

P.Hema

Assistant Professor,EEE

Jay Shriram Group Of Institutions

ABSTRACT

Bit stream compression is important in

reconfigurable system design since it reduces

the bit streams size and the memory

requirement. It also improves the

communication bandwidth and thereby

decreases the reconfiguration time. Existing

research in this field has explored two

directions: efficient compression with slow

decompression or fast decompression at the

cost of compression efficiency. This project

proposes a novel decode-aware compression

technique to improve both compression and

decompression efficiencies. The proposed

work combines golomb codes which is

efficient for both variable and fixed length

parameters with dictionary and bit mask

selection methods for improving compression

efficiency. To reduce the hardware overhead

during decompression, a smart placement of

compressed bitstreams which enables the

compressed variable-length coding bit streams

to be stored and buffered in the form of

multiple fixed length coding bit streams. So

that, the decompression hardware for variable-

length coding is capable of operating at the

speed closest to the best known field-

programmable gate array-based decoder for

fixed-length coding. The area and

configuration delay of the decompression

engine are reduced significantly.

I. INTRODUCTION

FIELD-PROGRAMMABLE GATE

ARRAYS (FPGAs) are widely used in

reconfigurable systems. Since the

configuration information for FPGA has to be

stored in internal or external memory as

bitstreams, the limited memory size, and

access bandwidth become the key factors in

determining the different functionalities that a

system can be configured and how quickly the

configuration can be performed. While it is

quite costly to employ memory with more

capacity and access bandwidth, bitstream

compression technique alleviates the memory

constraint by reducing the size of the

bitstreams. With compressed bitstreams, more

configuration information can be stored using

the same memory. The access delay is also

reduced, because less bits need to be

transferred through the memory interface. To

measure the efficiency of bitstream

compression, compression ratio (CR) is

widely used as a metric. It is defined as the

ratio between the compressed bitstream size

GOLOMB Compression Technique For FPGA Configuration

2009

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120795

(CS) and the original bitstream size (OS)

.Therefore, a smaller compression ratio

implies a better compression technique. There

are two major challenges in bitstream

compression: 1) how to compress the bitstream

as much as possible and 2) how to efficiently

decompress the bitstream without affecting the

reconfiguration time.

Our approach combines the

advantages of previous compression

techniques with good compression ratio and

those with fast decompression. This paper

makes three important contributions. First, it

performs smart placement of compressed

bitstreams to enable fast decompression of

variable-length coding. Next, it selects

bitmask-based compression parameters

suitable for bitstream compression. Finally, it

efficiently combines run lengthencoding and

bitmask-based compression to obtain better

compression and faster decompression.

II BLOCK DIAGRAM

Fig.1 Block Diagram

The figure 1 shows our decode-aware

bitstream compression framework. On the

compression side, FPGA configuration

bitstream is analyzed for selection of profitable

dictionary entries and bitmask patterns. Our

decode-aware placement algorithm is

employed to place the compressed bitstream in

the memory for efficient decompression.

During run-time, the compressed bitstream is

transmitted from the memory to the

decompression engine, and the original

configuration bitstream is produced by

Decompression. Since memory and

communication bus are designed in multiple of

bytes (8 bits), storing dictionaries or

transmitting data other than multiple of byte

size is not efficient. Thus, we restrict the

symbol length to be multiples of eight in our

current implementation. Since the dictionary

for bitstream compression is smaller compared

to the size of the bitstream itself, we use d=2^i

to fully utilize the bits for dictionary indexing,

where i is the number of indexing bits.

III DICTIONARY BASED APPROACH

Dictionary-based code compression

techniques provide compression efficiency as

well as fast decompression mechanism. The

basic idea is to take advantage of commonly

occurring instruction sequences by using a

dictionary. The repeating occurrences are

replaced with a codeword that points to the

index of the dictionary that contains the

pattern. The compressed program consists of

both codewords and uncompressed

instructions. Figure 3 shows an example of

dictionary based code compression using a

simple program binary and encoding format

shown in Figure 2. The binary consists of ten

8-bit patterns i.e., total 80 bits. The dictionary

has two 8-bit entries. The compressed program

requires 62 bits and the dictionary requires 16

2010

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120795

bits. In this case, the compression ratio (CR) is

97.5%

Fig.2 Format for Dictionary Based

Compression

Fig.3 Dictionary Based Compression

Example

IV BITMASK BASED COMPRESSSION

Bitmask-based compression is an

enhancement on the dictionary-based

compression scheme, which helps us to get

more matching patterns. In dictionary- based

compression, each vector is compressed only

if it completely matches with a dictionary

entry. Figure 4 shows an example of bitmask

based code compression using a simple

program binary and encoding format shown in

Figure 5.

The vectors that match directly are

compressed with 3 bits. The first bit represents

whether it is compressed (using 0) or not

(using 1). The second bit indicates whether it

is compressed using bitmask (using 0) or not

(using 1).The last bit indicates the dictionary

index.

Data that are compressed using

bitmask requires 7 bits. The first two bits, as

before, represent if the data is compressed, and

whether the data is compressed using

bitmasks. The next two bits indicate the

bitmask position and followed by two bits that

indicate the bitmask pattern.

The data which is different for more

than 1 bit is left uncompressed.

Fig.4 Bitmask Based Compression Example

Fig.5 Format for Bitmask Based

Compression

2011

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120795

V. GOLOMB CODING

In Golomb Coding, the group size, m,

defines the code structure. Thus, choosing the

m parameter decides variable length code

structure which will have direct impact on the

compression efficiency.

Once the parameter m is decided, a

table which maps the runs of zeros until the

code is ended with a one is created.

Determination of the run length is shown as in

Figure 6. A run length of multiples of m are

grouped into Ak and given the same prefix,

which is (k – 1) number of ones followed by a

zero. A tail is given for each members of the

group, which is the binary representation of

zero until (m – 1). The codeword is then

produced by combining the prefix and the tail.

An example of the table is in Figure 7.

Fig.6 Determination of Run-Length

Using Figure 7, binary strings can be

divided into subsets of binary strings and

replacing the subsets with the equivalent

codeword as shown in Figure 8.

Fig.7 Golomb Coding Example With

Parameter m=4

Fig.8 Golomb Coding Example With

Parameter m=4

VI MOTIVATION OF WORK

 In this section, we briefly analyze the

decompression hardware complexity of

common variable-length compression

techniques. This analysis forms the basis of

our approach. In the following discussion, we

use the term symbol to refer to a sequence of

uncompressed bits and code to refer to the

compression result (of a symbol) produced by

the compression algorithm.While compression

efficiency is straightforward and widely used

criteria to evaluate compression techniques,

the complexity of decompression hardware

determines whether an algorithm with

promising compression ratio can be applied to

commercial FPGAs. Interestingly, our study

shows that the complexity of the

decompression algorithm is not the only

determining factor of the hardware

complexity. When variable- length coding is

employed, the hardware complexity is also

determined by the complex buffering circuitry,

which is overlooked by previous bitstream

compression approaches.

Since each code has different length,

we have to use barrel shifter to align the input

buffer in each cycle. Theoretically, a barrel

shifter operating on a n-bit buffer needs

nlog(n) multiplexers (MUXes) organized into

log(n) layers. When implemented in modern

FPGAs (Xilinx Virtex II or Virtex 4), the

barrel shifter for an input buffer with typical

size of 32–64 bits consumes 200– 400 four-

2012

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120795

input lookup tables (LUTs), which is similar to

the total area of a typical bitmask or Huffman

decoder. Moreover, barrel shifter will increase

the latency remarkably by introducing several

layers of combinational logic in the critical

path. Therefore, the buffering circuitry is a

major bottleneck in a decompression engine

for variable-length coding both in terms of

area and performance.

VI ALGORITHM

Input: Input bitstream

Output: Compressed bitstream placed in

memory

Step 1: Divide input bitstream into symbol

sequence SL.

Step 2: Perform bitmask pattern selection.

Step 3: Perform dictionary selection.

Step 4: Compress symbol SL into code

sequence CL using bitmask and Golomb

coding.

Step 5: Perform placement of CL using

power two-streams.

VII CONCLUSION

 The existing compression algorithms

either provide good compression with slow

decompression or fast decompression at the

cost of compression efficiency. In this paper,

we proposed a decoding-aware compression

technique that tries to obtain both best possible

compression and fast decompression

performance. The proposed compression

technique analyzes the effect of parameters on

compression ratio and chooses the optimal

ones automatically. We also exploit golomb

encoding efficiently combined with bitmask-

based compression to further improve both

compression ratio and decompression

efficiency.

VIII REFERENCES

1. Xiaoke Qin, Member, IEEE, Chetan

Muthry, and Prabhat Mishra, Senior

Member, IEEE(March 2011)

“Decoding-Aware Compression of

FPGA Bitstreams”, IEEE transactions

on Very Large Scale Integration

(VLSI) systems, vol. 19, no. 3.

2. Chandra.A and

Chakrabarty.K,(March 2001) “System

on-a-chip test data compression and

decompression architectures based on

Golomb codes,” IEEE Trans

Computer-Aided Design, vol. 20,

pp.355-368.

3. Dandalis.A and

Prasanna.V.K,(December 2005)

“Configuration compression for

FPGA-based embedded systems,”

IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 13, no. 12, pp. 1394–

1398.

4. Hauck.S and Wilson.W.D,(March

1999) “Runlength compression

techniques for FPGA configurations,”

in Proc. IEEE Symp. Field-Program.

Custom Comput. , pp. 286–287.

5. Hauck.S, Li.Z, and Schwabe.E,(

August 1999) “Configuration

compression for the Xilinx XC6200

FPGA,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 18, no.

8, pp. 1107–1113.

2013

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120795

6. Koch.D, Beckhoff.C, and

Teich.J,(2007) “Bitstream

decompression for high speed FPGA

configuration from slow memories,”

in Proc. Int. Conf. Field-Program.

Technol., pp. 161–168.

7. Pan.H.J, Mitra.T, and

Wong.W.F,(December 2004)

“Configuration bitstream compression

for dynamically reconfigurable

FPGAs,” in Proc. Int. Conf. Comput.-

Aided Des., pp. 766–773.

8. Seong.S and Mishra.P,(April 2008)

“Bitmask-based code compression for

embedded systems,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits

Syst., vol. 27, no. 4, pp. 673–685.

9. Stefan.R and Cotofana.S ,(2008)

“Bitstream compression techniques

for Virtex 4 FPGAs,” in Proc. Int.

Conf. Field Program. Logic Appl.,

2014

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120795

