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Abstract  
 

This paper presents the proposal of an associative 

memory implemented model with cellular 

automata.  The model was applied to the iris plant 

database of the repertoire bases available by the 

UCI Machine Learning Repository. The model was 

compared with others  by the reported performance  

making use of the  k-fold cross validation. 

 

 

Keywords: cellular automaton,  associative 

memories,  patterns classification. 

 

1. Introduction  
 

The concept of a cellular automaton (CA) was 

introduced in 1951 by John Von Newmann [1].  

Von Newmann defines a cellular automaton as a 

space able to reproduce itself [2]. The cellular 

Automaton are mathematical models where the 

behavior of each one of the elements in the system 

depends of the local interaction with each other. A 

CA d-dimentional consist in a lattice or lattice d-

dimentional extended infinitely that represents the 

"space", where each site of the lattice is called cell 

and have asociated a state variable, called the cell 

state that fluctuates on an infinite set, called state 

set. The time advances in discrete stages and the 

dynamic is given by an explicit rule called local 

funtion; the local function is used in each time 

stage for each cell to determine its new state from 

the current state of certain cells in its 

neighborhood. The cells alter their states 

synchronously in discrete time stages according to 

the local function. The Lattice is homogeneous so 

that all cells operate under the same local funtion. 

The state assigment to all the cells in the lattice is 

called a configuration, which is considered as the 

state of the total lattice. The cellular automatons 

have had a variety of applications in various 

science disciplines [3,4,5,6,7]. 

Oblivious to the field of cellular automata. there 

is the development and study of pattern 

recognition, and  a problem of this arearefers to the 

patterns clasifications. The objective in the 

clasification consiste in partition the caracteristic 

space to generate regions, which will be assigned to 

a category or a class.  Different patterns must be 

assigned in some of the created regions in the 

caracteristics space. In general, the full description 

of the classes is unknown. instead of this. there is a 

finite and reduced set of patterns that provides 

partial information about a specific problem. 

Moreover, there is the development of 

associative memories, wich have been in force 

since the early 60's. The fundamental proposal of 

an associative memory is recover correctly full 

patterns from input patterns, wich can be alterated 

with additive noise, substractive or combined. The 

patterns clasification is one of the applications that 

are given to the asoctivas memories. 

Several researchers have addressed the problem 

of developing models of associative memories 

[8,9,10,11,12,13] and have achieved important 

results for the field of research. 

 

2. Associative Memories. 
 

An associative memory can be formulated as a 

system input and output which is divided into two 

phases: 

Learning phase:   yMx   (associative 

memory generation). 

Recovering phase:   yMx   

(associative memory operation). 

The input pattern is represented by a column 

vector denoted by x and the output pattern for a 

column vector denoted by y. Each one of the input 

patterns generate an association with the 

corresponding output pattern. The notation for an 

association is similar to an ordered pair (x, y). 

The associative memory M is represented by a 

matrix whose component ij-th is mij [14]; the 

matrix M is generated from a finite set of 

associations previously known, called fundamental 

set. We denote by p the cardinality of the  

fundamental set. 

The fundamental set is represented as follows: 

 pyx ,...,2,1|),(   

The patterns that form the fundamental set 

associations are called fundamental patterns. 
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3. Cellular Automata 
 

Be Aα a countable family of closed intervals in 

R such that meet the following conditions: 

1. 
AX

baX


 ],[  for some R, ba or 

.
AX

RX


  

2. .0],[  iiii abAba   

3.  Adcba jjii .],[.],,[

 ],[],[ jjii dcba

jijjii cbdcba  ],[],[  

Definition 3.1 Be ],[ ba  an interval of R with 

ba   and Aα a closed intervals family that satisfy 

1,2 and 3. A lattice of dimentions 1 or 1-

dimentional is the set }|],[{L Axbax ii  . If 

nAAA  ,...,, 21  are intervals families thet satisfy 

1, 2 and 3 , so a lattice of dimention 1n  is the 

set }|{ 121 in Axxxx   L . 

Definition 3.2 Be Rr  a lattice 1-

dimentional is regular if rba ii ],[  for each 

Aba ii ],[ . A lattice n-dimentional is regular 

if rba
kiki

aa ],[  for each 
ikiki

Aaa aa ],[ for i 

= 1, ..., n. 

Definition 3.3 Be L a lattice. A cellule, cell or 

site is an elemnt of L. This is, a cell is an elemnt of 

the form ],[],[
11

k
n

k
n

kk

baba    with 

i
k

i
k

i
Aba  ],[  for .,...,1 ni  . 

Definition 3.4  Be L a lattice, and is r  a cell of 

L. A neighbourhood of size Nn  to r , is the set 

jn kkkkrv |}{{:)( ...,,2,1  is a cell of L for each 

}j . 

Definition3.5  Be Nn . A cullular automata, 

is a tuple )( fN,S,L,  such that: 

1. L  is a regular lattice. 

2. S  is a finite set of states 

3. N  is a defined neighborhoods set as follows. 

 rr |)({NN   is a cell and )(rN  is a 

neighborhood of r  of size }n  

4. SN :f  is a function called transition 

function. 

 

Definition 3.6 Is )( fN,S,L,Q  and 

)( gN´,S,L,W  two CA. Is defined the CA 

composition of the CA Q  y W in the time 0tt   

denotated as QW *  by the CA 

)(* fN,S,L,QW  where fh,  y g  are 

relationated as follows: 

)}(:)(({)(
00 1 rNiiCfrC tt   

)}´(:)(({)(
00 2 rNiiCgrC tt   

)}(:)(({)(
00 2 rNiiChrC tt   

 

Fig. 2. Example of a CA composition. 

 

 

4. Proposed model 
 

This section will build the associative memory 

by Cellular Automata.  

In what follows, consider the set }1,0{A  an 

the fundamental set 

},...,2,1|),{( pyxCF  
 with 

nAx 
y 

mAy 
. 

The lattice L for the CA will be composed by 

the matrix of size nm 22   with the first index the 

couple ).0,0(  
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The set }1,0{S  is the finite states set 

Is kiiI 2|{   for some 

}2)(2,...,4,2,0{]}1,...,2,1,0  nnk  and 

12|{  kjjJ  for some 

}12,...,5,3,1{]}1,...,2,1,0  mmk . 

Considerate the partition of L formed by the 

subsets family }),(|{ ),( JIjivIJ ji   with 

)}1,1(),,1(),1,(),,(),(  jijijijiv ji . 

Inasmuch as IJ  is a partition of L, given 
lv  exist 

an unique IJ  such that 
),( ji

vvl  . For example, if 

)0,3(l , so 

)}0,3(),1,3(),0,2(),1,2{()1,2(

)0,3(  vvl . 

From the previous fact is defined the 

neighbourhood set 

)´|{ LlvN   

 

Definition 4.1 Consider the set 
kA . Is defined 

the projected funtion of the thi   component 

AAki k

i  :Pr)1(  as 

conzz ii ,)(Pr   )( ,...,2,1 kzzzz   

 

Proposition 4.2 If 

)(Pr|){(Pr)( ,, yyxyxy iijiyxji   and 

)}(Pr xx jj  , so 

)12,22()22,22(  ijiij j
vxy . 

Demonstration Must be 

),22,22(),12,22{()12,22(  ijijv ij
.  

)}22,12(),12,12(  ijij . 

Inasmuch as yxji xy Pr),(  , so )(Pr yy ii    

y )(Pr xjxi   and in as much as 
nAx  and 

mA , 

 so },1,0{, ji xy , then 

1. if ,0 ji xy  so 

.)22,22()22,22( )12,22(  ijji vijxiyj

 

2. if 0iy y ,1jx  so 

.)12,22()22,22( )12,22(  ijji vijxiyj  

3. if 1iy  y ,0jx  so 

.)22,12()22,22( )12,22(  ijji vijxiyj  

4. if ,1 ji xy  so 

.)12,12()22,22( )12,22(  ijji vijxiyj  

 

Is defined the set 

.}1,1|22,22{( lnjmylipyiyj u
j

u
iCF  L

. 

Consider the cellular automata 

)( QfN,S,L,Q  and )( wf,N'S,L,W   with 

,' IJN y   

SN:fwS,N:f '
Q  defined as follows: 

  CFjiif L),(1  

)( ),( ji

Q vf  

  CFjiif L),(1  

 

1 ),1( jipositionthein  1)1,( jiif  

)),(( jivwf  

1 )1,( jipositionthein 1),1(  jiif  

 

 

 

 

It defines the CA associative (CAA) in its 

rearning phase as )(* AfN,S,L,W Q  

For the learning phase, is represented two 
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different algorithms, aim is recover an associative 

pattern associated to an input pattern. First is 

represented the max algorithm to recover the 

patterns and follows the min algorithm to recover 

the patterns. 

 

Algorithm to recovering patterns max 

INPUT : Pattern that recognized 























nx

x

x

x

~

~

~

~ 2

1


 

OUTPUT: Recovered pattern 























ny

y

y

y

~

~

~

~ 2

1


 

PROCESS: 

forfirstend

forondend

break

y

else

continue

ijijxif

continue

ijxif

njfor

y

mifor

i

j

j

i

sec

0~

)1)22,12(| |)22,22&((&1~

1)22,12&(&0~
,...,2,1

1~
,...,2,1













 

Algorithm to recovering patterns min 

INPUT : Pattern to recognized 























nx

x

x

x

~

~

~

~ 2

1


 

OUTPUT: Recovered Pattern 























ny

y

y

y

~

~

~

~ 2

1


 

PROCESS: 

forfirstend

forondend

break

y

else

continue

ijijxif

continue

ijxif

njfor

y

mifor

i

j

j

i

sec

1~

)1)12,12(| |)12,22&((&0~

1)12,22&(&1~
,...,2,1

0~
,...,2,1













 

Example 4.3. Be 3,4  nm  and 3p . The 

fundamental set )},(),,(),,{( 332211 yxyxyxCF  is 

given by: 



















0

0

1
1x























1

0

0

0

1y  



















0

1

0
2x























0

0

0

1

2y  



















1

0

0
3x























0

0

1

0

3y  

 The lattice L  is composed by the matrix of 

size 6822  nm . 

 The states set },{S 10 . 

 The Neighbourhood set is given by 

}: {vN L 11  

 The next set 
CFL ,  is one in which Qf  take the 

value of 1 and 0 in its complement. (Figure 3a) 

)}7,4(),7,2(),7,1(),6,5(),6,4(),6,3(),6,2(),6,0(),5,4(),5,2(),5,0(

),4,4(),4,2(),4,0(),3,5(),3,2(),3,0(),2,4(),2,3(),2,2(),2,1(),2,0(

),1,4(),1,3(),1,0(),0,5(),0,4(),0,2(),0,1(),0,0{(}31

,41,31|)22,22{(





j

ixiyj u
j

u
iCF L
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 Applying Wf  to the previous CA, is obteined 

the CAA that it shows  in the figure 3b. 

 Now apply the algorithm to recovering patterns 

max and min from the CAA 

 

 
Figure3. Configuration of the CA of the example 

5.3, in a) after to apply Qf  and in b) after to apply 

Wf . 

Consider the input pattern 



















0

0

1
1x  

The table 1 shows the initial an the final value 

for each component of the output vector 1y  when 

is applied the max algorithm for pattern recovery. 

The first column shows the value por the variable i 

considerated the first for of the algorithm. the 

second column is the value of 
1

iy  for default, wich 

is 1. The third column are the differents values for 

the cycle of the variable j , the fourth column is the 

respective value tha has 
1
jx , the fifth column is the 

condition that must comply in the algorithm 

depends if the value of 
1
jx  is 0 o 1. 

Finally the sixth column shows the final value 

of the 
1

iy  component. 

Table 1. Configuration of the CA  of the example 

5.3 in a) after to apply Qf  and in b) after to apply 

Wf . 

i 1

iy  
j 1

jx  
condition 1

iy  

1 1 1 

2 

1 

0 
1)22,22(  ij  

1)!22,12(  ij  

1 

0 

2 1 1 

2 

3 

1 

0 

0 

1)22,22(  ij  

1)22,12(  ij  

1)!22,12(  ij  

1 

1 

0 

3 1 1 

2 

1 

0 
1)22,22(  ij  

1)!22,12(  ij  

1 

0 

4 1 1 

2 

3 

1 

0 

0 

1)22,22(  ij  

1)22,12(  ij  

1)22,12(  ij  

1 

1 

1 

 

From the table 1 we have 























1

0

0

0

1y  . So recover 

the pattern 
1y  when is presentated the input pattern 

1x  using the max algorithm for pattern recovery. 

Similarly to the above table, Table 2 shows the 

initial and the final value for each component of the 

output vector 
1y  when is applied the min algorithm 

for pattern recovery. 

Table 2. Configuration of the CA  of the example 

5.3 in a) after to apply Qf  and in b) after to apply 

Wf . 

i 1

iy  
j 1

jx  
condition 1

iy  

1 0 1 

2 

3 

1 

0 

0 

1)12,22(  ij  

1)12,12(  ij  

1)12,12(  ij  

0 

0 

0 

2 0 1 

2 

3 

1 

0 

0 

1)12,22(  ij  

1)12,22(  ij  

1)12,12(  ij  

0 

0 

0 

3 0 1 

2 

3 

1 

0 

0 

1)12,22(  ij  

1)12,22(  ij  

1)12,22(  ij  

0 

0 

0 

4 0 1 1 1)!12,22(  ij  1 
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From the table 2 we have 























1

0

0

0

1y . So, recover 

the pattern 
1y  when is presentated the pattern 

1x  

using the min algorithm for pattern recovery. 

 

5.  Experiments and results 
 

For the experimental part was used the Iris 

database provided by the University of California 

Irvine Machine Learning Repository available in 

http://www.ics.uci.edu/~mlearn/mlrepository.html. 

The Iris database count with 150 instances, each 

instance with 4 real attributes without information 

loss, divided in 3 classes: Iris Setosa, Iris 

Versicolour and Iris Virgínica. To validate the test, 

it was considered the k-fold cross validation 

method with k = 10. The CAA was applied in its 

learning phase. For the recovering phase it was 

applied the max algorithm and the min algorithm. 

The figure 4 shows the CAA configuration in its 

learning phase, and the table 3 shows the result of 

the model compared with another results applied at 

the Iris Plant database. 

 
Figure 4. CAA configuration in its learning phase 

for the Iris Plant database. 

 
Table 3. Comparison of proposed model with other 

models. 
Model Iris Plant (%) 

Bayesian Network (K2) [15] 93.20 

Adaboost NB [15] 94.80 

Bagging NB [15] 95.53 

NBTree [15] 93.53 

LogitBostDS [15] 94.93 

K-Means [16] 89 

Neural Gas [16] 91.7 

MLP [17] 95.99 

NBT [17] 93.99 

PART [17] 94.66 

ACA with max recuperation 99.33 

ACA with min recuperation 99.33 

 

6. Conclusions 
It has been presented a model of associative 

memory based on cellular automata that we call 

CAA. For the learning phase the CAA is builded 

from a fundamental set. For the recovering there is 

two algorithms: the max and the min recovering 

algorithms. The model was applied to the database 

of Iris Plant from the databases available in the 

repertory by the UCI Machine Learning 

Repository. The model was compared with other 

models by their showed yield. 
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