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Abstract--Three GPS antennas are mounted properly on a 

platform and differences of GPS signals measurements are 

collected simultaneously, the baselines vectors between antennas 

can be determined and the platform orientation defined by these 

vectors can be calculated. Thus, the prerequisite for attitude 

determination technique based on GPS is to calculate baselines 

between antennas to centimeter level of accuracy. For accurate 

attitude solutions to be attained, carrier phase double differences 

are used as main type of measurements. The use of carrier phase 

measurements leads to the problem of precise determination of 

the ambiguous integer number of cycles in the initial carrier 

phase (integer ambiguity). This integer ambiguity must be solved 

for the precise result. For this aims at defining the search space 

for the ambiguity candidates and identifying the correct 

candidate, mainly three sequential steps were involved 

(Hofmann-Wellenhof et al.2001). Platform orientation was 

obtained using Least Square Method, to resolve the three 

dimensional unknown Euler angles. 

 

Keywords—Gps; Attitude determination; Carrier Phase; 

Multiple Antenna; Least Square Method 

I.  INTRODUCTION  

The Global Positioning System (GPS) is a space-based 

satellite navigation system that provides location and time 

information in all weather conditions, anywhere on or near the 

Earth where there is an unobstructed line of sight to four or 

more GPS satellites. The satellite-based Global Positioning 

System (GPS) creates a new era for navigation, surveying and 

geodesy. The development of GPS multi-antenna systems, 

which integrate three or more GPS antennas into one system 

with a proper antenna configuration in a plane or in space, has 

been resulted another leap in GPS applications. The necessary 

parameters like transmitter and receiver, accurate position, 

attitude and velocity of the any platforms can be obtained by 

using GPS system. Besides that, GPS multi-antenna system 

has become a high-accurate approach for attitude 

determination (Cohen et al. 1994; Van Grass and Braasch 

1991). In comparison with the traditional inertial sensors, the 

GPS multi-antenna system provides attitude results without 

drift effects, and it has the advantages due to the cost-

effectiveness and the flexible installation. 

If three or more GNSS antennas properly mounted on a 

platform and differences of GNSS signals measurements are 

collected simultaneously, baselines vectors formed between 

antennas can be determined, and orientation of the platform 

defined by these vectors can be calculated. Thus, the 

prerequisite for the attitude determination technique based on 

GNSS systems is to calculate the baselines between the 

antennas. Accurate attitude solutions can be obtained using 

carrier phase double difference observables as the main type 

of measurements, including all independent combinations of 

antenna positions. Baselines between antennas must be 

determined in centimeter level of accuracy. The use of carrier 

phase measurements leads to the problem of determining 

precisely the ambiguous initial carrier phase integer number of 

cycles (integer ambiguity). The double-differenced carrier 

phase observation equation is an underdetermined equation 

and the ambiguities cannot be solved directly. Typically, the 

distance between the antennas is a few meters or less, and all 

spatially correlated errors between the antennas are almost 

eliminated in differencing (single and double) process, 

including orbital, ionospheric, and tropospheric errors. 

Therefore, main error sources affecting attitude determination 

to derive the true integer values of ambiguities are the 

multipath, receiver internal noise, and antenna phase center 

variation instantaneously. 

 

In GPS attitude determination, fast and reliable on-the-fly 

(OTF) ambiguity searching methodology is always expected. 

Most ambiguity resolution strategies borrow ambiguity 

searching algorithms from static or rapid kinematic 

positioning, such as the fast ambiguity search filter (FASF) 

(Chen and Lachapelle 1994), the least squares ambiguity 

search technique (LSAST)(Hatch 1989) and the fast ambiguity 

resolution approach (FARA) (Freiand Beutler 1990). Any of 

these ambiguity search techniques includes three main 

common steps (Hofmann-Wellenhof et.al 2001). The first step 

is to resolve the float ambiguities, namely to calculate the float 

values of ambiguities through a proper mathematical model. 

The second step is to generate integer candidates around the 

float values and choose the best one. The first two steps 

determine the center and the size of the search space. The final 

step is the ambiguity validation, namely to verify whether or 

not the best ambiguity candidate is correct one. With a closely 
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spaced antenna configuration, the inter-antenna distance in 

GPS attitude determination systems can be easily determined 

by conventional surveying methods and used either as an 

observable or an extra constraint in ambiguity resolution. 

Once ambiguities have been correctly determined and the 

antenna vector has been transformed from WGS-84 frame into 

the local level frame, attitude parameters can be derived from 

the rotation matrix using least squares estimation methods 

based on the known antenna coordinates both in the body and 

local level frames. 

II. OBSERVATION EQUATIONS 

GPS observation equations are the basis for the GPS data 

processing. The carrier phase measurements reflect the 

difference between the phase of the incoming signal from a 

GPS satellite and the generated signal in the receiver. A carrier 

phase measurement is occupied with four parts.           

 

 

           )()()()()( tetNttt ifoutput              (1) 

 
 

Where, 

 Φoutput represents the carrier phase measurements from the 

receiver, 

Φf  is the fractional part of the measured carrier phase,  

Φi  is the number of integer cycles accumulated from the first 

observation epoch to the current epoch, 

e is the error term, 

N is the integer phase ambiguity.  

 

According to (Leick 2004), N refers to the first epoch of 

observation and remains constant during the period of 

observation. During this period, the receiver accumulates the 

phase differences between arriving phases and internally 

generated receiver phases. The receiver, therefore, effectively 

generates an accumulated carrier phase observables that 

reflects the changes in distance to the satellite. The integer 

ambiguity should be resolved a priori and subtracted from the 

carrier phase measurements obtained from the receiver. As the 

integer ambiguity remains constant epoch by epoch, the time 

dependence can therefore be dropped. Therefore, the carrier 

phase observation equation can be obtained as, 
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Where, 

Li (subscript) indicates the corresponding signal, 

λ is the wavelength of the corresponding GPS signal, 

Φ is the phase measurement, 

ρ is the geometric distance from the GPS receiver's antenna 

phase center at the epoch of signal reception to the GPS 

satellite's antenna phase center at the epoch of signal 

transmission, 

I is the ionospheric delay, 

T is the tropospheric delay, 

S is the satellite orbit bias, 

c is the speed of light, 

t
s 
is the satellite clock bias in units of time, 

tr is the receiver clock bias in units of time, 

e is the thermal noise contained in the phase data, 

M is the multipath error, 

Φ and N are expressed in units of cycles and all terms except 

for clock biases are given in units of length. 

 

Some common errors can be cancelled or reduced by 

differencing the measurements between the satellites and the 

receivers by using the differencing carrier phase techniques. 

Two or more receivers are included in this mechanism as in 

figure (1) below 
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    Figure (1): An demonstration for differential positioning 

 

The carrier phase measurement of both antennas to a common 

satellite s1 using equation 2 we can get, 
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Where, 

 u1 and u2 indicate the user (antenna), 

 s1 indicate the satellite.  

The satellite clock error t
s1

 and orbits error S
s1 

are common 

errors in equation (3) so the resultant of equation (3) gives: 

 

1

21

1

2121

1

21

1

212

1

2
1

21

1

21

1

21

.

,,

s

uu

s

uuuu

s

uu

Li

s

uu

L

Li
Li

s

uuLi

s

uu

s

uuLi

MetcT

IN













      (4) 

1750

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041057

International Journal of Engineering Research & Technology (IJERT)



Where the operator Δ indicates the differencing, for example 

Δ ρ
1

21

s

uu   stands for Δ ρ
1

1

s

u  - Δ ρ
1

2

s

u  

 

If both antennas are located closely to each other on the 

ground plane, the atmospheric effects on the observation 

equations in (3) are approximately same, so that the 

differenced tropospheric error ΔT and ionospheric error ΔI 

might be neglected. 

Then equation (4) can be formulated as; 
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Equation (5) is referred as the “single-differential positioning. 

However, to remove the receiver clock error Δtu1-u2 we first 

apply the single-differential positioning to satellite s2; 
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In equation (5) and (6), the receiver clock error (Δtu1-u2) is a 

common error term and hence can be eliminated by further 

differencing both equations, so that we have: 
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where,   denotes a further difference between the “single-

differential” measurements associated to a common receiver. 

For eg. 
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u ). This procedure is called “double-differential 

positioning”. So far, the satellite clock error, satellite orbit 

error and receiver clock error have been eliminated. In case of 

short antenna baseline, the remaining ionospheric and 

tropospheric errors can also be neglected. For these reasons, 

the differential positioning leads to the accuracy improvement. 

However, a drawback of the differential positioning is that the 

thermal noise and multipath errors will be accumulated. 

              

III. ATTITUDE DETERMINATION 

After the ambiguities are resolved, the carrier phase 

measurement can be used for attitude determination. The 

antenna body application (ABF) is formed by the GPS 

antennas. The antennas are mounted on a rigid platform, i.e. 

the relative distances between the antennas remain constant. 

One antenna is chosen as the master antenna, and the other 

antennas are called slave antennas. Actually, three antennas 

are sufficient to determine the antenna body frame. The origin 

is chosen as the position of the phase center of antenna 1, 

namely the master antenna. 

 

A three-dimensional rotation can be decomposed into three 

individual rotations with each around a single axis. Euler 

angles represent the rotation angles with respect to three axes 

and usually comprise of yaw, pitch and roll angles. Note that 

in the right-handed frame, the Euler angles describe counter-

clockwise rotations when viewed from the end of the positive 

axes and clockwise rotation when viewed from the origin of 

the positive axes. Each rotation can be described by a 

Direction Cosine Matrix (DCM). A three-dimensional rotation 

can be obtained by multiplying the three DCMs into a specific 

order, yielding the combined rotation matrix. An example 

using the yaw-pitch-roll sequence is given below 
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This is the general mathematic model for attitude 

determination. Where LLF=Local Level Frame; y, p and r are 

short-form notation for yaw, pitch and roll angles, 

respectively; c and s denote the cosine and sine operators, 

respectively. In order to resolve the three dimensional 

unknown Euler angles using the nonlinear model given in 

equation (8), more than three baseline vectors are needed. 

Each master-slave antenna baseline provides three baseline 

vectors, and hence we need a minimum of two non-collinear 

slave antennas. Based on the linearization of the DCM around 

the proper attitude parameters y0, r0 and p0, we have the 

following model to construct the least-squares attitude 

estimation (Lu 1995) 
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In order to describe the matrix Ai for i=2, 3, …, n, we express 

the combined rotation matrix R in terms of row vectors, i.e. 

R=[r1 r2 r3]
T
, then the matrix Ai has the form: 
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From equation (9), R0 is the DCM at y0, r0 and p0; Δbi and Δli  

are the errors contained in the antenna body frame and the 

local level frame of the antenna i, respectively; I denotes the 

identity matrix and O the zero matrix. Based on this equation, 

the least-squares adjustment can be carried out. The correction 

values for the three Euler angles corresponding to a rotation 

matrix R0 are computed by; 
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Where the short-form notation Cov(·) denotes the error 

covariance matrix. The least-squares adjustment proceeds until 

the correction values converge to a certain threshold or the 

maximal iteration number is reached. 

 

IV. RESULTS 

A set of data obtained from a static experiment is provided to 

demonstrate the performance. The GPS measurements are 

acquired by using a NovAtel GPS simulator. The GPS 

simulator will generate the GPS RF signals according to the 

antenna position in ECEF frame specified by the user. The 

signals are then transferred to the GPS receiver and the 

measurements will be output. By setting 3 antenna reference 

points we can obtain an antenna frame composed of three 

distributed antennas, and we also know the true baselines. The 

observation session takes about 10 minutes with 1 Hz data 

rate. The result below is based on the carrier phase data with 

resolved phase ambiguities. 

 

 
 

Figure (2) Least Square Attitude Determination 

 

 

In the results, the X-axis shows the epochs and the Y-axis 

shows the estimated Euler angles in units of degrees. The title 

for each subplot also shows the mean value and the standard 

deviation of the results. Here Figure (2) and Figure (3) is 

obtained by Least Square Attitude Determination and Direct 

Attitude Determination. From the standard deviation (std) 

value, we can get the result that Least Square Attitude 

Determination is more efficient than Direct Computation 

Method. 

V. CONCLUSION 

In comparison with the traditional inertial sensors, the GPS 

multi-antenna system provides attitude results without drift 

effects, and it has the advantages due to the cost-effectiveness 

and the flexible installation. A successful ambiguity resolution 

of carrier phase measurements enables precise attitude 

estimation. Using the different observations for carrier phase 

measurement and using the least square method obtained 

attitude determination in GPS multi antenna system 

developing the accuracy of the estimated value of the baseline 

error from carrier phase data at centimeter level. The use of 

Least Square Attitude Determination is more efficient than 

Direct Computation Method, where Standard deviation (std) 

value obtained is lower in Least Square Attitude 

Determination than Direct Method as shown in Figure in 

result. 
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Figure (3) Direct Method 
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