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Abstract: As generalization of the fractional Cosine transform (FRCT), the canonical cosine 

transform (CCT) has been used in several areas, including optical analysis and signal processing. 

Besides, the canonical cosine transform is also useful for radar system analysis, filter design, 

phase retrieval pattern recognition, and many other verities of branches of mathematics and 

engineering. In this paper we have proved some important results about the analyticity theorem; 
Inversion theorem for canonical cosine transform, Uniqueness theorem, we have also proved the 

Properties of Canonical Cosine Transform. 
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Introduction: Integral transforms had provided a well establish and valuable method for 

solving problems in several areas of both Physics and Applied Mathematics. The roots of the 

method can be stressed back to the original work of Oliver Heaviside in 1890. This method 

proved to be of great importance, in the initial and final value problems for partial differential 

equations. Due to wide spread applicability of this method for partial differential equations 

involving distributional boundary conditions, many of the integral transforms are extended to 

generalized functions. 

      The idea of the fractional powers of Fourier operator appeared in mathematical literature as 

early in 1930. It has been rediscovered in quantum mechanics by Namias [9]. He had given a 

systematic method for the development of fractional integral transforms by means of 

Eigenvalues. Later on numbers of integral transforms are extended in its fractional domain. For 

examples Almeida [2] had studied fractional Fourier transform, Akay [1] developed fractional 

Mellin transform, Pei, Ding [12] studied fractional cosine and sine transforms, etc. These 

fractional transforms found number of applications in signal processing, image processing, 

quantum mechanics etc.  

Recently further generalization of fractional Fourier transform known as linear canonical 

transform was introduced by Moshinsky [8] in 1971. Pei, Ding [16] had studied its eigen value 

aspect. 

Linear canonical transform is a three parameter linear integral transform which has 

several special cases as fractional Fourier transform, Fresnel transform, Chirp transform etc. 

Linear canonical transform is defined as,                                         
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where a, b, c, and d are real parameters independent on s and t.  

  

1 Generalized Canonical Cosine Transform: 

1.1 Definition: 

The Canonical Cosine Transform )(1 nREf  can be defined by, 

  {CCT f (t)} (s) = < f(t), K c (t, s) >  where,  
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Hence the generalized canonical cosine transform of )(1 nREf  can be defined by, 
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1.2 Analyticity Theorem for Canonical Cosine Transform: 

 If )(1 nREf  and its canonical cosine transform is given by,  
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We prove the result for n = 1, the general result follows by induction. 

 For fixed sj ≠ 0 choose two concentric circles C and C
1
 with centre sj and radii r and r1 

respectively, such that 0<r<r1<|sj|.  

 Let 
j

s  be a complex increment satisfying 0<|
j

s | <r. 
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Therefore, we have, 
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Also tends to zero. 

Therefore, )()( stfCCT  is differentiable with respective sj. 

But this is true, for all   j= 1, 2,…….., n. 
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1.3  Inversion theorem for canonical cosine transform: 

 If  )()( stfCCT  canonical cosine transform of f(t) is given by, 
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Proof:  The canonical cosine transform of f(t) is given by 
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1.4  Uniqueness Theorem: 

 If )()( stfCCT  and )()( stgCCT  are canonical cosine transform   and 
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1.5 Properties of Canonical Cosine Transform: 

1. 5. 1 Shifting property of canonical cosine transform: 

                                                           If {CCT f(t)} (s) denotes generalized canonical cosine transform of f(t) and ‘ , is any 

real number.  Then, 

)]()(sin

)()([cos))}(({

2

2

setfCST
b

s

setfCCT
b

s
estfTCC

b

a
it

b

a
it

b

ai

 

1. 5. 2 Differentiation property of canonical cosine Transform: 

If {CCT f(t)}(s) denotes generalized canonical cosine transform of f(t), then 
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1. 5. 3 Scaling property of canonical cosine transform: 

                                        If {CCT f(t)}(s) denotes generalized canonical cosine transform, then 
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Conclusion: In this paper, brief introduction of the generalized canonical cosine transform is 

given and its analyticity theorem, Inversion theorem for canonical cosine transform, Uniqueness 

theorem is proved. Properties of Canonical Cosine Transform are also obtained which will be 

useful in solving differential equations occurring in signal processing and many other branches 

of engineering.  
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