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Abstract— The proposed method in this paper deals with 

optimal operation. The objective is to handle optimality in case of 

variation in local approximation of optimization problem. If a 

disturbance moves the process far from the nominal point (large 

disturbance), the local model approximation used for the 

calculation of optimality by linearization of the nominal 

operating point and the local assumption of the quadratic cost 

function may be poor. In this paper the optimal operation is 

generalized to cover large changes in operating conditions by 

modelling with Takage-Sugeno (T-S) type fuzzy inference engine. 

For parameter tuning of this model, a hybrid GA (genetic 

algorithm)-LS (least square) algorithm is used. Also, the 

performance of the proposed method is studied in simulation of a 

nonquadratic objective function with large disturbance. The 

proposed fuzzy based method provided near optimal operation 

and showed very low loss for large magnitude of disturbances in 

compare with conventional method. 

Keywords— T-S fuzzy inference system; optimal operation; 

nonquadratic objective function; operating condition changes 

I.  INTRODUCTION  

Fuzzy modelling formulates the system knowledge with 
rules in a transparent way to interpret and analysis so as to gain 
insights into the system being modeled. As stated by Zadeh [1] 
―The closer one looks at a real-world problem, the fuzzier 
becomes its solution‖. According to his incompatibility 
principle [1], as the complexity of a system increases, human’s 
ability to make precise and significant statements about its 
behaviors decreases, until a threshold is reached beyond which 
precision and significance become impossible. Under this 
principle a modeling method with fuzzy numbers rather than 
crisp numbers was proposed. The main idea is that the key 
elements are classes of objects or concepts in which the 
membership of each element to the class is gradual (fuzzy) 
rather than sharp (crisp), while the classical theory of crisp sets 
can describe only the membership or non-membership of an 
item to a set. So, this precise logic of imprecision makes fuzzy 
inference based modeling a powerful method to generate 
answers based on information that are vague, ambiguous, 
qualitatively incomplete and imprecise in the systems present 
excess complexity arising out of the nonlinearities or even 
modeling difficulties intrinsic to the process. A great number of 
industrial applications via fuzzy model have been reported such 

as [2-7]. Among various fuzzy modelling approaches, the 
method based on Takagi-Sugeno (T-S) fuzzy model [8], gives a 
simple and effective way to solve complex nonlinear system 
problems. 

The Takagi–Sugeno (T–S) fuzzy model can represent 
nonlinear system by decomposing the whole input space into 
several fuzzy sets and representing each output space with a 
linear equation. Such a model is capable of approximating a 
wide class of nonlinear systems. For the reason that it employs 
linear model in the consequent part, conventional linear system 
theory can be applied for the system analysis and synthesis 
accordingly. And hence, the T–S fuzzy models are becoming 
powerful engineering tools for modelling and control of 
complex systems. 

There is a growing demand toward plant operation as close 
to optimality as possible because of rising energy prices, 
increasing competitions, and environmental demands. In many 
cases, steady state operation accounts for the largest part of the 
operating cost, and significant economical improvements can 
be achieved by operating the plant optimally at steady state. 
The null space method [9], with designing a function of some 
measured variable, makes a process to operate close to 
economically optimal steady state operation in the presence of 
disturbances and removes the need for solving an optimization 
problem online. This method is based on second order 
approximation of the objective function and holds its 
optimality for small deviation from the nominal optimum 
(small magnitude of the disturbance). It is globally optimal in 
cases where the sensitivity matrix (F) is not dependent on the 
operating point (disturbances), or, for a system with a quadratic 
cost objective and linear model equations. Our main concern in 
this paper is to extend the optimality to the process with 
varying optimal sensitivity matrix and large magnitude of 
disturbances with modeling optimal sensitivity matrix with a 
sugeno type fuzzy inference engine.  

This paper is organized as follow. The next section 
describes basics of sugeno-type fuzzy modeling and then 
parameter tuning method. Section 4 will formulate the 
optimization problem. Section 5 will study the simulation of 
the fuzzy-based optimization method for a nonquadrartic 
problem with large disturbance and it is followed with result 
and discussion section and finally conclusion is in section 7. 
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II. TAKAGI–SUGENO FUZZY INFERENCE SYSTEM 

Fuzzy sets are characterized by membership functions or 
degree of truth of ν in A that map R to the membership space. 

 Rν|))ν(,(ν A  (1) 

 
The membership function is described by an arbitrary curve 

suitable from the point of view of simplicity, convenience, 
speed, and efficiency. When the membership space contains 
only 0 and 1, A is nonfuzzy and μ is a characteristic function of 
non-fuzzy set. The range of the membership function is a 
subset of the nonnegative real numbers. In this paper Gaussian 
membership functions is regarded as follow. 
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Where α is the center of the membership function and σ is a 

constant related to spread of the membership function.  

Structure of a Takagi–Sugeno fuzzy inference system is 
shown in Fig. 1. It is a model that maps characteristics of input 
data to input membership functions, input membership 
functions to rules, rules to output crisp functions, and output 
crisp functions to a single-valued output [10]. Generally, the 
process of formulating the mapping from a given input to an 
output using fuzzy logic is called the fuzzy inference. 
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Fig. 1. Structure of T–S fuzzy model 

 

In T-S fuzzy systems, the relationships between variables 
are represented by the means of fuzzy if-then rules as follow.  
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Where ]ν,...,ν,[ν
n21

ν  are input variables, A
j
i (1 ≤ j ≤ n) 

represent fuzzy set, zi is the output of Rule i, and ξi is a crisp 
function. In the first-order sugeno model, a linear combination 
of input variables is considered as consequent crisp function as 
follow 
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As such, each rule can be considered as a local linear model 
that will fuse together to produce an overall nonlinear output 
z. Given the input vector ][ν

n21
ν,...,ν,ν , the model output ỹ is 

the weighted average of the individual rule outputs zi (1 ≤ i ≤ 
Nr) according to the following formula: 
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Where Nr is the number of rules, and wi, is the firing strength 
of i-th rule and calculated as follow: 
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Where ∏ denotes the fuzzy AND operator and in this paper 
the minimum operator is simply used and μ

j

i
 is the membership 

function corresponding to fuzzy set A
j
i. 

 

III. PARAMETER TUNING 

The parameter tuning emphasizes on tuning both the 
parameters of antecedent and consequent parts of fuzzy rules. 
These parameters are automatically tuned from numerical 
information (input-output data pairs from nonlinear model), 
using hybrid method of least square (LS) and genetic algorithm 
(GA). An input variable (disturbance) is changed instantly and, 
at the same time, the behavior of the output variables is 
collected. Then, the same procedure is performed for the other 
input variables and finally a data set for the identification of the 
fuzzy models is obtained by offline calculation from nonlinear 
model. Subsequently, the identification data set is randomly 
divided into training data set and test data set [10]. The training 
data set is used for tuning model parameters and these models 
are then validated through the test data. 

Among the chromosomes in the population, some of them 
will be arbitrarily selected. This selection component in the GA 
guides the algorithm to the solution. One approach to guide the 
selection procedure which is used in this work is stochastic 
uniform selection function. This reproduction population will 
then be mated through crossover component. Crossover is the 
process of creating one or more offspring from the current 
population. In this work arithmetic crossover is used. The last 
component of the GA is mutation. Mutation rules apply 
random changes to individual to form next generation. This 
process is performed to avoid the algorithm from stuck at local 
minimum by introducing traits not in the original population 
and Gaussian mutation is applied in this work. The so called 
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selection, crossover, mutation are the three main types of rules 
at each step to create the next generation from current 
population. In this work we use MATLAB software to 
implement genetic algorithm. For more information about 
genetic algorithm one can refer to MATLAB user’s guide. 
Also, the coefficients of the crisp linear functions are 
constructed with least square estimation method. This GA-LS 
based procedure can be summarized as follow: 

1. Generate random initial population. 

2. Evaluate objective function for every chromosome. 

(2-i) Use LS method to define parameter of linear equations 

with desired membership functions parameters.  

(2-ii) Calculate mean squared error (MSE) for every 

chromosome. 

3. Perform selection, crossover and mutation operation to 

produce new population. 

4. Repeat steps 2 and 3 for a certain number of generations to 

get the best individual which will represent the best fuzzy 

model. 
 

IV. OPTIMAL OPERATION   

The objective is to achieve optimal steady-state operation, 
where the degrees of freedom u are selected such that the 
scalar cost function J(u,d) is minimized with respect to 
degrees of freedom by solving the following problem. 
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Where x, u, and d are the states, inputs and disturbances, 
respectively; f is the set of equality constraints corresponding 
to the model equation; g is the set of inequality constraints that 
limits the operation. The null space method [9] deals with the 
optimal selection of the linear measurement combinations for 
quadratic approximation of Eq. (7) with the second-order 
Taylor expansion of the cost function J(u,d) 
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Consider that nu is the number of independent unconstrained 
free variable u, nd is the number of independent disturbance d, 
and ny is the number of independent measurement y. If ny ≥ nu 

+ nd, it is possible to select combination matrix H in the left 
null space of F or  

 H = null(F
T
)   (9) 

where F is optimal sensitivity matrix evaluated at constant 
active constraints with the following definition 

T
d
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F
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
  (10) 

Also F could be calculated from linearized local model [11] 

)(
y

dud

1

uu

y
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However, in practice, it is usually easier to obtain F 
numerically. In the other word, for practical use it is more 
reliable to obtain F numerically from its definition Eq. (10), 
instead of deriving an analytical expression from Eq. (11) 
[12]. Moreover, providing analytical expression of F for entire 
operation space in a complex nonlinear chemical plants from 
explicit representation of the model equations is even a more 
difficult problem to be solved, but is readily to be solved 
numerically with a T-S fuzzy model. 

 

V. NUMERICAL SIMULATION 

A nonquadratic objective function is considered. The selected 
cost function is 

uduJ 32   (12) 

 

Where the disturbance value is zero at the nominal operating 

point (d
*
=0). The two available independent measurements are 

 

d0.1u0.9y
1

  (13) 

 

And 

du50.y
2

  (14) 

For one unconstrained degree of freedom (nu =1) and with one 
disturbance (nd =1), the minimum numbers of measurements is 
2 (ny ≥ nu + nd). So with these two measurements, null space 
provides a linear combination of measurement which leads to 
near optimal solution locally. To find optimality, ∂J/∂u = 0, is 
solved and optimal input is u

opt 
= d

3
/2. So, the optimal outputs 

from Eq. (13) and Eq. (14) are 
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Optimal sensitivity matrix is as follow 
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Therefore F depends on the disturbance value and is not 
constant with different magnitude of d. In accordance with Eq. 
(9), H is located in the left null space of optimal sensitivity 
matrix 
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Around the nominal operating point with nominal disturbance 
and with h1=1, solving Eq. (18) concludes that h2=0.1. The 
loss is defined as the difference between the actual cost and 
the optimal cost 

),(J),(JL dudu
opt  (19) 

 

Where for a given d, solving Eq. (7) gives u
opt

(d). The 
constant setpoint policy for optimal nominal point after some 
mathematical derivation results to the loss value of L=d

6
/4.The 

loss is shown in Fig. 2 as a function of disturbance. It is clear 
that around the nominal operating point (zero disturbance), 
null space yields acceptable loss but for disturbances away 
from nominal point, its optimality degrades and loss increases 
significantly. In the rest of this section the proposed integrated 
null space and fuzzy is used to provide near optimal solution 
for disturbances away from nominal point.  

 

 

 
Fig. 2. Comparison of the loss values. 

 

For developing integrated fuzzy and null space method input 
space is partitioned with 3 fuzzy sets. Since there is single 
disturbance in this problem (j=1). So, rule base consists of 
three rules for each element of optimal sensitivity matrix (1 ≤ i 
≤ 3). 

d(k,1))k,1()(k,1ThenisdIf:Rule 10
ii iii bbA   (20) 

 

The optimal sensitivity matrix contains 2 rows for two 
measurements (1 ≤ k ≤ 2) and one column for single 
disturbance. So, there are 6 rules with two constants in the 
linear function of the consequent part of each rule. Fig. 3 
shows identification data of the fuzzy model for optimal 
sensitivity matrix. The parameters are tuned by hybrid GA-LS 
method. Tuning algorithm procedure and its specifications are 
in section (III). The fuzzy models are then validated through 
the test data and Table I demonstrates the validation results of 
the fuzzy model for the test data set. Small errors in Table I 
show that fuzzy models are close to nonlinear model. Fig. 4 
shows the result membership function of input space. The 
parameters of membership function and rule consequents are 
in Table II. 

Fig. 5 shows that with implementing the fuzzy based method, 
objective function goes near reoptimized trajectory of the 
problem and Fig 2 shows that the result loss is reduced to 
approximately 0 for entire region of the disturbance space 

which is considerably lower than conventional null space 
method. 

 

 

 

 
(a) 

 

 
(b) 

Fig. 3. Identification data of the fuzzy model for optimal sensitivity matrix. 

The training data is shown with ● mark and the test data is shown with ○ 

mark. (a) F(1,1) represents the element in the first row of F (b) F(2,1) 

represents the element in the second row of F 

 

 

TABLE I.  ERROR QUANTIFICATION FOR OUTPUT VARIABLES. 

Outputs MSE for output variables 

F(1,1) 7.15×10
-4

 

F(2,1) 3.97×10
-4

 

 

 

 

Fig. 4. The fuzzy domain partitions of the disturbance space 
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TABLE II. 

 

THE PARAMETERS OF FUZZY SYSTEM.
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-9.775

 

2
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3
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9.775

 

 

 

 

Fig. 5.

 

Objective function value for the proposed integrated null space and 

fuzzy method.

 

 
VI.

 

RESULTS AND DISCUSSIONS

 

Large value of loss of null space method in Fig. 2 shows 
that when large disturbance moves the process far from the 
nominal point, the local model approximation by linearization 
of the nominal operating point and local quadratic cost function 
(or approximation of the objective function by second order 
Taylor series) produces poor results. This is usually 
counteracted by re-optimization of the system with a real-time 
optimization algorithm. However, this can become complicated 
as it involves several difficult steps such as steady state 
detection, data estimation, reconciliation, and solving a large 
nonlinear optimization problem. However, it is clear from Fig. 
2 that the proposed fuzzy based method has reduced the loss to 
approximately zero. This means that T-S fuzzy modelling of 
optimal sensitivity matrix makes it to meet large changes in 
disturbances. 

 

An interesting characteristic of the proposed fuzzy based 
method is the ability to meet changes in operating condition. 
This is possible because the fuzzy model starts representing the 
process linearly through membership functions defined for the 
initial operating region. As the process operating conditions 
change, the operating point may move from the original region 
to the other regions governed by other linear function. By 
doing so, membership functions governing the process 

behavior, are the aggregation of the rules of operating regions, 
make possible the handling of the varying operating condition 
which leads to varying optimal sensitivity matrix issue. So, as 
Fig. 5 shows fuzzy based algorithm goes near reoptimized 
trajectory and Fig. 2 shows the loss value is reduced to 0 for 
entire region of the disturbance space which is considerably 
lower than conventional null space method. 

VII. CONCLUSION 

In this paper a T-S fuzzy inference engine was developed to 
generalize optimal operation to include operating condition 
away from nominal operating point where optimal sensitivity 
matrix will change. The advantages of proposed T-S fuzzy 
based method were demonstrated on a problem with 
nonquadratic objective function. The results showed near 
optimal operation in the case of successive and large 
disturbances in compare with conventional null space method. 
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