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ABSTRACT

Canonical polynomials play a remarkable roles in Lanczos’ Recursive
formulation of the tau method. Meanwhile, their construction are done
for individual cases, and the problems of indeterminate ones are most of
the time overwhelming, if not impossible for overdetermined cases. In this
paper, we shall present a derived formula for a general class of m-th order
overdetermined ODEs. As their derivatives are of equal level of imporatnce,
a general formula for that is also reported in this paper. The principle
of mathematical induction is employed to establish the validity of the two
formulae.
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1.0 INTRODUCTION

Ortiz [8] gave a step-by-step account of Lanczos [6] Tau method and
its applications in solving both initial value problems (IVPs) and boundary
value problems (BVPs). The essential of the Tau method (Lanczos [6] and
Ortiz [8]) is to perturb the given differential problem in such a way that its
exact solution becomes a polynomial. To achieve this, a polynomial pertur-
bation term is added to the right hand side of the differential equation. The
derived Tau approximation is written in terms of a special polynomial ba-
sis, uniquely associated with the given differential operator L (see Ortiz [8])
which defines the given problem. Such basis does not depend on the degree
of approximation. The order of the approximation can be increased by just
adding one or more canonical polynomials to those already generated and
updating the coefficients affecting them.

2.0 PROBLEM STATEMENT AND METHODOLOGY

In this paper, we intend to obtain a general formula for the canonical
polynomials and the derivatives of such polynomials for overdetermined m-
th order initial value problems (IVPs)

Ly(x) :=

m∑
r=0

{
Nr∑
k=0

Prkx
k

}
y(r)(x) =

F∑
r=0

frx
r (2.1a)

Ly(x) :=
m∑
r=0

{
Nr∑
k=0

Prkx
k

}
y(r)(x) =

F∑
r=0

frx
r (2.1a)

L∗y(xrk) :=

m−1∑
r=0

arky
(r)(xrk) = αk, k = 1(1)m (2.1b)

where Nr, F are given non-negative integers and ark, xrk, αk, fr, Prk are
given real numbers by seeking an approximant

yn(x) =

n∑
r=0

arx
r, n < +∞ (2.2)

which is the exact solution of the corresponding perturbed problem

Lyn(x) =

F∑
r=0

frx
r +Hn(x) (2.3a)

L∗yn(xrk) = αk, k = 1(1)m (2.3b)
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where

Hn(x) =
m+s−1∑
r=0

τm+s−rTn−m+r+1(x) (2.4)

is the perturbation term. The parameters τr, r = 1(1)m + s, are to be
determined,

Tr(x) = Cos

[
rCos−1

{
2x− a− b
b− a

}]
≡

r∑
k=0

C
(r)
k xk (2.5)

is the Chebyshev polynomial valid in the interval [a, b] (assuming that (2.1)
is defined in this interval) and

s = max {Nr − r ‖0 ≤ r ≤ m} (2.6)

2.1 THE GENERALIZED CANONICAL POLYNOMIAL FOR
OVERDETERMINED m− th ORDER ODEs

The canonical polynomials for the initial value problems (2.1) will be ob-
tained in this section for cases m = 1, 2,3 and 4 before the general formula is
obtained. Since we shall be considering overdetermined cases, the formulae
for s = 1,2 and 3 will be presented before that of general s (s is the number
of overdetermination).

Case m = 1, s = 1

(P0,0 + P0,1x) y(x) +
(
P1,0 + P1,1x+ P1,2x

2
)
y′(x) =

F∑
r=0

frx
r, F ≤ n (2.7)

L ≡
(
P1,0 + P1,1x+ P1,2x

2
) d

dx
+ (P0,0 + P0,1x)

Lxr =
(
P1,0 + P1,1x+ P1,2x

2
)
rxr−1 + (P0,0 + P0,1x)xr

Lxr = rP1,0x
r−1 + (rP1,1 + P0,0)x

r + (rP1,2 + P0,1)x
r+1

Lxr = rP1,0LQr−1(x) + (rP1,1 + P0,0)LQr(x) + (rP1,2 + P0,1)LQr+1(x)

Lxr = L (rP1,0Qr−1(x) + (rP1,1 + P0,0)Qr(x) + (rP1,2 + P0,1)Qr+1(x))

Due to the existence of L−1 as a result of linearity of L,

xr = rP1,0Qr−1(x) + (rP1,1 + P0,0)Qr(x) + (rP1,2 + P0,1)Qr+1(x)

From where Qr+1(x) is obtained as

Qr+1(x) =
xr − rP1,0Qr+1(x)− (rP1,1 + P0,0)Qr(x)

rP1,2 + P0,1
, r ≥ 0 (2.8)

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org



when r = 0,

Q1(x) =
1

P0,1
− P0,0

P0,1
Q0(x)

r = 1,

Q2(x) =
x

P1,2 + P0,1
− P1,1 + P0,0

P0,1 (P1,2 + P0,1)

+
P0,0 (P1,1 + P0,0)− P0,1P1,0

P0,1 (P1,2 + P0,1)
Q0(x)

r = 2,

Q3(x) =
x2

2P1,2 + P0,1
− 2P1,1 + P0,0

(P1,2 + P0,1) (2P1,2 + P0,1)
x

+
(2P1,1 + P0,0) (P1,1 + P0,0)− P1,0 (P1,2 + P0,1)

P0,1 (P1,2 + P0,1) (2P1,2 + P0,1)

− P0,0 (2P1,1 + P0,0) (P1,1 + P0,0)− P0,1P1,0 (2P1,1 + P0,0)

P0,1 (P1,2 + P0,1) (2P1,2 + P0,1)
Q1(x)

+
P1,0P0,0

P0,1 (2P1,2 + P0,1)
Q0(x)

Case m = 2, s = 1(
P2,0 + P2,1x+ P2,2x

2 + P2,3x
3
)
y′′(x) +

(
P1,0 + P1,1x+ P1,2x

2
)
y′(x)

+ (P0,0 + P0,1x) y(x) =
r=0∑
F

frx
r (2.9)

Following the same procedure as in the case m = 1, we have

Qr+1(x) =
xr − r (r − 1)P2,0Qr−2(x)− [r (r − 1)P2,1 + rP1,0]Qr−1(x)

r (r − 1)P2,3 + rP1,2 + P0,1

− [r (r − 1)P2,2 + rP1,1 + P0,0]Qr(x)

r (r − 1)P2,3 + rP1,2 + P0,1
, r ≥ 0 (2.10)

Case m = 3, s = 1(
P3,0 + P3,1x+ P3,2x

2 + P3,3x
3 + P3,4x

4
)
y′′′(x)

+
(
P2,0 + P2,1x+ P2,2x

2 + P2,3x
3
)
y′′(x) +

(
P1,0 + P1,1x+ P1,2x

2
)
y′(x)

+ (P0,0 + P0,1x) y(x) =
r=0∑
F

frx
r (2.11)
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The Qr+1(x) for this case is obtained as

Qr+1(x) =
xr − [r (r − 1) (r − 2)P3,0]Qr−3(x)

P0,1 + rP1,2 + r (r − 1)P2,3 + r (r − 1) (r − 2)P3,4

− [r (r − 1) (r − 2)P3,1 + r (r − 1)P2,0]Qr−2(x)

P0,1 + rP1,2 + r (r − 1)P2,3 + r (r − 1) (r − 2)P3,4

− [r (r − 1) (r − 2)P3,2 + r (r − 1 )P2,1 + rP1,0]Qr−1(x)

P0,1 + rP1,2 + r (r − 1)P2,3 + r (r − 1) (r − 2)P3,4

− [r (r − 1) (r − 2)P3,3 + r (r − 1)P2,2 − rP1,1 − P0,0]Qr(x)

P0,1 + rP1,2 + r (r − 1)P2,3 + r (r − 1) (r − 2)P3,4
(2.12)

Studying the pattern of Qr+1(x) for m = 1, 2, and 3 above, we arrived at
general formula for case s = 1 as:

Qr+1(x) =
xr −

∑m
k=1

(∑j=k
m j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

−
∑m

j=o j!
(
r
j

)
Pj,jQr(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

, r ≥ 0 (2.13)

Now for s = 2 cases, Qr+2(x) we obtained:

Qr+2(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

−
∑1

k=0

(∑m
j=0 j!

(
r
j

)
Pj,j−1

)
Qr+1(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

, r ≥ 0 (2.14)

We equally obtained for case s = 3:

Qr+3(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+2

−
∑2

k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+2

)
Qr+2(x)∑m

k=0 k!
(
r
k

)
Pk,k+2

, r ≥ 0 (2.15)

Continuing with these process, we derived for case m = m and s = s the
general canonical polynomial

Qr+s(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

−
∑s−1

k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Qr+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

, r ≥ 0 (2.16)
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THEOREM

Let m be the order of the ODE (1.1) and let s be the number of overdeter-
minations, then the canonical polynomial associated with the DE is

Qr+s(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

−

∑s−1
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Qr+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

, r ≥ 0 (2.17)

PROOF:

We shall employ the principles of mathematical induction over the summa-
tion variables m and s to establish the validity of (2.17).This will be achieved
by varying one of these variables at a time while the other is fixed. Firstly,
let s be fixed at one in (2.17) so that

Qr+1(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

−

∑m
j=0

(
j!
(
r
j

)
Pj,j+k

)
Qr(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

, r ≥ 0 (2.18)

We use induction on m for fixed s = 1. We shall show that the formula
(2.18) holds for m = 1:

Qr+1(x) =
xr −

∑1
k=1

(∑1
j=1 j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑1

k=0 k!
(
r
k

)
Pk,k+1

−

∑1
j=0

(
j!
(
r
j

)
Pj,j+k

)
Qr+k(x)∑1

k=0 k!
(
r
k

)
Pk,k+1

, r ≥ 0 (2.19)

Qr+1(x) =
xr − rP1,0Qr−1(x)− (P0,0 + rP1,1)Qr(x)

P0,1 + rP1,2
(2.20)

which is the same as Qr+1(x) in (2.13). Hence the formula (2.17) is true for
m = 1. Now assume that (1.2) is true for m = n. Thus (2.17) becomes

Qr+1(x) =
xr −

∑n
k=1

(∑n
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑n

k=0 k!
(
r
k

)
Pk,k+1

−

∑n
j=0

(
j!
(
r
j

)
Pj,j

)
Qr(x)∑n

k=0 k!
(
r
k

)
Pk,k+1

, r ≥ 0 (2.21)
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We now show that the formula (2.17) holds for m = n+ 1.
From our construction of Qr+1(x) in (2.18) for m = 1 up to m = n+ 1, we
have

Qr+1(x) =
xr −

∑n
k=1

(∑n
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑n

k=0 k!
(
r
k

)
Pk,k+1 + Pn+1,n+2 (n+ 1)!

(
r

n+1

)
−

(
Pn+1,n−k+1 (n+ 1)!

(
r

n+1

))
Qr−k(x)∑n

k=0 k!
(
r
k

)
Pk,k+1 + Pn+1,n+2 (n+ 1)!

(
r

n+1

)
−

∑n
j=0

(
j!
(
r
j

)
Pj,j

)
Qr(x) + Pn+1,n+1 (n+ 1)!

(
r

n+1

)
Qr(x)∑n

k=0 k!
(
r
k

)
Pk,k+1 + Pn+1,n+2 (n+ 1)!

(
r

n+1

) (2.22)

Qr+1(x) =
xr −

(∑n
k=1

(∑n
j=k j!

(
r
j

)
Pj,j−k

))
∑n+1

k=0 k!
(
r
k

)
Pk,k+1

−

(
Pn+1,n−k+1 (n+ 1)!

(
r

n+1

))
Qr−k(x)∑n+1

k=0 k!
(
r
k

)
Pk,k+1

−
(∑n

j=0

(
j!
(
r
j

)
Pj,j

)
+ Pn+1,n+1 (n+ 1)!

(
r

n+1

))
Qr(x)∑n+1

k=0 k!
(
r
k

)
Pk,k+1

(2.23)

Qr+1(x) =
xr −

∑n+1
k=1

(∑n+1
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑n+1

k=0 k!
(
r
k

)
Pk,k+1

−

∑n+1
j=0

(
j!
(
r
j

)
Pj,j

)
Qr(x)∑n+1

k=0 k!
(
r
k

)
Pk,k+1

(2.24)

Thus, (2.17) holds for m = n + 1 and hence, from the above steps, for all
positive integral values of m.
Next, we assume that (2.17) holds for s = n, that is

Qr+n(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+n

−

∑n−1
k=0

(∑m
j=0

(
j!
(
r
j

)
Pj,j+k

))
Qr+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+n

(2.25)
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and then show that it holds for s = n+ 1, that is

Qr+n+1(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0

(
k!
(
r
k

)
Pk,k+1 + k!

(
r
k

)
Pk,k+n+1

)
−

(∑n−1
k=0

(∑n
j=0

(
j!
(
r
j

)
Pj,j+k

))
Qr+k(x)

)
Qr+n+1(x)∑m

k=0

(
k!
(
r
k

)
Pk,k+1 + k!

(
r
k

)
Pk,k+n+1

)
−

(∑m
j=0 j!

(
r
j

)
Pj,j+n+1

)
Qr+n+1(x)∑m

k=0

(
k!
(
r
k

)
Pk,k+1 + k!

(
r
k

)
Pk,k+n+1

) (2.26)

Qr+n+1(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+n+1

−

∑n
k=0

(∑m
j=0

(
j!
(
r
j

)
Pj,j+k

))
Qr+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+n+1

(2.27)

Thus, (2.17) holds for all m and s.
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3.0 THE n− th DERIVATIVES OF THE CANONICAL
POLYNOMIALS OF m− th ORDER OVERDETERMINED
ORDINARY DIFFERENTIAL EQUATIONS ODES

The n − th derivatives of the canonical polynomials presented in section 2
above are presented in this section. This is achieved by first obtaining the
derivatives for individual cases and from that, now seek the general n − th
derivatives for all cases. As in the previous sections, m shall be the order
of the differential equation, s the number of overdetermination and n, the
order of the derivatives.
Case m = 1, s = 1, n = 1

Q
′
r+1(x) =

rxr−1 − rP1,0Q
′
r−1(x)− (P0,0 + rP1,1)Q

′
r(x)

P0,1 + rP1,2
, r ≥ 0 (3.1)

Case m = 1, s = 1, n = 2

Q
′′
r+1(x) =

r (r − 1)xr−2 − rP1,0Q
′′
r−1(x)− (P0,0 + rP1,1)Q

′′
r (x)

P0,1 + rP1,2
, r ≥ 0

(3.2)
Case m = 1, s = 1, n = 3

Q
′′′
r+1(x) =

r (r − 1) (r − 2)xr−3 − rP1,0Q
′′′
r−1(x)− (P0,0 + rP1,1)Q

′′′
r (x)

P0,1 + rP1,2
, r ≥ 0

(3.3)
If we continue with this process, we shall have for case n = n,
Case m = 1, s = 1, n = n

Qn
r+1(x) =

n!
(
r
n

)
xr−n − rP1,0Q

n
r−1(x)− (P0,0 + rP1,1)Q

n
r (x)

P0,1 + rP1,2
, r ≥ 0

(3.4)

Following the same procedure, we shall obtain the following results for the
specific cases.
Case m = 1, s = 2, n = n

Qn
r+2(x) =

n!
(
r
n

)
xr−n − rP1,0Q

n
r−1(x)

P0,2 + rP1,3

−
(P0,0 + rP1,1)Q

n
r (x)− (P0,1 + rP1,2)Q

n
r+1(x)

P0,2 + rP1,3
, r ≥ 0 (3.5)

Case m = 1, s = 3, n = n

Qn
r+3(x) =

n!
(
r
n

)
xr−n − rP1,0Q

n
r−1(x)

P0,3 + rP1,4

−
(P0,0 + rP1,1)Q

n
r (x)− (P0,2 + rP1,3)Q

n
r+1(x)

P0,3 + rP1,4
, r ≥ 0 (3.6)
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So that the first derivative for the case m = m and s = s is

Q
′
r+s(x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

′
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

−

∑s−1
k=0

∑m
j=0

(
j!
(
r
j

)
Pj,j+k

)
Q

′
r+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

(3.7)

The second derivative:

Q
′′
r+s(x) =

r (r − 1)xr−2 −
∑m

k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

′′
r−k(x)

−

∑s−1
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Q

′′
r+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

(3.8)

The third derivative:

Q
′′′
r+s(x) =

r (r − 1) (r − 2)xr−3 −
∑m

k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

′′′
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

−

∑s−1
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Q

′′′
r+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

(3.9)

Thus, the n− th derivative is obtained as

Q
(n)
r+s(x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

−

∑s−1
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Q

(n)
r+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

(3.10)

THEOREM

If the generalized canonical polynomials associated with m−th order overde-
termined ODE is given as

Qr+s(x) =
xr −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Qr−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

−

∑s−1
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Qr+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

, r ≥ 0 (3.11)
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Then its n− th derivative is

Q
(n)
r+s(x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

−

∑s−1
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Q

(n)
r+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+s

(3.12)

PROOF

We shall employ here again the principle of mathematical induction over the
summation variables m and s to establish the validity of (3.12). We shall
vary one of these variables at a time while the other is fixed.
Firstly, let us fix s at one in (3.12) so that

Q
(n)
r+1(x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

−

∑m
j=0

(
j!
(
r
j

)
Pj,j+k

)
Q

(n)
r+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

(3.13)

We use induction on m for s = 1. We shall show that the formula holds for
m = 1;

Q
(n)
r+1(x) =

n!
(
r
n

)
xr−n −

∑1
k=1

(∑1
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑1

k=0 k!
(
r
k

)
Pk,k+1

−

∑1
j=0

(
j!
(
r
j

)
Pj,j+k

)
Q

(n)
r+k(x)∑1

k=0 k!
(
r
k

)
Pk,k+1

(3.14)

Qn
r+1(x) =

n!
(
r
n

)
xr−n − rP1,0Q

n
r−1(x)− (P0,0 + rP1,1)Q

n
r (x)

P0,1 + rP1,2
(3.15)

which is the same as Qr+1(x) in (3.4). Hence the formula (3.13) is true for
m = 1.
Now assume that is true for m = q. Thus (3.13) becomes

Q
(n)
r+1(x) =

n!
(
r
n

)
xr−n −

∑q
k=1

(∑q
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k+1

−

∑q
j=0

(
j!
(
r
j

)
Pj,j+k

)
Q

(n)
r+k(x)∑q

k=0 k!
(
r
k

)
Pk,k+1

(3.16)
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We now show that the formula (3.13) holds fpr m = q + 1.
From our construction of Qn

r+1(x) in (3.4) for m = 1 up to m = q + 1, we
have

Q
(n)
r+1(x) =

n!
(
r
n

)
xr−n −

(∑q
k=1

(∑q
j=k j!

(
r
j

)
Pj,j−k

)
Qn

r−k(x)
)

∑q
k=0 k!

(
r
k

)
Pk,k+1 + Pq+1,q+2 (q + 1)!

(
r

q+1

)
+

(
(Pq+1,q−k+1 (q + 1)!)Qn

r−k(x)
)∑q

k=0 k!
(
r
k

)
Pk,k+1 + Pq+1,q+2 (q + 1)!

(
r

q+1

)
−

∑q
j=0

(
j!
(
r
j

)
Pj,jQ

n
r (x) +

(
Pq+1,q+1 (q + 1)!

(
r

q+1

))
Qn

r (x)
)

∑q
k=0 k!

(
r
k

)
Pk,k+1 + Pq+1,q+2 (q + 1)!

(
r

q+1

) (3.17)

Q
(n)
r+1(x) =

n!
(
r
n

)
xr−n −

(∑q
k=1

(∑q
j=k j!

(
r
j

)
Pj,j−k

))
Qn

r−k(x)∑q
k=0 k!

(
r
k

)
Pk,k+1 + Pq+1,q+2 (q + 1)!

(
r

q+1

)
+

((Pq+1,q−k+1 (q + 1)!))Qn
r−k(x)∑q

k=0 k!
(
r
k

)
Pk,k+1 + Pq+1,q+2 (q + 1)!

(
r

q+1

)
−

(∑q
j=0

(
j!
(
r
j

)
Pj,jQ

n
r (x) +

(
Pq+1,q+1 (q + 1)!

(
r

q+1

)))
Qn

r (x)∑q
k=0 k!

(
r
k

)
Pk,k+1 + Pq+1,q+2 (q + 1)!

(
r

q+1

) (3.18)

Q
(n)
r+1(x) =

n!
(
r
n

)
xr−n −

∑q+1
k=1

(∑q+1
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑q+1

k=0 k!
(
r
k

)
Pk,k+1

−

∑q+1
j=0

(
j!
(
r
j

)
Pj,j

)
Q

(n)
r (x)∑q+1

k=0 k!
(
r
k

)
Pk,k+1

(3.19)

Thus (3.12) holds for m = q + 1 and hence, from the steps above, for all
integral values of m.
Next we assume that (3.12) holds for s=q, that is

Q
(n)
r+q(x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+1

−

∑q−1
k=0

(∑m
j=0

(
j!
(
r
j

)
Pj,j+k

)
Q

(n)
r+k(x)

)
∑m

k=0 k!
(
r
k

)
Pk,k+1

(3.20)
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and the show that it holds for s = q + 1, that is,

Q
(n)
r+q+1(x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+q+1

−

∑q−1
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j

)
Q

(n)
r+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+q+1

(3.21)

Now, by our construction of Q
(n)
r+q+1(x),

Q
(n)
r+q+1(x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0

(
k!
(
r
k

)
Pk,k+1 + k!

(
r
k

)
Pk,k+q+1

)
−

(∑q−1
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Qn

r+k(x)
)

∑m
k=0

(
k!
(
r
k

)
Pk,k+1 + k!

(
r
k

)
Pk,k+q+1

)
+

((∑m
j=0 j!

(
r
j

)
Pj,j+q+1

)
Q

(n)
r+q+1(x)

)
∑m

k=0

(
k!
(
r
k

)
Pk,k+1 + k!

(
r
k

)
Pk,k+q+1

) (3.22)

Q
(n)
q+r+1(x) =

n!
(
r
n

)
xr−n −

∑m
k=1

(∑m
j=k j!

(
r
j

)
Pj,j−k

)
Q

(n)
r−k(x)∑m

k=0 k!
(
r
k

)
Pk,k+q+1

−

∑q
k=0

(∑m
j=0 j!

(
r
j

)
Pj,j+k

)
Q

(n)
r+k(x)∑m

k=0 k!
(
r
k

)
Pk,k+q+1

(3.23)

Thus, (3.12) holds for all m and s.
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CONCLUSION

The derivation of a general formula for the canonical polynomials asso-
ciated with m-th order overdetermined linear ODE together with its associ-
ated n-th order derivative has been presented.

The recursive nature of the formulae makes for easy determination of
particular cases for which m will be specified. The fact that the determi-
nation of canonical pollynomials is independent of the boundary conditions
makes it attractive in the Tau approximation problem to the solution of
ODEs, and when Tau approximations of higher degrees are needed, the pro-
cess of their determination does not begin from scratch.

The polynomial reported above will, in the subsequent work, be incor-
porated into the Tau method for purpose of generalizing the recursive for-
mulation of the Tau method itself.
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