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Abstract 

          In the present work fundamental natural frequencies of double walled carbon nanotubes 

(DWCNTs) are studied using Bubnov-Galerkin method. The main objective of this method is for quick 

and effective evaluation of fundamental frequencies. The inner and outer carbon nanotubes are modeled 

as two individual Euler-Bernoulli’s elastic beams interacting each other by Vander Waals force. The 

fundamental natural frequencies of double walled carbon nanotubes (DWCNTs) are  studied for  three 

cases, i.e. (i) inner and outer carbon nanotubes (CNTs) with  same boundary conditions, such as simply 

supported- simply supported and clamped-clamped (ii) inner and outer carbon nanotubes (CNTs) with 

different boundary conditions, such as simply supported- clamped,  cantilever-clamped, and cantilever-

simply supported and (iii) left and right ends of carbon nanotubes (CNTs) with different boundary 

conditions, such as simply supported- clamped, simply supported- free and clamped-free. 

         The fundamental natural frequencies are validating with those available in literature and observed a 

good agreement between them. The Effect of aspect ratio is studied for different boundary conditions. Out 

of all these boundary conditions clamped –clamped boundary condition has the highest natural 

frequencies. These observations may be useful for the designer to estimate the fundamental natural 

frequencies in each two series.  

1 Introduction: 

            Afterthediscoveryofmulti-walledcarbonnanotubes (MWCNTs) in1991 by Iijima, 

hasstimulatedever-broaderresearchactivities in science and engineering devoted entirely to carbon 

nanostructures and their applications. This is due in large part to the combination of their expected 

structural perfection, small size, low density, high stiffness, high strength (the strength of the outer most 

shell of MWCNT is approximately  100 times greater than that of aluminum), and excellent electronic 

properties. As a result, carbon nanotube (CNT) may find use in a wide range of application in material 

reinforcement, field emission pane display, chemical senthesing, drug delivery, Nano electronicsetc 

 Carbon nanotubes (CNTs) have the most promising materials for nanoelectronics, nanodevices, and 

nanocomposites because of their unusual electronic properties and superior mechanical strength [1]. 

Many proposed applications and designs of CNTs are involved with aspect ratio about 10. Such examples 

include suspended crossing CNTs with spans about 20 nm, CNTs as single -electron transistors of length 

down to 20, MWNTs of aspect ratio around 20 as electrometers or building blocks in nanoelectronics, 

CNT-nanomechanical switches of aspect ratio around 10 and CNTs of aspect ratio about 10-25 as atomic 

force microscope (AFM).Owing to the hollow structure of CNTs, short CNTs are preferred in many cases 

to prevent undesirable kinking and buckling. Therefore, the vibrational behavior of short CNTs say, of 

aspect ratio between 10 and 30, is of practical significance.   

      Most CNTs to date have been synthesized with closed ends[1]. For applications of MWCNTs, both its 

ends can be restricted only on the outer tube. For example, in a nanoelectricalmechanicalsystem (NEMS), 

the small size and unique properties of CNTs suggest that they can be used in sensor devices with 

unprecedented sensitivity[2]. Other relevant issues to be clarified are the effects of differential boundary 

supports between the inner and outer tubes on the vibration of MWCNTs and boundary effects on 

transverse vibration devices composed of rods in microelectromechanicalsystems (MEMSs)[3]. It is 
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expected that the differences of boundary condition, which are ignored in existing beam model, would 

play an important role in the vibration of a DWCNT when the vibrational modes at a resonant frequency 

between the two tubes are considered. Especially for short DWCNTs, some changes of boundary 

conditions may effect the vibrational modes more sensitively. For this reason, the relevance of the 

existing model, in which both tubes have the same boundary conditions for the vibration of DWCNTs, is 

questionable. To clarify this issue, free vibrations of DWCNTs with differential boundary supports 

between inner and outer tubes are studied in this work.   

2 Analysis: 

The governing differential equations for free vibration of the DWCNTs are 
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Where x  is the axial coordinate, t   is the time, jw ( x , t ) the transverse displacement, jI  the moment of 

inertia and A j  the cross-sectional  area of the j th
 nanotube; the indexes j  2,1  denote  the inner and 

outer nanotube, respectively. 

The exact solution for various boundary conditions were considered by Xu et at.[ 4,5,6]. Their derivation 

necessitates numerical evaluation of 8x8 determinant and attendant cumbersome numerical analysis. 

Therefore the expressions for natural frequencies are obtained in this work by approximate method 

areexplained in the following sections.  

3 Case: 1 both inner and outer nanotubes are with same boundary condition 

3.1 Simply Supported DWCNTs:  Polynomial Approximate Solution 

 Here transverse displacement is consider as )sin()( tDw  (2) 

Where, )(  is a coordinate function and  Lx /  is a non-dimensional axial coordinate. 

      The coordinate function depends upon the boundary conditions of the carbon nanotubes (CNTs). For 

simply supported: at left end 1 , deflection and bending   moment are zero (i.e. 0w , 0
2
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) 

and at right end 1 ,
 deflection and bending moment are zero (i.e. 0w , 0

2

2


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



w
). We have to select 

the degree of coordinate function equal to number of independent boundary conditions plus one. So the 

coordinate function for this boundary condition is  dcba  2345
. The boundary 

conditions are applied to the coordinate function and found that 0a ,
3

10
b , 0c  ,

3

7
d  . Then 

the coordinate function becomes  7103 35 
  

(3) 

Now the displacements consider as follows: 
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)sin(11 tDw  ,  )sin(22 tDw   (4) 

Substitute the expressions (4) into governing differential eq. (1), and multiplying the result of the 

substitution by   and integrating over the length of the beam. The following two equations are obtained 

in 1D  and 2D  as 
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to vanish . This leads to the frequency equation as given below 
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3.2 Clamped DWCNTs: 

The above procedure is repeated with )2cos(1   , which is satisfying the clamped boundary 

condition. The frequency equation as given below 
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4 Case 2: Both inner and outer nanotubes with different boundary conditions 
 

4.1 Simply supported-clamped DWCNT: Approximate Solution 

 Here transverse displacement as  )sin()( tDw  (9) 

                                   Where, )(  is a coordinate function. 

The coordinate function is depends upon the boundary conditions of the carbon nanotubes (CNTs). For 

simply supported-clamped, at left end 1  transverse displacement, slope and bending moment are 
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We now the displacements as follows: 
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We substitute the expressions (11) into governing differential eq. (1), and multiplying the result of the 

substitution by   and integrating over the length of the beam, the following two equations are obtain in 
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We demand the determinant 
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4.2 Cantilever-Clamped DWCNTs 

The above procedure is repeated with    
  234567 242
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4.3 Cantilever-Simply Supported DWCNTs 

The above procedure is repeated with     15934142758 234567   , which is 

satisfies the clamped boundary condition.  The frequency equation as given below 
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5 Case:3 Both left and right ends of nanotubes with different boundary condition 

5.1 Simply supported-Clamped DWCNT: Approximate Solution 

    Here consider the transverse displacement is considered as )sin()( tDw    (20) 

                      Where, )(  is a coordinate function. 
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      Now the displacements considered are as follows )sin(11 tDw  ,, )sin(22 tDw  (22) 
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5.2 Clamped-Free DWCNTs: 

The above procedure is repeated with    
 97124263617 2345 

 , which is satisfies the 

Clamped-Free boundary condition.  The frequency equation as given below 

1

4

121

42

21

8

2

4

111

8

21

44

21

28 77)77( cLEIEIcLAcLALEIcALEIALAAL    

049 21

2  IIE  (27) 

With roots  

2

1,1 [ 21

2

1

4

2

2

11

82

1

2

1

8

212121

4

11

4 142(77 EIcALAcALcALAEIEIAAcLcAL   
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2

2

22

11

2

21

4

2121

42

2

2

1

8

2111

4 49141414 IEAEIAcLEIAAcLAcLAEIcAL   

2/12

1

2

2

2

212

2

1 )4998 IAEAIIEA  ]/ 21

42 AAL   

2

1,2 [ 21

2

1

4

2

2

11

82

1

2

1

8

212121

4

11

4 142(77 EIcALAcALcALAEIEIAAcLcAL   

2

2

22

11

2

21

4

2121

42

2

2

1

8

2111

4 49141414 IEAEIAcLEIAAcLAcLAEIcAL   

2/12

1

2

2

2

212

2

1 )4998 IAEAIIEA  ]/ 21

42 AAL   (28) 

5.3 Simply Supported-Free DWCNTs: 

The above procedure is repeated with     32301053 2345   , which is satisfies the 

Simply Supported-Free boundary condition.  The frequency equation as given below 

21

42

21

8

2

4

111

8

21

44

21

28 5)55( EIcLAcLALEIcALEIALAAL    

1

4

15 cLEI 025 21

2  IIE  (29) 

With roots  

2
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2

11
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8

212121
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11
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42 AAL   
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2

2
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2
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4
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2
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1
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2111
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2/12

1

2

2

2

212

2

1 )2550 IAEAIIEA  ]/ 21

42 AAL   (30) 

6 For numerical analysis the following data is taken for DWCNTs  

Young’s modulus (E) = 1 TPa 

Mass density (  ) = 2.3 g/
3cm  

Vander Waals interlayer interaction coefficient ( c 1 ) = 71.11GPa  

Inner radius ( 1R ) = 0.35 nm 

Outer radius ( 2R ) = 0.70 nm 

Wall thickness each nanotube = 0.34 nm 
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7 Results and Discussions: 

 

Table:1 First natural frequenciesof DWCNTs with same boundary conditions: 

S. No. Aspect 

ratio 

              S-S C-C 

1,1  
(THz)

 
1,2
 

(THz)
 

1,1  
(THz)

 
1,2
 

(THz)
 

1 10 0.4794 7.7609 1.0919 7.7692 

2 11 0.3963 7.7578 0.9029 7.7529 

3 12 0.3330 7.7558 0.7590 7.7426 

4 13 0.2838 7.7545 0.6469 7.7358 

5 14 0.2447 7.7536 0.5579 7.7312 

6 15 0.2131 7.7530 0.4860 7.7280 

7 16 0.1873 7.7526 0.4272 7.7257 

8 17 0.1659 7.7522 0.3785 7.7240 

9 18 0.1480 7.7520 0.3376 7.7228 

10 19 0.1329 7.7518 0.3030 7.7218 

11 20 0.1199 7.7517 0.2735 7.7211 

 

 

 

 

 

 

 

 

 

 

(a)                                                                           (b) 

Fig.1 Variation of Co-axial and Non Co-axial Frequencies with aspect ratio with same boundary 

conditions 
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Table: 2 First natural frequencies of DWCNTs with different boundary conditions: 

S. No. Aspect 

ratio 

S-C Cant.-C Cant.-S 

1,1  
(THz) 

1,2

(THz)
 

1,1  
(THz)

 
1,2

(THz)
 

1,1

(THz)
 

1,2

(THz)
 

1 10 0.7424 7.7413 1.0192 7.7956 0.5821 7.7655 

2 11 0.6133 7.7339 0.8427 7.7815 0.4812 7.7609 

3 12 0.5153 7.7292 0.7084 7.7725 0.4044 7.7580 

4 13 0.4390 7.7261 0.6037 7.7666 0.3446 7.7561 

5 14 0.3785 7.7240 0.5206 7.7626 0.2971 7.7548 

6 15 0.3297 7.7225 0.4536 7.7598 0.2588 7.7539 

7 16 0.2897 7.7215 0.3987 7.7578 0.2275 7.7533 

8 17 0.2566 7.7207 0.3532 7.7564 0.2015 7.7528 

9 18 0.2289 7.7201 0.3150 7.7553 0.1798 7.7524 

10 19 0.2054 7.7197 0.2827 7.7545 0.1613 7.7522 

11 20 0.1854 7.7193 0.2552 7.7538 0.1456 7.7520 

 

 

 

 

 

 

 

 

 

 

(a)                                    (b) 

 

Fig.2 Variation of Co-axial and Non Co-axial Frequencies with aspect ratio with different 

boundary conditions 
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Table:3First natural frequencies of DWCNTs with different boundary conditions at left and right ends: 

S. No. Aspect 

ratio 

S-C S-F C-F 

1,1

(THz)
 

1,2

(THz)
 

1,1  
(THz)

 
1,2

(THz)
 

1,1

(THz)
 

1,2

(THz)
 

1 10 0.5801 7.7654 0.1078 7.7516 0.1708 7.7518 

2 11 0.4795 7.7609 0.0891 7.7514 0.1412 7.7515 

3 12 0.4030 7.7580 0.0748 7.7513 0.1187 7.7514 

4 13 0.3434 7.7561 0.0638 7.7512 0.1012 7.7513 

5 14 0.2961 7.7548 0.0550 7.7512 0.0872 7.7512 

6 15 0.2579 7.7539 0.0439 7.7512 0.0759 7.7512 

7 16 0.2267 7.7533 0.0421 7.7511 0.0667 7.7512 

8 17 0.2008 7.7528 0.0373 7.7511 0.0591 7.7511 

9 18 0.1791 7.7524 0.0333 7.7511 0.0527 7.7511 

10 19 0.1608 7.7522 0.0299 7.7511 0.0473 7.7511 

11 20 0.1451 7.7520 0.0269 7.7511 0.0427 7.7511 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Variation of Co-axial and Non Co-axial Frequencies with aspect ratio with left and right 

ends of CNT’s with different  boundary conditions 
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7 Comparison with K.Y. xuet.al[5]: 

     K.Y. xu et.al[5] studied vibration of a double-walled carbon nanotube aroused by nonlinear interlayer van der 

Waals _vdW_forces with different boundary conditions for aspect ratio 10 and 20. The natural frequencies obtained 

by present method is compare with the with the natural frequencies K.Y. xu et.al[5]. The frequencies are 

tabulated below. It is observed that a good agreement between them. This shows the accuracy of the 

present method. 
 

S.No 

Aspect 

ratio 

(L/D) 

Boundary 

condition 

Present K.Y. Xu et.al. 

1,1

(THz) 

1,2

(THz)
 

1,1

(THz)
 

1,2

(THz)
 

1 

10 

S-S 0.4794 7.7609 0.4 7.71 

2 C-C 1.0919 7.7692 1.06 7.75 

3 C-F 0.1708 7.7518 0.17 7.7 

4 

20 

S-S 0.1199 7.7517 0.11 7.7 

5 C-C 0.2735 7.7211 0.26 7.7 

6 C-F 0.0427 7.7511 0.04 7.7 

 

 

8 Comparison with Natsuki et.al.[7]: 

Most recently, Natusuki et al. [7] analyzed free vibration characteristics of DWCNT. He calculated the 

natural frequencies of DWCNT; both ends simply supported .Specifically Natusuki et al. [7] adopted the 

following formula for the Vander Waals interaction coefficient 1c : 

1c 
4

6

21



 RR





3

1001 4 13H 



 7

6

9

11120
H



    

(31) 

Where                 
mm RRH  )( 21  

2/

0

2/2 )cos1(

1


 mK
d  ,   ( 13,7m )    (32) 

And                                    
2

21

21

)(

4

RR

RR
K


      (33) 

For   evaluation of  1c , Natsuki used the following data   

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012
ISSN: 2278-0181

12www.ijert.org

IJ
E
R
T

IJ
E
R
T



34.0 nm, 967.2 mev, 142.0  nm, 8.4ind  nm, and 5.5outd nm, Yield 1c 

447884748259220.1 x
1110 whereasNatuski [1]  informs that his value is 1.50x10

11
, showing an 

excellent comparison. 

    According to Natsuki [7] the first natural frequency for 10L nm equals to 4.04 THz. The numerical 

data which is used by Natsuki is applied to our exact and approximate methods for simply supported 

boundary conditions of DWCNT, which yields 4.0339 THz and 4.0453 THz respectively, which shows 

the close agreement with Natsuki results. 

S. No. 
 

1,1 (THz)
 % Error 

1 Natsuki et.al 4.04 _ 

2 
Trigonometric 

Solution 
4.0339 0.15099 

3 
Polynomial 

Solution 
4.0453 0.13118 

9 Conclusions: 

This paper studies free vibration analysis of DWNTs modeled as elastic beams for different boundary 

conditions between inner and outer tubes. The results obtained are compared with those available in 

literature and some discussions are summarizedas follows. 

(i)This method estimates the natural frequencies with minimum error. 

(ii) Increasing the Aspect ratio decreasing the natural frequencies. 

(iii)The effect of Aspect ratio for second series is very less when compare to the first series. 

         (iv) The natural frequencies of DWCNTs in Clamped boundary conditions showshighest than other. 

 

Nomenclature: 

1A Cross-sectional area of inner nanotube (nm
2

) 

2A Cross-sectional area of outer nanotube (nm
2

) 

1c Vander Waals interlayer interaction coefficient (GPa) 

D Diameter of outer nanotube (nm) 

E Young’s modulus (TPa) 

1I Moment of inertia of inner nanotube (nm
4

) 

2I Moment of inertia of outer nanotube (nm
4

) 

L Length of the nanotube (nm) 
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m Mode number   ( m 1, 2, 3 …..) 

t Time  

x Axial coordinate  

1w Transverse displacement of inner nanotube  

2w Transverse displacement of outer nanotube 

 Mass density (g/cm
3
) 

 Non-dimensional axial coordinate 

1,1 Fundamental natural frequency of first series (THz) 

1,2 Fundamental natural frequency of second series (THz) 

 Vander Waals radius (nm) 

   The well depth of the Lennard-Jones potential (mev) 

   The carbon-carbon bond length (nm) 
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