
Gesture Oriented Multi-Disciplinary Gadgets

Abstract— The need for simplicity in the interface between

the human world and the digital world is ever increasing. The

ever maturing technology is at the edge of realizing the desired

connect between the two, the gesture based interface is very

promising for such realization. To control the multi-disciplinary

gadgets from the digital world using the gestures and human

interactions is very possible. Certainly we can control various

devices using the gestures and make the digital world dance on

our fingertips. For this purpose a real-time connection between

the two worlds will be provided by a real-time camera for

gesture recognition and process execution.

Keywords— gesture; recognition; MATLAB; gadgets; dgital

world; hand gesture recognition.

I. INTRODUCTION

The human computer interface technology continues to

mature with a increasing pace and in a nick of time, we now

like to have smaller and state of the art electronic devices to

use with ease and efficiency. Ever growing need for the new

technological interfaces is very essential for the interaction

between the small electronic gadgets and new features with it.

HCI – Human Computing Interaction plays an important role

interfacing the digital and the human worlds together using

the gesture based object recognition technology. There exist

more primitive interfaces but the problem associated is that

they cannot be used in motion i.e. they are stationary

interfaces. The Touch screens have become very popular and

are used worldwide. However, this technology is just not that

viable due to its hardware limitations and lacking the cost

effectiveness. Relatively using the gesture based object

recognition environment we can use the digital devices using

simple gestures as we use in daily life to indicate them. In

this paper, we put forward a novel approach which uses

gesture based recognition system to control multi-

disciplinary gadgets. This system can control various gadgets

making them very tranquil to use. They involve drawing

patterns using gestures, controlling the media devices,

making a hand-on call to predefined numbers in the directory

or an SOS message, clicking real-time photos etc.

I. RELATED WORKS
There is a vast and wide ranged technological re-search in

the field of HCI and the Robotics field for the Human
Robot/Digital-devices interfacing. Although, each one of them
uses a different approach to define a gesture or an event
occurring. An approach by Erdem et al, used finger tip
tracking to control the motion of the mouse. A click of the
mouse button was implemented by defining a screen such that
a click occurred when a user’s hand passed over the region [1,
3]. One other developed by Chu-Feng Lien [4]. It used only
the fingertips to control the cursor and click event. The
method was developed on image density; it also required the
user to hold the mouse cursor on the desired spot for a short
period of time. Paul et al, used another method using motion
of the thumb (Forming ‘thumbs-up’ position to all others) to
mark an event. A special movement of hand defined the
movement of the mouse pointer.

Our project was inspired by a paper of Asanterabi Malima
et al. [8]. The team developed a finger counting system to
control behaviors of a robot. The other one is based on the
works of Soshi Iba, J. Michael Vande Weghe, Christiaan J. J.
Paredis, and Pradeep K. Khosla of the Carnegie Mellon
University where they used the HMM (Hidden Markov
Models) to spot and recognize the gestures captured using
Data Glove, where a spotting of Six gestures were made
reliably and accurately.

II. SYSTEM FLOW

The image is captured by the camera on real-time basis,

this image will be processed for glitches or errors and then

processed by the PC Software (in our case MATLAB).

Further we resize the image and and scan rows and columns

respectively, we define a range of thresholds for the R,G,B

colours and convert these pixels to white; all other pixels are

converted to black. The process of centroid computation

takes place.

After the calculation of the centroid, it is checked gain if

the centroid is correctly calculated. If YES, then there takes

place a mouse action else if NO, then there is no action which

takes place. This process is then repeated in a loop for the

continuous movement of the mouse or any other device

operation.

Neeraj Ajit Abhyankar

Department Of Electronics and Telecommunications

Mumbai, India

Yash Chaudhari
Department Of Electronics and Telecommunications

Mumbai, India

Pratik Haware

Department Of Electronics and Telecommunications

Mumbai, India

Jay Choksi
Department Of Electronics and Telecommunications

Mumbai, India

 Prof. Jyoti Dange

Professor, Department Of Electronics and Telecommunications

Mumbai, India

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

1

This method gives us utmost accuracy and ease of
accessibility for device control using gestures.

Figure 1. An overview of our hand gesture recognition and gadget Control

Flow.

III. HAND GESTURE RECOGNITION

I. Image Resizing

First to recognize a hand gesture, we need to resize

the input image in order to map camera coordinates to

screen coordinates. There are two ways to map from

source image to destination image. The first way is to

compute the ratio of screen resolution to camera

resolution. To determine the x and y coordinates on the

screen of a given camera pixel, we use the following

equation:

where (x' , y') is the camera position, (Cx, Cy) is the

current screen resolution, and (x, y) is the corresponding

screen position of camera position.

 The second way is to use the cvResize()

function in OpenCV. This function maps a source

image to a destination image as smoothly as possible.

To accomplish this, the function uses interpolation.

Interpolation is a method to add or subtract pixels to an

image as necessary to expand or shrink its proportions

while introducing minimum distortion. Using this

function, we can easily map the position of each input

image pixel to a screen position.

In this paper, we used the first method because it is easier
to implement, more accurate and preserves more data..

Figure 2. Use of markers and real-time camera .

A. Segmentation

Next, we need to separate the hand area from a complex

background. It is difficult to detect skin color in natural

environments. If we tried to detect skin color in natural

environments, we would have to work with a very wide color

range because of the variety of illuminations and skin colors

and it is possible that other objects whose colors lie in the

color range may get detected instead of the user’s hand.

Hence, we use colored markers wrapped around on our

fingertips for the detection of fingers. Doing this enables us

to work in a narrow color range which increases precision.

We use four markers colored blue, green, yellow and red..

To get better results, we converted from RGB color space to

YCbCr color space, since YCbCr is insensitive to color

variation. The conversion equation is as follows.

Where Y is luminance, Cb is the blue-difference chroma

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

2

component and Cr is the red-difference chroma component.

From this information, we detect the marker color by

selecting a particular color range from the Cb and Cr values.

In this paper, we choose Y, Cr and Cb values for red, blue,

yellow and green at their maximum saturation. We also keep

the tolerance at a healthy 10% to allow for operations in

different illumination levels and with slightly less saturated

color markers. (It should be noted that these values were

chosen for the convenience of the investigator.) Then we loop

over all the image pixels, changing pixels within the marker

color range to 0, and all others to 255. Hence, we obtain a

binary image. Figure 2 shows the results.

B. Deleting Noise

Using this approach, we cannot get a good estimate of the

marker image because of background noise. To get a better

estimate of the marker, we need to delete noisy pixels from

the image. We use an image morphology algorithm that

performs image erosion and image dilation to eliminate noise

[1]. Erosion trims down the image area where the colored

marker is not present and Dilation expands the area of the

Image pixels which are not eroded. Erosion is given by the

equation

Where A denotes input image and B denotes Structure

elements. The Structure element is operated on the Image

using a Sliding window and exact matches are marked.

Figure 3 shows a graphical representation of the algorithm.

Dilation is defined by,

Where A denotes the input image and B denotes the

structure element. The same structure element is operated

on the image and if the center pixel is matched, the whole

area around that pixel is marked. Figure 4 shows the

algorithm. Erosion and Dilation are changed by the shape

of B. Thus, B should be selected in advance. We

performed erode function with structure of 10x10 square

pixels three times and dilate function with 6x6 square

pixels structure three times to get a clearer hand. Figure 5

is the result of this algorithm.

Figure 3. The result of image erosion. The structure element scans the
input image. When the structure element matches, the central pixel is

kept; when it does not match, all pixels are discarded.

Figure 4. The result of image dilation. The structure element scans
the input image. When the center of the structure matches any pixels,

the bin of the structure element is filled.

Figure 5. The result of image morphology. Perform erosion and dilation on
binary image. (a) Original image. (b) The result of image morphology.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

3

C. Finding the Center and the Size of Hand

After segmenting hand region and background, we can
calculate the center of the hand with the following equation:

Where xi and yi are the x and y co-ordinates of the ith pixel in

the hand region and k denotes the number of pixels in the

region.

After we locate the center of the hand, we compute the
radius of the palm region to get hand size. To obtain the size
of the hand, we draw a circle increasing the radius of the circle
from the center co-ordinate until the circle meets the first
black pixel. When the algorithm finds the first black pixel then
it returns to the current radius value. This algorithm assumes
that when the circle meets the first black pixel, after drawing a
larger and larger circle, then the length from the center is the
radius of the back of the hand. Thus, the image segmentation
is the most significant part because if some of the black pixels
are made by shadows and illuminations near the center, then
the tracking algorithm will meet earlier than the real
background and the size of the hand region becomes smaller
than the real hand. This problem breaks this system. Figure 6
shows the results.

Figure 6. The result of the computed hand size. Drawing a larger and larger
circle, we obtained the size of the back of the hand.

D. Finding Fingertips

 To recognize that a finger is inside of the palm area or

not, we used a convex hull algorithm. The convex hull

algorithm is used to solve the problem of finding the biggest

polygon including all vertices. Using this feature of this

algorithm, we can detect finger tips on the hand. We used this

algorithm to recognize if a finger is folded or not. To

recognize those states, we multiplied 2 times (we got this

number through multiple trials) to the hand radius value and

check the distance between the center and a pixel which is in

convex hull set. If the distance is longer than the radius of the

hand, then a finger is spread. In addition, if two or more

interesting points existed in the result, then we regarded the

longest vertex as the index finger and the hand gesture is

clicked when the number of the result vertex is two or more.
The result of convex hull algorithm has a set of vertexes

which includes all vertexes. Thus sometimes a vertex is placed
near other vertexes. This case occurs on the corner of the
finger tip. To solve this problem, we deleted a vertex whose
distance is less than 10 pixels when comparing with the next
vertex. Finally, we can get one interesting point on each
finger. Figure 7 shows the results.

Figure 7. The result of finger tip tracking algorithm. If a tip of a finger is on
the outside of the larger red circle, then it can be found by the convex hull

algorithm.

IV. CONTROLLING THE MULTI DISCIPLINARY

GADGETS

A. Moving Mouse Cursor

 There will be pre-defined color markers for each

specific fingers (for example: Red, Yellow, Green and

Blue for Index finger, middle finger, third finger and

thumb respectively). The mouse cursor will follow the

movements of the index finger.

B. Clicking the mouse

 If the index finger touches with the thumb finger it will

be considered as left click and similarly if the index finger

touches the middle finger it will be considered as right click.

C. Controlling the media player

 In media player, for increasing or decreasing the volume

with the index finger we can do upward or downward action.

When the middle finger and thumb touches each other it will

be considered as ‘play’ and similarly if they are touched twice

in succession it will be considered as ‘pause’.

V. EXPERIMENTS AND RESULTS

 We first iterated the code and removed bugs to

implement various mouse tasks such that left click, right

click, double-click, dragging, and scrolling on windows. The

tested system is that Core2-Duo T8300, 2GB memory,

Microsoft Windows XP, Microsoft Windows 10, Microsoft

Life Cam VX-1000 (640x480 resolution, 15fps). It becomes

very difficult to compare the speed of cursor by hand gesture

and actual mouse. So, instead of comparing with a real

mouse, we allowed to use this system to four testers to know

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

4

how it can be adapted easily. Our method evaluated the task

on the grounds of time taken by each process to get

processed. We designed four experiments to get performance.

In the first experiment we placed an icon in the middle of the

laptop screen and placed the cursor on the top left corner of

the screen. We then measured the time the cursor took to

reach from its initial position to the icon. In the second

experiment we placed the icon in the exact same position

before and then measured the time it took to open the drop

down list of an icon. In the final experiment we opened the

website (www.google.com) from a web browser and

measured the time the cursor took from its initial position.

Every tester was new in this system. The clicking task showed

similar times with all testers. However, the scrolling result

showed the time as unstable. The reason is that the focus of

the camera lens works automatically so when the index finger

went to the border on the screen then part of the hand colors

becomes dim. Eventually, hand segmentation failed because

colors could not be on the color range which is in the

segmentation part. Thus, we could not get a clear shape of the

hand from the video streaming.

VI. PROBLEM DISCUSSION AND SOLUTIONS

 The problem arises when the hand shook a lot. We used

real time camera so when lighting occurs the position of the

hand changes and hence the convex hull algorithm’s property

of finger point detection also changes. Then the mouse cursor

pointer shakes fast. To fix this problem, we added a code that

the cursor does not move if the difference of the previous and

the current finger tips position is within 5 pixels. This

constraint worked well but it makes it difficult to control the

mouse cursor sensitively. Another problem arises due to

illumination is the segmentation of the hand becomes

difficult, since the hand reflects all light sources, the hand

color is changed according to the place. If hand shape is not

good then our algorithm cannot work well because our

algorithm assumes the hand shape is well segmented. In order

to determine the approximate radius value of the hand the

segmentation or shape of the hand must be perfectly aligned

in front of web-camera.

For finding the center of hand, it has a problem to find the

center accurately. If the camera showed a hand with wrist,

then the center will move a little towards the wrist because the

color of the wrist is the same as hand color. Therefore, it

causes that algorithm system to fail because if the center is

moved down, then the radius of the hand can be smaller than

the actual size. Additionally the center will move down and

the algorithm used will show us the system fail. And then

every time the thumb will be shown outside the circle which is

unacceptable.

VII. CONCLUSION

For finding the center of hand, it has a problem to find the

center accurately. If the camera showed a hand with wrist,

then the center will move a little towards the wrist because the

color of the wrist is the same as hand color. Therefore, it

causes that algorithm system to fail because if the center is

moved down, then the radius of the hand can be smaller than

the actual size. Furthermore, the circle will move down and

become smaller so when a user crooks his or her hand then the

finding finger tips algorithm can also fail because a thumb can

be placed outside of the circle every time.

REFERENCES

[1] Computer vision based mouse, A. Erdem, E. Yardimci, Y.

Atalay, V. Cetin, A. E. Acoustics, Speech, and Signal

Processing, 2002. Proceedings. (ICASS). IEEE International

Conference

[2] Virtual mouse vision based interface, Robertson P., Laddaga

R., Van Kleek M. 2004.

[3] Vision Based Men-Machine Interaction

http://www.ceng.metu.edu.tr/~vbi/

[4] Chu-Feng Lien, Portable Vision-Based HCI - A Real-time

Hand Mouse System on Handheld Devices.

[5] Hailing Zhou, Lijun Xie, Xuliang Fang, Visual Mouse: SIFT

Detection and PCA Recognition, cisw, pp.263- 266, 2007

International Conference on Computational Intelligence and

Security Workshops (CISW 2007), 2007

[6] James M. Rehg, Takeo Kanade, DigitEyes: Vision-Based Hand

Tracking for Human-Computer Interactioning, Proc. of the

IEEE Workshop on Motion of Non-Rigid and Articulated

Objects, Austin, Texas, November 1994, pages 16-22.

[7] Gary Bradski, Adrian Kaehler, Learning OpenCV, O’Reilly

Media, 2008.

[8] Asanterabi Malima, Erol Ozgur, and Mujdat Cetin, A Fast

Algorithm for Vision-Based Hand Gesture Recognition for

Robot Control

[9] J. Serra, Image Analysis and Mathematical Morphology, New

York: Academic Press, 1983.

[10] K. Homma and E.-I. Takenaka, “An image processing method

for feature extraction of space-occupying lesions,” journal of

Nuclear Medicine 26 (1985): 1472-1477.

[11] www.cs.cmu.edu/~cyberscout/publications/IROS99_GBC.pdf.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICIATE - 2017 Conference Proceedings

Volume 5, Issue 01

Special Issue - 2017

5

