑛2 𝑎𝑖
2− 𝑎𝑖

𝑛
𝑖=1

2𝑛
𝑖=1

And

o =
 𝑏𝑖

𝑛
𝑖=1 −𝑠. 𝑎𝑖

𝑛
𝑖=1

𝑛2

1898

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031896

Vol. 3 Issue 3, March - 2014

Each transformation requires 8 bit in each direction to locate

position of Di, 7 bits for oi and 5 bits for si and 3 bits to

determine Rotation or flip, making it total of 31 bits for a

256x256 image.

II. LITERATURE SURVEY

The Idea of Fractal image compression was first introduced

by Michael F. Barnsley in 1988 [1]. His approach was

further improved by his PhD student Arnard Jacquin who

believed an image can be constructed by smaller part of

itself instead of some other image. To implement this he

partitioned the image and search for similar blocks in it.

This approach uses partitioned iterated function system

(PIFS) in which we have a collection of affine

transformations which when apply on any set gives back our

original image. Since this approach, many approaches have

been proposed to enhance and improve fractal image

compression.

Abdelrahman Selim et al. [2] proposed another method in

which they used spiral architecture instead of square blocks.

This approach improved the compression ratio but degraded

the image quality. Jianji Wang and Nanning Zheng [3]

proposed a way using Pearson’s Correlation Coefficient.

They used the concept that affine similarity between two

blocks in FIC is equal to the absolute value of Pearson’s

Correlation Coefficient, using this they classified domain

blocks. And for each range block, they searched only a

domain set whose difference with the Range block was

minimum. T.K. Truong at al. [4] proposed a method of

spatial correlation in which properties of a block is used to

reduce search space. The new method proposed in this paper

also reduces search space but does not compromise with

image quality. [5] and [6] gives two different ways to

search nearest neighbour using Locality sensitive hashing.

In [7], Kulis at al. tried to search an image in scalable

database of images. In [8], Rajaraman et al. gave complete

details of Locality Sensitive hashing with min-hash

signature and Jaccard Distance.

The rest of this paper is organized as follows: Section 3

provides the basic idea, principles and various parameters

involved in the proposed method. Section 4 provides

performance comparison of the proposed approach with

other methods, and finally, Section 5 draws the conclusions.

III. PROPOSED APPROACH

In this paper two different techniques are combined one,

Fractal Image Compression and another, Locality Sensitive

Hashing. Locality sensitive hashing is used in cloud

databases to find out duplicate or similar document. The

best thing with locality sensitive hashing is that it gives

similar hash value for similar documents. To find out

similar documents, a database of hash values of all the

documents is created. And whenever we need to find out all

similar documents to a particular document, say A, then

hash values of A and the hash values of all documents from

hash database are matched; if they are found similar then

these documents are similar.

A. Basic Idea
In our approach, we apply Locality Sensitive Hashing on

each domain block and all transformations (4 rotation and 2

Flips) of that domain block and for each transformation,

save a node which contains coordinates and transformation

applied on that domain block in different buckets such that

transformation with similar hash values goes in same

bucket. Create enough buckets to reduce intra bucket search

but do not create too many bucket as they may increase the

inter bucket search time. We can use adjacency list as a data

structure.
After creating this data structure, for each Range block

calculate hash value and search a domain block structurally

similar to it, only in the bucket whose hash value is similar

to the calculated hash value of Range block and then save

the affine transformation in a compressed file.

B. Locality Sensitive Hashing

Our approach in Locality Sensitive Hashing is to hash

Domain blocks several times so that similar domain blocks

will hash to same bucket. To achieve this goal take a family

of hash functions called F. Create another Family of hash

function H of functions h which itself is a collection of

many hash functions from F. For a domain block d, hi(d)=

[h1(d), h2(d),hk(d)], where h1, h2, hk are k randomly

chosen functions from F, a set of hash tables L are created

for each randomly chosen h .In order to classify different

domain blocks to different buckets, hash all pixel values

from domain block di into each of the hash table L.

Now while comparing a range block r, apply all L hash

functions h. It gives all domain blocks which were hashed to

the same bucket. Apply the transformation stored in the

node and find root mean square difference, continue the

process until we reached a difference which is below some

threshold value t. After finding the acceptable match save

the location of domain block, transformation applied and

other parameters. Complexity of creating the hash tables is

O(nkLt) where n is the number of pixels in a domain block

which is constant, k and L are also constant in our case, so

the complexity of creating hash table depends only on the

time taken by hash function. Thus, the complexity of the

algorithm is O(t). For details on Locality sensitive hashing

read [8].

Figure1: Classification of Domain blocks using Locality Sensitive Hashing

1899

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031896

Vol. 3 Issue 3, March - 2014

C. Probability of similar Domain blocks in same

bucket

For the successful completion of our algorithm the

probability of finding similar block, if exists, must be high.

Let P be the probability for a range block that a similar

domain block exists. P
k

is the probability of matching all

hash values in a hash table. 1 – P
k
 is the probability that no

hash function gives same value for a hash table. (1 – P
k
)

L

gives probability that none of the hash value matches for

any of the L hash tables. 1 – (1 – P
k
)

L
 is the probability that

at least one of the hash value matches in any one Table. For

example, let the probability P = 0.2 means for a range block

there is very less probability that it matches with some

domain block. Let k = 9 and L = 3, then Value of 1 – (1 –

0.2
9
)

3
 is 0.0000015 which is very less means if two similar

blocks do not exists then there is hardly any possibility that

they will match.

Similarly, if probability P = 0.9, then value of 1 – (1 – 0.9
9
)

3

is 0.78; means, if similar blocks exists then with a very high

probability collision will occur.

D. Data structure used during pre-processing

Data structure used during pre-processing is the adjacency

list. Front node stores the hash value of the bucket, and the

structure of internal node will contain two things first

location of the domain block (x and y coordinate) and then

the transformation applied (3bits for 8 transformations).

Figure 2: Data structure used for pre-processing

E. Proposed Algorithms

Two Algorithms are proposed: first is Pre-processing which

creates the data structure to speedup the compression

process. After pre-processing, Encoding algorithm saves the

affine transformation parameters in the compressed file.

  Algorithm Pre-processing

Input: Image file.

Output: Adjacency list with similar items in each bucket.

Logically divide the image into overlapping Domain blocks

of 16 x 16 pixels

For each Domain Block

 Down sample it to 8 x 8 pixels

Apply all transformations (Rotate 0°, Rotate 90°,

Rotate 180°, Rotate 270° with 2 Flips)

Calculate hash on each transformation

Save a node (which contains location of

domain block and transformation) in a

bucket whose hash value is similar to the

block otherwise create another bucket and

save in that.

.

  Algorithm Encoding Image

Input: Adjacency list from pre-processing algorithm

Output: Compressed image file

For each Range block

Calculate hash value and search a bucket which has

similar hash.

While difference between node and range block is

not less than a threshold t

 Jump to Domain block

Apply transformation stored in the node

Check rms(Range block, Domain block

with transformation) < t

Save location of domain block,

transformation parameter (si, oi,

rotation, flip)

IV. PERFORMANCE COMPARISON AND

DISCUSSION

Let us consider a square image with N x N where N is the

number of rows or columns in the image, so, the total

number of pixels in the image is P = N
2
. Let the size of

Range block is 8 x 8 and size of Domain Block is 16 x 16.

Therefore, total number of Range block is N
2
/64 and total

number of domain block is (N-16+1)
2
, this is a very big

number. In the worst case, for each range block we have to

compare (N-16+1)
2
 blocks which is ineffective. The above

algorithm reduces these numbers of comparisons to a larger

extent. According to the above algorithm for a range block,

only those domain blocks whose probability of matching is

very good is searched. This reduces the time complexity and

brings it closer to the number of pixels, i.e. N
2
, the time

complexity of calculating hash is less than O(N
2
). In this

algorithm, we should consider the space complexity during

preprocessing which is O(8(N-16+1)) where

8(transformations) is constant, so the space complexity is

O(N-16+1),i.e., the number of Domain blocks.

1900

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031896

Vol. 3 Issue 3, March - 2014

V. CONCLUSION

This paper proposes a simple method for compressing an

image using fractal image compression. Initially hash of all

domain blocks are pre-computed and saved as an adjacency

list data structure in memory. This will help in reducing the

number of comparisons to a larger extent. Time complexity

is linear to the number of pixels which is much better than

algorithms proposed in [1] and [2]. Future work includes

finding a simple hash function which will compute faster

than the series of hash functions used in this paper. It is also

interesting to investigating techniques to reduce memory

requirement during preprocessing.

REFERENCES

[1] Michael F. Barnsley and Alan D. Sloan. 1988. A better way to

compress images. BYTE 13, 1 (January 1988), 215-223.

[2] Selim, Abdelrahman, Moawad I. Dessouky, Mohiy M. Hadhoud, and

Fathi E. Abd El-Samie. "Spiral Fractal Image Compression." Digital
Image Processing5, no. 12 (2013): 515.

[3] Wang, Jianji, and Nanning Zheng. "A Novel Fractal Image

Compression Scheme with Block Classification and Sorting Based on

Pearson's Correlation Coefficient." (2013): 1-1.
[4] Truong, T. K., C. M. Kung, J. H. Jeng, and M. L. Hsieh. "Fast fractal

image compression using spatial correlation." Chaos, Solitons&

Fractals 22, no. 5 (2004): 1071-1076.
[5] Slaney, Malcolm, and Michael Casey."Locality-sensitive hashing for

finding nearest neighbors [lecture notes]." Signal Processing

Magazine, IEEE 25, no. 2 (2008): 128-131.
[6] Datar, Mayur, Nicole Immorlica, PiotrIndyk, and Vahab S. Mirrokni.

"Locality-sensitive hashing scheme based on p-stable distributions."
In Proceedings of the twentieth annual symposium on Computational

geometry, pp. 253-262.ACM, 2004.

[7] Kulis, Brian, and Kristen Grauman. "Kernelized locality-sensitive
hashing for scalable image search."In Computer Vision, 2009 IEEE

12th International Conference on, pp. 2130-2137.IEEE, 2009.

[8] Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive
datasets, pp. 72-94.Cambridge University Press, 2012.

1901

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031896

Vol. 3 Issue 3, March - 2014

