
 
 

 
 

 
  
 
 

Abstract— Scour is one of the primary causes for bridge 
failures and therefore, a reliable prognostic framework is 
essential to prevent catastrophic failure. In the U.S., scour 
accounts for almost 60% of bridge failures. Currently 
available techniques in the literature for predicting scour 
are mostly based on empirical equations and deterministic 
regression models such as Neural Networks and Support 
Vector Machines and are designed to predict the 
maximum possible scour depth for a given set of flow 
conditions. In this paper RFID (Radio Frequency 
IDentification) sensors were used to measure the scour 
depth and we investigate the use of Gaussian process 

model. This model includes Bayesian uncertainty for 
prediction of time-dependent scour evolution based on the 
measurements from RFID sensors and pressure 
transducer. The evolution of scour under different flow 
conditions was studied. The model was validated with the 
experimental data conducted in four different flumes in 
different conditions and field data in different test 
locations. The robustness of the algorithm was also 
demonstrated under different scenarios, such as lack of 
training data and equilibrium scour conditions. The effects 
of initialization of hyperparamters and the use of different 
kernel functions on the predictive capability of the 
algorithm were investigated. The results indicate that the 
algorithm is able to predict the scour evolution in both 
laboratory and field conditions with an error of 5% or less 
given enough training data.   

Keywords—scour prediction; Gaussian process; data analysis; 
data processing; prognosis
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I.  INTRODUCTION 
 

Bridge scour is the removal of sediments from around 
bridge pier, compromising the integrity of the structure [1]. It 
is estimated that 60% of all the bridge failures result from 
scour [2], and is the most common highway bridge failure in 
the United States, where 46 out of 86 major bridge failures 
during 1961 to 1976 were a result of scour near the piers [3]. 
Safety of the bridges (e.g. Custer Creek Bridge, Glanrhyd 
Creek Bridge, Schoharie Creek Bridge) was compromised due 
to scour caused by flash floods leaving the foundation of the 
piers vulnerable. Therefore, it is essential to ensure safety of 
bridges and predict the major scour event that may occur in 
the future. To forecast this event, a time dependent scour 
prognosis model is essential.  

Many studies [4-8] have been carried out in order to 
understand the mechanism of scour around bridge piers. Many 
parameters such as velocity, flow depth, median particle size, 
pier diameter, gradation, type of soil (cohesive or non-
cohesive) influence the scour evolution and as a result it is 
very difficult to formulate a mathematical model for scour 
prediction. Due to the complex nature of the scouring process, 
an inclusive theory for predicting the local scour around 
bridge piers was not achieved [9].  

Empirical equations [6, 10-13] are widely used for 
predicting the scour depth at bridge piers. These equations 
differ from each other in the factors considered for 
constructing the model, laboratory / field conditions. The most 
commonly used equation is the Colorado State University 
equation recommended by the US Department of 
Transportation’s Hydraulic Engineering Circular no. 18 (HEC-
18) [14]. In 2001, a modified HEC-18 [15] equation was 

presented which had a correction factor (K4) for armoring by 
bed material size. In 2012 [16], the correction factor (K4) in 
the HEC-18 equation [15] was removed. Landers [17] 
evaluated selected empirical equations using 139 scour 
measurements in live-bed and clear water conditions. Their 
study indicates that none of the selected equations predict the 
scour depth accurately for all the measured conditions. 
Mueller [18] compared the scour equations using the data set 
collected by USGS [17]. The results of this study indicate 
better performance of HEC-18 equation compared to the other 
equations; however, it very frequently over-predicted the 
scour depth.  

Soft computing techniques such as neural networks are 
being used for civil engineering applications [19-23]. 
Azamathulla et al. [20] presented the use of alternative neural 
networks to predict the scour below spillways. The results 
indicate that neuro-fuzzy scheme provides better estimates of 
the scour compared to empirical equations. This study was 
limited to predicting the scour depth in ski-jump type of 
spillways. Bateni et al. [22] presented a neural network 
methodology for predicting the scour depth around bridge 
piers. This methodology results in a more accurate scour depth 
compared to the empirical equations but do not provide the 
confidence intervals for the predictions. McIntosh [24] and 
Mueller et al. [25] showed that neural networks give better 
results when compared to empirical equations; however, a 
Neural Network (NN) model needs to set up different learning 
parameters, number of hidden layers, and the number of nodes 
in a particular hidden layer [20]. Also, large training sets are 
required to find the optimal values for the above parameters 
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and the NN model suffers from the problem of local minima. 
As the number of learning parameters increase, the objective 
function for optimization becomes higher dimensional, and as 
a result, the optimization process may yield to local minima. 
Support Vector Regression (SVR) has been used by 
researchers to predict the scour depth [9, 26-27]. These studies 
indicate that SVR gives accuracy between 25% and 40% for a 
scour depth of approximately 2m. These models still do not 
predict the time dependent scour. 

There are only a few time-dependent scour models in the 
literature [8, 23, 28]. Mia et al. [8] developed a design method 
for predicting time dependent scour at cylindrical bridge piers. 
This study was limited to clear water scour under laboratory 
conditions. Bateni et al. (2007) [23] presented the use of 
Bayesian neural networks to predict the time-dependent scour 
in which both time-dependent and equilibrium scour depth 
were calculated. This study was solely performed on 
experimental laboratory datasets. Hong et al. [28] developed a 
SVR based approach to predict the time-dependent scour 
under different sediment conditions and was able to capture 
the physics of the scouring process by considering parameters 
such as actual and critical Froude number. All the methods 
described above are deterministic regression methods and 
hence do not provide the confidence with which the 
predictions are made. A scour depth predicted with unknown 
confidence can result in failure of the bridge structures.  In 
these methods, the time-dependent scour is predicted at every 
time step, but the information of how the scour evolves over a 
given period of time into the future is not discussed.  

In this paper, we use RFID based measurements to detect 
the current scour depth; and a prognosis methodology to 
predict the evolution of scour depth. More details about RFID 
system are presented in the next section. We investigate 
Gaussian Process (GP) [29-31], which is a probabilistic data 
driven approach, with Bayesian uncertainty for predicting the 
time-dependent scour. Using suitable combination of kernel 
functions, GP can accurately predict increasing and decreasing 
trends in the data. In a similar study on concentrations of CO2 
in the atmosphere, the robustness of GP in prediction of CO2 
concentrations, which increase and decrease due to seasonal 
changes, was reported by Rasmussen [31]. Scour depth is 
known to continually increase and decrease in case of live-bed 
scour due to erosion and re-filling of the sediment near bridge 
pier [25]. GP projects the nonlinear input-output mapping to a 
high dimensional space using kernel functions where the 
mapping becomes linear [31]. The applicability of GP is 
investigated for (i) predictions of the scour depth for a given 
set of flow conditions; and (ii) determination of the confidence 
intervals for the predicted scour depth.  

II. RFID SYSTEM 
RFID is a wireless automated identification 

technology that utilizes radio frequency (RF) waves to transfer 
information between a reader and a transponder (short for 
transmitter and responder) via an antenna [32-33]. An 
important feature of the RFID technology is that a unique 
identification number can be assigned to each transponder, 
allowing different transponders within the system to be 
identified [32]. The system will be able to detect the 

orientation of the transponders along with their distance from 
the antenna based on the obtained signal strength. The main 
components of the RFID system shown in Fig. 1 are (i) 
antenna, which generates electromagnetic field, (ii) reader, 
which reads the signals (iii) transponders, which reflect the 
signal from the antenna. RF waves are transferred from a 
reader through an antenna to the transponders. The 
transponders are passive in nature, and reflect the received RF 
waves, which are transmitted back to the antenna. The level of 
degradation in the returned signal is related to the distance 
between the transponder and antenna. 
 

 
Fig. 1 RFID system with components (Texas 

Instruments Inc) 
The antenna sends waves to each transponder at 

specific intervals of time and checks the level of degradation 
of the returned signal [32]. The information from all the 
transponders can be analyzed to evaluate the scour depth. 
Maximum signal strength is obtained when the axis of the 
transponder is perpendicular to the antenna. As the axis 
becomes parallel to the axis of the antenna, the signal strength 
decreases. This phenomenon can be used to measure the angle 
of the transponders with respect to the axis of the antenna 
[32]. As the scour happens, and the exposed transponder starts 
to rotate, the intensity of the returned signal reduces implying 
scour hole formation. Analyzing the signal from all the 
transponders and finding the number of transponders whose 
axis are parallel to the axis of antenna; the depth of scour hole 
can be estimated considering the change in the level of the 
signals from transponders. The advantage of using RFID 
technology is the capability to transfer scour data online to a 
central base station, where the prognostic algorithms are used 
to make predictions. 
 

A. Field Test 
Preliminary field tests were conducted by University 

of Iowa at Clear Creek Bridge near Camp Cardinal. Four 
transponders were buried under water at different depths and 
the data about signal strength decay was collected. The results 
indicated that the signal decay was approximately 50% for a 
distance of 2.75m, and the overall detection range for the 
antenna was 5m.  

Further, the robustness of the RFID system for 
detection of scour was examined by installing a prototype of 
the system (as shown in Fig. 2) at the N Bush Highway Bridge 
in Arizona. In this field test, the data of signal strength 
degradation was collected. Since there was no scour at the 
bridge at the time of field test, the signal strength data was 
collected from different depths of transponder in the riverbed. 
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Fig. 3 shows a typical RFID sensor data. Data level 1 shows 
the charging of the transponder. Data level 2 shows the 
intensity of the returned signal. As the returned signal strength 
from the transponder decreases, the magnitude of data level 2 
reduces. Data level 3 shows the synchronization stage of the 
transponder.  
 

 
Fig. 2 Installing the RFID system near bridge pier 

 
 

Fig. 3 Typical RFID signal  
A smaller antenna (71cm x 27cm) with a detection 

distance of 1.2m was initially used for the field-testing. 
Having the data of signal degradation for different depths in 
soil and water, the scour depth can be estimated. Data was 
collected while the transponders were buried at different 
depths in water and soil. Fig. 4 shows the voltage level 
obtained when the transponder is buried in different media 
(water, soil). The curve corresponding to the legend “Water 
(big antenna)” in Fig. 4 was obtained from the experiments 
conducted in University of Iowa. The y-axis in Fig. 4 shows 
the percentage decay in the original voltage (when the 
transponder is at 0cm from the antenna). It is to be noted that, 
for this particular field test, the variation of voltage was the 
important factor, rather than the overall detection distance. 
Since a smaller antenna was used, the detection distance is 
1.2m. The signal strength decay in different media was the 
main goal for installing this prototype antenna.  
 
 

 
 

Fig. 4 Signal strength decay in different media. 

 
A larger antenna (diameter 1.1m), developed at 

adaptive intelligent materials and systems center at Arizona 
State University, as shown in Fig. 5 with a detection range of 
9m was built and installed at New River Bridge in Arizona. 
Increasing dimensions of the antenna generates a larger 
electromagnetic field.  

Along with the RFID system, a pressure transducer 
was used to measure the approach flow depth. The velocity of 
the flow can be computed from the flow depth by using the 
Manning equation [34]. As there was no scour during the data 
collection process, the temporal scour data was not available 
to be collected. The scour depth collected from RFID, flow 
depth, and velocity of the flow at a given instant of time are 
the input parameters for the predicting scour using the 
proposed prognosis model which is explained in the next 
section.  

 
 

 
Fig. 5 Large size antenna (diameter 1.1m) 

III. PARAMETERS AND DATA SETS 
The critical scour depth (dc) depends on various 

parameters, the most important of which are velocity of the 
flow (V), flow depth (h), skew (Sk), pier diameter (D), median 
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particle size (d50), and gradation (σ) [25]. The relationship 
between these parameters and scour depth can be written in 
the form:  

dc = f (h,V ,Sk ,D,d50,σ )     
                                 

(1)
 

The type of evolution of the scour changes with different 
characteristics of the input parameters. The parameters D, Sk, 
d50, and σ will almost remain the same for any particular 
location in the streambed (near the bridge pier). Hence, in 
order to study the temporal evolution of the scour for a 
particular bridge, the model can be simplified by removing 
these parameters, as they remain almost constant over the 
given period of time. This gives a simple yet robust model for 
predicting the time-dependent scour depth, which will be 
discussed in the subsequent section. The relationship for the 
scour depth (d) as a function of time (t) can be written in the 
form: 

d(t) = f (h,V ,t) ,      
                       

(2)                           
 

As there was no scour occurring at the New River 
Bridge, the temporal scour data was not available at the time 
of this study. Therefore, datasets from the literature were used 
to validate the proposed prognosis model. It is to be noted that 
the input parameters; current scour depth, flow depth and 
velocity are obtained through the RFID system and pressure 
transducer as mentioned in the previous section.  

In this study, two data sets were used to validate the GP 
prognosis model.  

(i) A laboratory dataset [35] that contained 84 data points 
from experiments conducted in four different flumes was used. 
The characteristics of the dataset are shown in Table 1. The 
minimum value of the parameter is xmin, maximum xmax, mean 
xmean, standard deviation xstd, variation coefficient Cvx, and 
skewness coefficient Sx. 

(ii) The field dataset availabl in the bridge scour 
management system [25] containing 493 pier scour 
measurements was used for this study. The dataset has pier 
scour measurements at 79 different test sites in 17 states in the 
US. The characteristics of this dataset are shown in Table 2.  

Table 1 
Characteristics of the laboratory dataset [35] 

 
Variables xmin xmax xmean xstd Cvx Sx 
D (mm) 16 200 85.0075 48.2872 0.568 0.7229 
d50 (mm) 0.8 7.8 1.9261 1.7819 0.9252 1.9797 
h (mm) 20 600 269.7262 210.4478 0.7802 0.7385 
V (m/s) 0.165 1.208 0.4251 0.2698 0.6346 1.3352 
t (min) 200 15000 3909.3 3096.9 0.7922 1.9316 
d (mm) 4 318 122.75 88.744 0.723 0.5961 

 
 
 
 

Table 2 
Characteristics of the field dataset [25] 

 
Variables xmin xmax xmean xstd Cvx Sx 

D (m) 0.9 5.5 1.9152 1.4753 0.7703 1.0905 

d50 (mm) 0.48 0.74 0.6642 0.0978 0.1473 -1.2947 

h (m) 4.3 15.4 7.0848 3.1021 0.4378 1.3501 
V (m/s) 0 2.3 0.8894 0.4766 0.5358 0.5407 
t (days) 1 127 33.5 40.5945 1.2118 1.2238 
d (m) 0.2 4.6 1.2985 1.3474 1.0377 1.4195 
 

IV. GAUSSIAN PROCESS PROGNOSIS MODEL 
 

A GP model, which includes Bayesian uncertainty, is used 
for the prediction of the time-dependent scour depth. The GP 
is a collection of random variables, any finite number of which 
have a joint Gaussian distribution. GP makes predictions by 
projecting the input space to the output space, through 
inferring their underlying non-linear relationship [31]. Once 
the algorithm is trained with the input and output parameters, 
it can predict the output parameter for unknown or new sets of 
input parameters. The input and output space for the GP in the 
current scour prediction problem are shown below in the form 
of matrices.  

 

Input space = 

h1 V1 t1
h2 V2 t2
. . .
. . .
. . .
ht Vt tt

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 

Output space = 

d1
d2
d3
.
.
dt

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

The posterior distribution over the predicted scour depth at 
time “t” (dt) can be written as: 

f (dt |T ,Kt (xi , x j ),θ ) =
1
Z
exp −

dt − µdt

2σ 2
dt

⎛

⎝⎜
⎞

⎠⎟
; i, j=1,…,t-1 

                      (3)                       

568

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060740

International Journal of Engineering Research & Technology (IJERT)



where Z is a normalizing constant, T = {xi ,di}i=1
t  is the 

training set in which xi is a vector of input variables and di is 
the output variable, K is the kernel / covariance matrix, θ is 
the set of hyper-parameters, µdt  is the mean, and  σ dt

2  is the 
variance of the distribution, which is related to the error in the 
prediction. The error is attributed to the training of GP under 
varying conditions. The kernel function transforms the non-
linear parameters to a high dimensional space where they are 
linearly separable. Even though the assumption of Gaussian 
distribution is made on each variable, the results show that it is 
a good assumption for this application. It is necessary to verify 
the effect of using different kernel functions to select the best 
kernel function for this application. Squared Exponential (SE) 
and Rational Quadratic (RQ) kernel functions are considered 
in this study.  
The SE kernel is expressed as [31]:  

Kse(xi , x j ) = θ1
2 exp −

(xi − x j )
2

θ2
2

⎛

⎝⎜
⎞

⎠⎟
,    

                       

(4) 

 
whereθ1 and θ2  are the hyper-parameters which govern the 
accuracy of the predicted values. The RQ kernel has three 
hyper-parameters and is expressed as [31]: 

Krq (xi , x j ) = θ3
2 1+

(xi − x j )
2

2θ4θ5
2

⎛

⎝⎜
⎞

⎠⎟

−θ4

,   

            

(5)

 
where θ3 , θ4 and θ5 are the hyper-parameters. The hyper-
parameters are first initialized to a reasonable value, and their 
optimum value is found by minimizing the negative log 
marginal likelihood (L) given by [31]: 

L = − 1
2
log |Kt | −

1
2
dt
TKtdt −

t
2
log2π   

                       

(6)

   
The number of parameters in the optimization space 

influences the initial values for the HPs. If there are 2 HPs, the 
initial value does not affect the optimization routine. The 
following analysis shows that for 5 HPs, the HPs should be 
initialized between 0.1 and 1. A reasonable value for t 

he HPs in scour problem is recommended to be 0.1 and the 
data should be normalized. The kernel function is evaluated 
using the initialized hyper-parameters. The optimal values for 
the hyper-parameters are found by using the conjugate 
gradient descent optimization algorithm [36] through 
considering “L” as the objective function to be minimized. 
The training set is updated progressively within time (as new 
data is available) to (i) improve the accuracy of prediction, and 
(ii) ensure that the model will be able to capture global and 
local variations in the parameters. 

Table 3 shows the details of the kernel functions used, 
initialized HPs, optimal HPs and optimal function (L) value. 
When the SE kernel function is used and the HPs are 
initialized to (0.1,0.1), the optimal function value is found to 
be -43.46. Even if the HPs are initialized to (1,1) and (10,10), 
the same optimal value for the objective function is achieved. 

With two HPs, the optimization space is 3-dimensional, and 
the gradient descent algorithm can easily find the optimal 
descent direction.  

The laboratory dataset shown in section 2 was chosen for 
illustrating the effect of different kernel functions on 
optimization of HPs. When a sum of both SE and RQ kernel 
functions [31] is used and all the HPs are optimized to a value 
of 0.1, an objective function value of -43.46 is achieved, 
which is almost equal to the value achieved using a SE kernel 
function. When all the HPs are initialized to a value of 1, the 
objective function value is -43.51, which is close to -43.46. 
But when the HPs are initialized to a value of 10, due to the 
higher dimensionality, the algorithm gets stuck in local optima 
and doesn’t proceed further. Here the optimum function value 
obtained is +0.0556.  

Table 3 
Initialized HPs and their optimum values with different kernel 

functions 
 

Kernel 
Function 

Initialized 
hyper-

parameters (θ ) 

Optimum hyper-
parameters 

(θ opt) 

Optimum 
function  
(L) value 

SE (0.1,0.1) (-2.09, -2.53) -43.4612 
SE (1,1) (-2.09, -2.53) -43.4612 
SE (10,10) (-2.09, -2.53) -43.4612 

SE + RQ 
(0.1,0.1,0.1,0.1,0

.1) 
(-0.87, -4.61, -2.05, -

2.51, 2.00) -43.4625 

SE + RQ (1,1,1,1,1) 
(-2.04, -2.48, -3.81, -

6.34, 0.44) -43.5141 

SE + RQ (10,10,10,10,10) 
(10.02, 9.93, 10.02, 

9.98, 10.02) 0.0556 

 

Fig. 6 shows the number of iterations to achieve the 
optimum value for the scenarios discussed earlier. When the 
HPs are initialized to (0.1,0.1) and (1,1) using the SE kernel 
function, the convergence is obtained in 28 and 29 iterations, 
respectively. However, when the HPs are initialized to (10,10) 
the convergence is obtained after 38 iterations. When the HPs 
are initialized to (1,1,1,1,1) using a sum of SE and RQ kernel 
functions, the convergence is obtained in 28 iterations. The SE 
kernel function was found to be working well and was used in 
the further analysis. It is to be noted that the HPs are not 
constant for a particular scour data set, and they depend on the 
outcome of the optimization process. The HPs should be 
initialized to the value mentioned above, and the algorithm 
based on the training sets will automatically calculate the 
optimum values of the HPs. 
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Fig. 6 Optimization of hyper-parameters with different kernel 
functions 

V. RESULTS AND DISCUSSION 
 

A. Laboratory Dataset 
The data for training was chosen such that the evolution of 

the scour as a function of time could be predicted. All the data 
was normalized before the analysis to ensure that all the 
parameters are equally weighted. As the total data was 
normalized, the HPs in equation (4) were initialized to θ1 = 
0.1, θ2= 0.1, and the SE kernel function was used. In all the 
following results, the predictions were made at each time step 
till the next time step at which the measurement is available.  

Three different cases were selected to show the 
adaptability and robustness of the developed algorithm. In the 
first case the data from an abrupt change in the scour depth 
was included. The second case demonstrates the increasing 
accuracy of the algorithm with increasing training data. The 
third case demonstrates the predictive capability of the 
algorithm under equilibrium scour conditions. Instead of using 
a fixed set of training and testing data, as the training data is 
dynamically updated with the current measurement after every 
iteration, more points can be used for testing and training. This 
process improves the prediction accuracy because we always 
consider current measurement before making predictions. 
Table 4 shows the dynamic measurement updating. 

Fig. 7 shows the predicted normalized scour depth and the 
associated error in prediction as a function of time. The shaded 
region in Fig. 7 is the 95% confidence interval (2 standard 
deviations) for the prediction. The gradient shows confidence 
interval changing from 95 to 100%, as it gets closer to the 
predicted scour depth. The legend “Confidence interval 
(upper) indicates the gradient above the predicted scour depth, 
and the legend “Confidence interval (lower) indicates the 
gradient below the predicted scour depth. The algorithm is 
able to predict the scour depth accurately within an error of 
less than 5% for almost the entire scour evolution regime. The 
error of 8% at the final point of prediction is the result of 
limited training data set. The information about the change 
after a continuously steady scour depth was not available in 
the training dataset. However, as more data becomes available 

about the change, the algorithm predicts the scour depth 
accurately. Fig. 8 (case 2) shows this phenomenon, where the 
model is updated dynamically to get accurate results. The first 
prediction in Fig. 8 is based on three training data points 
leading to a lower confidence level; however, as the training 
set is updated by iteration, the error reduces significantly.  
These results show the algorithm’s ability to adapt as it 
receives more training data.  

Table 4 
Example of dynamic measurement updating scheme 

 
Time 

index (t) Training data points Testing data point 
t=1 1 to 3 4 

t=2 1 to 4 5 

t=3 1 to 5 6 

t=4 1 to 6 7 
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Fig. 7 Prediction under insufficient data about abrupt change 

in scour depth (Case 1) 
 

Fig. 9 (case 3) shows the plot of the predicted scour-depth 
with time in a different flume [35]. This data was chosen to 
show the equilibrium scour depth. In this case, the equilibrium 
scour depth is achieved after 91 hours. Once the equilibrium 
scour depth is achieved, the scour remains almost constant and 
does not change with the input parameters. Fig. 9 shows the 
capability of the algorithm to capture this phenomenon. 
During the equilibrium phase, the error in prediction is less 
than 2%. 

The above three cases show the adaptability and 
robustness of the GP algorithm under different conditions. Fig. 
10 shows the plot of the actual scour versus predicted scour 
for all the dataset. Out of the 84 points in the dataset, 27 points 
that were chosen from different flumes under different flow 
conditions were used for prediction. Fig. 10 shows almost 
50% of the points are predicted with an error of less than 5% 
even with limited training data points, unlike other 
deterministic regression methods [9]. 
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Fig. 8 Prediction with increasing training data (Case 2) 
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Fig. 9 Prediction under equilibrium scour conditions (Case 3) 

 
Fig. 10 Actual scour vs. predicted scour for laboratory dataset 

Results show that 92.5% of the points are predicted with 
an error of less than or equal to 25%. Out of these points, 
which had the error in between 10% and 25%, are the points 
that had the least amount of training data (< 4 training data 
points). The increase in the number of training points 
increases the accuracy of scour prediction as shown in Fig. 7. 
A coefficient of determination of 0.9821 was achieved for the 

training set and a value of 0.9016 was achieved for the test 
data.  

B. Field Dataset 
 

Out of the 493 pier scour measurements available in the 
bridge scour data management system [25], 66 data points 
were carefully chosen for further analysis. These were selected 
based on the availability of continuous time scour data. Out of 
the 79 test sites, only 9 sites had frequent continuous time 
scour data, which can be used for the analysis. Those bridges, 
which had data collected approximately every month, was 
used for analysis. The 66 data points were collected in 
different locations under different flow conditions to ensure 
variability in the parameters. Of the 66 data points, 30 data 
points were used for testing the algorithm.      

Fig. 11 shows the prediction of time dependent scour for a 
bridge in Montana [25]. The pier at which the scour 
measurements were made is a square pier. The bed material 
was non-cohesive and the effect of debris was insignificant. 
The GP algorithm is able to predict the scour depth with an 
error of less than 10%. The algorithm was then examined for a 
bridge with round piers located in Virginia [25]. The bed-
material and the debris effect were unknown for this location. 
The time dependent scour data was available for a period of 
120 days. Fig. 12 shows the prediction of the scour with time. 
The scour depth is predicted within an error of less than 15% 
for most of the time regime. The next dataset was chosen so 
that it shows continuous increasing and decreasing of scour 
depth with time. The third bridge is located in Virginia and the 
bed material and debris effects were unknown [25]. Fig. 13 
shows the prediction under these conditions. The algorithm is 
able to capture the trend of increasing and decreasing scour 
depth with an error of less than 25% for most of the time 
regime. 
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Fig. 11 Prediction of scour depth with non-cohesive soil and 

insignificant debris 
 

Fig. 14 shows the plot of actual scour depth versus 
predicted scour depth for the complete dataset. All the 
predicted scour depths, except two, lie in between the +25% 
lines.  
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Fig. 12 Prediction of scour depth with unknown soil type 
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Fig. 13 Prediction of continually varying scour depth  

 
Fig. 14 Actual scour vs. predicted scour for field dataset 

In all the above cases, the predictions were made with a 
very limited training dataset. The algorithm is able to predict 
the scour depth with an error of less than 25% for most of the 
cases.  

VI. CONCLUSIONS 
 

The applicability of probabilistic Gaussian process based 
algorithm for accurate and efficient prediction of the time-
dependent scour has been investigated. Scour depth, flow 
depth and velocity are the critical input parameters for the 
prognosis model. RFID system is used to measure the scour 
depth at a given instant of time. The velocity and flow depth 
are calculated using the data from pressure transducer and 
Manning equation. These sensors were installed at New River 
Bridge in Arizona. Since, there was no scour happening at the 
time of this study, data from literature was used to validate the 
proposed algorithm. The effect of hyper-parameter 
initialization on the convergence of the algorithm was 
examined. Three different scenarios were demonstrated to test 
the robustness of the algorithm. In the first case, the data 
containing a sudden increase in scour was considered. The 
algorithm was able to predict this phenomenon with an error 
of 8%. In the second case, the adaptability of the algorithm 
with increasing training data is shown. The error in the 
prediction decreases asymptotically as more training data 
becomes available. In the third case, the data was chosen such 
that the scour has reached the equilibrium value where it 
doesn’t change with the varying input conditions. The GP 
algorithm captured this phenomenon and predicted a constant 
scour depth during this period. Out of the 84 data points 
available, 27 data points were used for testing the algorithm. A 
coefficient of determination of 0.9821 was achieved for the 
training data and a value of 0.9016 was achieved for the 
testing set. The algorithm was also validated using field 
dataset from the literature. This dataset had the data of 
continually increasing and decreasing scour depth. Out of the 
66 available data points, 30 were used for testing the 
algorithm. A coefficient of determination of 0.9018 was 
achieved for testing data and a value of 0.9715 was achieved 
for the training dataset. The developed GP algorithm improved 
the accuracy of scour prediction considerably. 
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