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Abstract—The rising trend in fuel prices has led to growing 

concern about vehicle fuel economy, and viscous drag is one of 

the main factors. Improvement in fuel efficiency can be achieved 

at a relatively low cost by installing aerodynamics devices to 

streamline vehicles and reduce drag.  We report here an efficient 

numerical technique to automatically optimizing the geometry of 

suchdevices. The technique combines shape optimization, 

geometric modeling, and Finite element analysis (FEA). To assess 

the validity of our optimization algorithm, we compare our 

optimization results against known test cases similar to the 

configurations in hand. We use this method to examine how 

effective add-on devices in reducing drag on a simple model of a 

commercial truck. 

Keywords—Aerodynamics, Fluid dynamics, Optimization, 

Golobalized and bounded Nelder-Meda, CFD based optimization 

I. INTRODUCTION 

In the history of aerodynamic research around bluff 
bodies[1, 2] such as trucks, trailers and sport utility vehicles 
(SUVs), it has always been observed that the shape of the body 
is one of the main obstacles to improving fuel economy[3].  
The air flow produces pressure unbalance between the fore and 
aft facing surfaces of the vehicle. This pressure difference 
along with vortex shedding and skin friction cause drag [4–6], 
thereby increasing the fuel consumption. Improvement in fuel 
efficiency can however be achieved at a relatively low cost by 
installing aerodynamic add-on devices to streamline the body 
shape and reduce drag [19]. For maximum performance, the 
number and geometrical parameters of these devices must be 
optimized. 

Conventional methods for finding optimal geometric 
configurations of aerodynamic devices for drag reduction rely 
on experimentation and/or computational simulation.  The 
analysis is done iteratively by varying one of the device’s 
geometrical parameters with the hope of maximizing drag 
reduction. Cooper [7] for example, investigated the effect of 
tail gate position of a commercial truck.  He conducted full 
scale experimental tests and presented the results with 
computational fluid dynamics (CFD) analysis to visualize the 
flow structure of tailgate up and tailgate off at zero degree yaw 
angle. The results showed that the removal or lowering of the 
tailgate increases the aerodynamic drag. Ha, Jeong, and 
Obayashi [8] carried out an experimental and computational 
study of the changes in the flow characteristics with variations 

in thebed geometry of a pickup truck. They found that the 
attachment of the bed flow to the upper part of the tailgate 
increases the drag coefficient when the bed geometry is unable 
to cover the downwashof the bed flow entirely. The same 
authors [9] examined drag reduction of a pickup truck by a rear 
flap add-on through CFD simulations and wind tunnel 
experiments. They concluded that rear downward flap was 
effective in reducing the drag coefficient through an increase in 
the flap length and the downward angle. Yang and 
Khalighi[10] were more concerned with the ability of CFD 
simulations and the two-equation k-epsilon turbulence model 
to capture steady flow around pickup trucks. They compared 
the data from CFD simulations with excremental data collected 
form Al-Garni, Bernal and Khalighi’s experiments [11] and 
concluded that the steady state formulation was good enough to 
study vehicle aerodynamics. These cases and others not listed 
for brevity, simultaneously demonstrate the ability of CFD 
simulation to predict fluid flow around  vehicles such as trucks, 
and how the experimental investigationstill the preferred choice 
in aerodynamics quest. 

Drag optimization problems in general are multi-variable 
multi-constraint problems, and small changes in any of the 
geometrical parameters of the vehicle may lead to larger 
changes in aerodynamic flow. Rather than manually iterating 
design changes whether experimentally or via CFD simulation 
until all design requirements are met, an engineer can work 
more effectively by automating the design and simulation 
processes and allow an optimization algorithm to create a final 
design that meets the particular requirements. The technique 
introduced in this paper is based on this perception and will be 
discussed in more details in the next few sections. 

This paper is divided into three major parts. In the first, we 
introduce the technique of optimization and components used 
in the process of computing and minimizing drag. Next, we 
benchmark and apply this technique to a generic model of a 
commercial truck customized with a rear cabin flap. In the final 
section we conclude with a summary and a discussion of future 
work. 

II. THE COMPUTATIONAL TECHNIQUE 

In this section, we shall describe the general structure of the 
computational technique used in the optimization that we apply 
to a specific system in section III. We shall present this general 
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case first and then indicate briefly how the results will simplify 
for our special case. 

A. The Optimization Technique 

Techniques of constrained and unconstrained optimization 
are well known and studied in the literature [12–14].  
Numerical algorithms can be broadly categorized into gradient-
based methods and direct search methods.  Gradient-based 
methods use first or second derivatives, while direct search 
methods such as the Nelder-Mead [15], do not use derivative 
information. Direct search methods tend to converge more 
slowly, but can be more tolerant to the presence of noise in the 
function and constraints. In this paper, the Nelder-Mead (N-M) 
algorithm is used for the purpose of reducing viscous drag. 

The N-M method compares values of the objective function 
at a set of n + 1 points called a simplex where n is the number 
of design variables.  Simplex vertices are changed through 
reflection, expansion, contraction, or shrinkage. The process is 
continued until the simplex converges to a local optimum.  
Thus, the local optimum found is dependent on the initial 
simplex. 

The original N-M algorithm was designed for 
unconstrained optimization, but the variables in an engineering 
problem such as the one we are currently facing are usually 
constrained by upper and lower bounds (i.e. box constraints). 
To constrain The N-M optimization algorithm, we use a 
projection procedure on the box constrained variables [16, 17]. 
Projection of variables is mathematically specified by 

 

 

𝑥𝑖 =  

𝑥𝑖
𝑙𝑜𝑤𝑒𝑟  𝑏𝑜𝑢𝑛𝑑   𝑖𝑓  𝑥 < 𝑥𝑖

𝑙𝑜𝑤𝑒𝑟  𝑏𝑜𝑢𝑛𝑑

𝑥𝑖
𝑢𝑝𝑝𝑒𝑟  𝑏𝑜𝑢𝑛𝑑

     𝑖𝑓  𝑥 > 𝑥𝑖
𝑢𝑝𝑝𝑒𝑟  𝑏𝑜𝑢𝑛𝑑

  

 

 
(1) 

    
where xi  is a point sampled during the optimization. 

 

Strictly speaking, Nelder-Mead is not a true global 
optimization algorithm; and may only lead to one or morelocal 
minima depending on the starting simplex. A global search 
however, can be performed by repeatedly restarting the N-M 
algorithm. To avoid finding the same local optima, the new 
initial points should be different and preferably far from 
previous initial points and already known local solutions. To 
this end, we use a variable variance probability density (VVP) 
[17] to identify a point reasonably far from the known local 
minima and initial starting points then construct a simplex from 
it and restart the local optimizer for the next optimum. More 
detail about the VVP can be found in appendix A. 

The diagram in Fig.1 represents the scheme used in the 
implementation of the Globalized and Bounded Nelder-Mead 
algorithm (GBNM) and the repetitive restarts needed to reach 
global minimum. This is the same restart scheme used by 
Luersenand Riche[16]. We start with a fixed number of random 
vertices; these are the initialpoints. We then identify the vertex 
with the largest probability density; this is the vertex with the 
largest distance to the closest neighbor. At this point we use a 
probabilistic restart by constructing an initial simplex from this 
point of size equal to 20% the domain size. We then proceed 
with the bounded Nelder-Mead optimizer and identify the first 

local optimum. We stop the N-M algorithm when the simplex 
is small, or flat.  A simplex is small when. 

 

Figure 1: GBNM restarts schematics.T1: (this point is already known as a local 

optimum).  T2: (vertex ix a local optimum). T3:  (large test or probabilistic and 

not return to the same point and point on the bound).   T4:   (small test and not 
return to the same point and not on the bunds).  T5:  (N-M stopped by 

maximum number of iterations).  T6:  (maximum number of analyses is 

reached. 

 

 
𝑚𝑎𝑥   

𝑥𝑖
𝑘+1 − 𝑥𝑖

𝑘

𝑥𝑖
𝑢 − 𝑥𝑖

𝑙   < 𝜖1  
 

(2) 
where k is the number of iterations, subscripts u and l represent 

the upper and lower bound on variable xi, and𝜖1   is a 

predetermined small number. 

 
Similarly, a simplex is flat when 

 

  𝑓𝐻 − 𝑓𝐿  < 𝜖2  (3) 
   
wherefH and fL are the highest and lowest function values at the 

current  simplex, and 𝜖2    is a given small number. 
 

The local optimum is then stored and used with the initial 
random points and any prior stored optima to update the 
probability density from which we identify the next best vertex 
and use the same probabilistic restart with a polyhedron of size 
equal to 20% the domain size. There may be cases however, 
when the new optimum is identical to one of the stored 
optima;that the maximum number of iterations in the N-M is 
reached; or that one or more of the simplex parameters are on 
the edge of the box constraint.  In cases like these we proceed 
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as indicated in the diagram. Small and large tests are used to 
restart the Nelder-Mead from the best pointof the current 
simplex with a polyhedron of size 2% and10% the domain size 
respectively 

B. Program Structure 

To achieve optimal values of drag coefficient (CD) [1], we 
will be facing three parts of work; geometric modelling, 
finiteelement analysis (FEA) and mathematical programming.   
Different program files were developed for each part, and 
communication between these parts is manipulated by an 
interface.   One of the most interesting features of the ANSYS 
Workbench software is the possibility to use it as a mere 
subroutine of any other external program.  Parameters can be 
either directly passed or exchanged through external files. This 
flexibility allows us to build an interface between ANSYS and 
our external optimization algorithm, written in Visual Basics 
for application (VBA), where ANSYS is a finite element 
package used to calculate the objective function and 
constraints. For geometrical updates, we automate the 
SolidWorks Application Programming Interface (API) calls 
directly from our external optimization algorithm. The 
methodology schematics are shown in Fig.2. In the following 
the main parts are outlined. 

Commands for adding the aerodynamics devices, for 
generating and storing the parasolid model are incorporated in 
a SolidWorks macro.  This list of API calls is directly 
implemented into the optimization algorithm written in VBA. 

Commands for uploading the parasolid model, for adding 
an enclosure to simulate fluid flow and for applying a Boolean 
operation to subtract the geometry of the truck from the 
enclosure are incorporated in a command file using the Java 
Python language for the ANSYS Design Modeler. 

Commands for meshing, for adding inflation on the road 
and truck surfaces and for applying body sizing are 
incorporated in a command file using the Java Python language 
for the ANSYS Mesher. 

 
 

 

Figure 2: Methodology of geometry optimization 

 

 

 

 

 

Commands for initializing the Fluent computation and 
applying boundary conditions are incorporated in a Fluent 
journal file.  Upon completion of the pre and post- processing 
stages, ANSYS provides results file which records the drag 
coefficient over the steps of the simulation, this information is 
stored in a files.out and returned to the interface. 
Communication with the ANSYS Workbench is made possible 
via a journal file. 

For geometry optimization, we used the Globalized and 
Bounded Nelder-Mead optimization algorithm.  The in- put 
parameters are read from an excel sheet. Results and 
geometrical updates are printed out on the same sheet to show 
optimization progress. 

C. Finite Element Analysis Setup and Procedure 

We used the Fluent analysis system in ANSYS Workbench. 

The model including aerodynamic devices were imported to 

the Design modeler, and aligned with a control volume. A half 

model was used to allow quicker solution of the model with a 

more refined mesh. The control volume size was set according 

to Fluent’s best practice guide for vehicle analysis [18]. The 

computational domain in Fig.3 extended around three times 

the vehicle length to the front and five times to the rear. The 

width and height of the control volume were set so that the 

cross section of the vehicle did not exceed 1.5% of the domain 

area. A box was created around the vehicle and in the wake 

region to control the mesh size during the meshing process. 

The box extended about half a vehicle length in front, to the 

sides and to the top, and about a vehicle length in the wake. 

The model was then subtracted from the computational 

domain to limit the computational analysis to the rest of the 

control volume and vehicle boundaries. 

ANSYS Workbench offers a robust and easy to use set of 

meshing tools.  These tools have the benefit of being highly 

automated along with having a moderate to high degree of 

user control. Based on the analysis system utilized, the Mesher 

in ANSYS Workbench uploads a set of default parameters that 

will result in a mesh that is more favorable to the solver used. 

By means of global and local mesh controls, the user can 

easily modify the mesh parameters. In this paper we adopted a 

physicsbased meshing, the physics preference was set to CFD 

and solver to Fluent.  An inflation layer was added over the 

surfaces of the vehicle and the road as shown in Fig.4; the 

prisms were grown with a first aspect ratio of 10 and a growth 

factor of 1.2 extruding 5 layers. Body sizing was used for 

mesh refinement around the vehicle and wake region. 

Triangular mesh elements were used on the surface to reduce 

the numerical diffusion and to align with the real flow near the 

model. The remainder of the computational domain was 

filledwith tetrahedral volume cells that were adjacent to the 

prism layers. 

A velocity-inlet boundary condition was used to model the 

incoming flow. Fluent’s best practice guide for vehicle 

analysis [18] recommends using a Realizable k-epsilon Model, 

and non-equilibriumwall-functions(NWFs).Fluent 

convergence criterion of 10
−4

 for the continuity equation was 

used. 
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Figure 3: Simulation Box 

 

 

 
 

 
Figure 4: Boundary layer at a growth factor of 1.2, triangular mesh elements on 
the surface and tetrahedral volume cells in the reminder of the computational 

domain 

 
 

III. APPLICATION 

In this section we shall present the application of the 
technique introduced in section II to the case of a simple model 
of a commercial truck customized with a rear cabin flap. 

The pickup truck model used was a 1/10th scale generic 
pickup truck without side mirrors, as shown in Fig.5.  The bed 
length and bed height were 157.8 mm and H = 106.9 mm, 
respectively.  The cabin flap was added and merged at the rear 
edge of the roof. The flap length (l) normalized by the cabin 
back height (H) and the downward angle (θ) measured from the 
horizontal were considered as the design variables. The tailgate 
height was h = 72.6 mm.  The free stream velocity was set to 
30 m/s, and the Reynolds number was calculated based on the 
overall model length to be Re = 7.95×10

5
.  The stopping 

criteria for the Nelder-Mead were 𝜖1 = 𝜖2 = 10−3 for the small 
and flat simplex respectively.  The maximum number of 
iterations in the Nelder-Mead was set to 50. The box 
constraints for the length and flap orientation were set to 0.1H 
< l < 0.3H and 0 < θ < π/4.   We started with 10 random initial 
vertices over the domain of the analysis, and the optimization 
was performed up to 30 analyses. The optimum points were 
rounded off to10

−2
. 

 

 

Figure 5: Truck model. Top view (bottom), side view (middle). Flap (top). 

 

A. Discussion of Results 

Table.I, shows five local minima, although there are around 
twenty other local solutions found during the optimization 
process that a designer can select from. In this respect, the 
optimization is comparable to an evolutionary procedure that 
provides a family of optimal solutions instead of just one 
specific solution. This feature is important especially for multi-
objective optimization. 

The results of table.I,prove that drag reduction is achievable 
at different lengths with slightly better results at larger flap 
lengths. The flap orientation however, seems to converge in all 
cases to values around 12 degree as measured from the 
horizontal and down. This is similar to the results of Ha, Jeong, 
and Obayashi[9]. There, they used a similar truck model, 
although with a wider tailgate. They then fixed the flap length 
in each analysis, and vary the angle to find that a maximum 
reduction can reached at an angle around 12 degrees. 

To understand the underlying causes of these results, we 
plotted the pressure coefficients on the symmetry plane of the 
back surface of the cabin in Fig.6, as well as the front and back 
surfaces of the tailgate in Figs.7&8. The flap increased the 
cabin surface area and moved the reattachment point over the 
tailgate away from the bed as can be depicted in the inserts of 
Figs.9&10. As a result, the recirculating flow behind the cabin 
was reduced and its core shifted slightly toward the tailgate. 
The lesser the recirculation over the bed, the better the pressure 
on the cabin back and inside surface of the tailgate which 
explains the results of Figs.6&8.  With the cabin flap, the flow 
separates at the outer edge of the tailgate and two noticeably 
counter rotating vortices are formed. The core of these vortices 
are farther from the tailgate compared to the case without cabin 
flap, which explains the slight improvement in the pressure 
over the tailgate back as depicted  in Fig.7. Overall, the cabin 
flap reduced the pressure difference between the fore and after 
facing surfaces of the vehicle which thereby reduced drag. 
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TABLEI:Optimum designobtainedbyGBNM 

 

l(H) θ(o) %reduction 
0.15 12.0 5.10 
0.19 12.5 5.39 
0.22 12.4 5.82 
0.24 12.2 6.03 
0.26 12.2 6.03 

 
 

 
 

Figure 6: Pressure coefficient distribution (Cp) on the symmetry plane of the 

back surface of the cabin, the height (Z) is measured from the truck bed. 

(triangle:  cabin with flap, l = 0.24 H and θ = 12.2o), and (rectangles: cabin 
without flap). 

 

 
 

Figure 7: Pressure coefficient distribution (Cp) on the symmetry plane of the 

back surface of the tailgate, the height (Z) is measured from the truck bed. 
(triangle:  cabin with flap, l = 0.24 H and θ = 12.2o), and (rectangles: cabin 

without flap). 
 

 
 

Figure 8: Pressure coefficient distribution (Cp) on the symmetry plane of the 
inside surface of the tailgate, the height (Z) is measured from the truck bed. 

(triangle: cabin with flap, l = 0.24 H and θ = 12.2o), and (rectangles: cabin 

without flap). 
 

 

 
 
Figure 9: Streamlines colored by the pressure coefficient around the bed in the 

symmetry plane for the model truck with flap, l = 0.24 H and θ = 12.2o.   The 
insert visualizes the flow attachment over the tailgate.  (CFD data) 

 

 
 

Figure 10: Streamlines colored by the pressure coefficient around the bed in the 

symmetry plane for the model truck without flap l = 0.24 H and θ = 12.2o. The 

insert visualizes the flow attachment over the tailgate.  (CFD data) 
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IV. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a robust technique that 

combines mathematical programming; geometrical modeling 

and finite element analysis to optimize the geometry of 

aerodynamic add-on devices as they apply to road vehicles. To 

benchmark and test the robustness of the technique, we 

considered optimizing the length and orientation of a flap of 

fixed thickness merged to the back of the cabin of a simple 

model of a commercial truck. The evolutionary and 

constrained aspect of the technique produced a family of 

optimal solutions that a designer can choose from. The results 

were compared to other experimental and computational 

results and were proven to be consistent. The technique can 

further be used to optimize the geometry of other additional 

devices such as a tailgate flap since this may improve the 

pressure behind the tailgate as well as a combination of a cabin 

and tailgate flaps. 

The methodology introduced in this paper can be broadened 

to several other engineering problems where fluid flow and 

geometrical or other physical constraints are to be met. The 

sequential use of mathematical programming, computational 

fluid dynamics and computer- aided design tools can for 

example, be utilized to improving the design of ventricular 

assist devices (VADs), where a compromise between the 

hydraulic performance and health related complications due to 

high stress rates is a major issue. 
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APPENDIXA:VARIABLEVARIANCE 

PROBABILITYDENSITY(VVP) 

 
The variable variance probability (VVP) density is based on 

the minimum distance to the points already sampled and is 

represented as 

 
 𝛷 𝑥 =

1

 2𝜋𝜎
 1 − 𝑒𝑑𝑚𝑖𝑛

2 /2𝜎2
  

 

𝑑𝑚𝑖𝑛 = 𝑚𝑖𝑛 
𝑖=1,….,𝑚

 𝑑𝑖 =    
𝑥𝑘 ,𝑖 − 𝑥𝑘

𝑥𝑘 ,𝑢 − 𝑥𝑘 ,𝑙

 

2𝑛

𝑘=1

  

 

 
(A1) 

 

 
Where Φ(x) is the sampling probability of a point x, n is the 

number of design variables, xi is a point previously sampled, 

and m is the number of points already sampled. Length di is 

the non-dimensional distance between point x and point xi.  

 
The variance of the normal probability density, which is 

updated in each restart, is given by: 

 

 𝜎 =
1

3  𝑚
𝑛  

 

 
(A2) 

The variance is gradually decreasing when the number of 

sampled points is increased. 
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