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Abstract 
 

A very important task in a design process is how to 

make a mechanism which will satisfy desired 

characteristics of motion of a member, i.e. a 

mechanism in which one part will surely perform 

desired motion. There are three common requirements 

in kinematic synthesis of mechanisms: path generation, 

function generation and motion generation..The 

gradient descent (also known as steepest descent) 

optimisation algorithm has been used in the 

optimisation process. A computer programme based 

on this algorithm is implemented in MATLAB to 

obtainthe optimum dimension of four-bar 

linkage.All this is illustrated on an example of Path 

synthesis problem having 10 points and 19 variables. 

 

Keyword-optimal synthesis, four bar linkage, objective 

function,steepest descent optimization algorithm. 

 

1. Introduction 
There are various tools are available for the 

kinematic synthesis of a mechanism like Graphical 

approach, Matrix method approach, Complex 

number modelling but these approaches are valid 

for three to four precision points. So, it is essential 

to select as many as points on the given trajectory 

(path) to get the generated coupler curve very close 

to the desired coupler curve. Steepest descent 

approaches are applicable for many precision 

points so that we will get the exact desired coupler 

curve. Therefore this Approach is selected for path 

generation problem. Many techniques for the 

synthesis of linkages are invented in recent years. 

Most of these approaches are involved techniques 

and are mathematically complicated. Only few of 

them allow a closed from solution. Of these, 

optimization procedures attempting to minimize 

an objective function play an important role. A set 

of inequality constraints that limit the range of 

variation of parameters may be included in the 

calculation. The new values of linkage parameters 

are generated with each iteration step according to 

particular optimization scheme used. The closest 

achievable fit between the calculated points and  

 

 

desired points is sought. Even the desired points 

willnot exactly match but this is considered as 

acceptable result for most engineering tasks. Each 

optimization approach has as own advantages and 

disadvantages in term of convergence accuracy, 

reliability, complexity and speed. Some methods 

converge even to a minimum value of objective 

they may not be the best solution. Based on this 

points there is a lot of scope for application of new 

methods of optimization for four-bar synthesis 

problem  

Thispaper explains the basis path synthesis problem 

in terms of objective function to be minimized and 

constraints to be satisfied, describes the history and 

algorithm of  steepest descent optimization method 

adopted in present work which gives the 

methodology implemented in MATLAB for 

handling constraints and minimizing the objective 

function 

 

2. Coupler Point Coordinates 

In the problem of four-bar linkage synthesis there is 

some number of precision points to be traced by the 

coupler point P. To trace the coupler point, the 

dimension of the links (a, b, c, d, Lx, Ly) is to be 

determined along with the input crank angle θ2, so 

that the average error between these specified 

precision points (Pxdi, Pydi), (where i=1, 2,…N with 

N as number of precision points given) and the 

actual points to be traced by the coupler point P gets 

minimized. The objective or error function can be 

calculated when the actual traced points (Pxᵢ, Pyᵢ) is 

evaluated which is traced by the coupler point P with 

respect to the main coordinate from X,Y as shown in 

Fig.2.1.  
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Fig.4.1 Four-bar linkage with ABP as coupler link 

The position vector of the coupler point P 

reference frame Xᵣ-Yᵣ can be expressed as a 

vector equation:  

 (2.1) 

whichcan be represented in its components according 

to: 

Pxr= a cosθ2 +Lx cosθ3 +Ly (-sinθ3)       (2.2)          

Pyr= a sinθ2 +Lx sinθ3 +Ly cosθ3  (2.3) 

 

Here, for calculation the coupler point coordinates 

(Px, Py), we have to first compute the coupler link 

angle θ3 using the following vector loop equation for 

the four-bar linkage:  

  (2.4) 

This equation also can be expressed in its 

components with respect to relative coordinates: 

a cosθ2+ b cosθ3 -c cosθ4 -d (2.5) 

a sinθ2+ b sinθ3 -c sinθ4 =0                  

We can compute the angle θ3 for known values of θ2 

and eliminating θ4 so, the result will be  

 K1cos θ3 +K4 cosθ2 +K5 = cos (θ2-θ3)      (2.7) 

 

where 

 K1=d/a, K4=d/b and K5 =
c2−d2−a2−b2

2ab  
 (2.8) 

For this equation following two solutions are 

obtained:θ31 =

  2tan−1  
−E+ E2−4DF

2D
                           (2.9) 

θ32

= 2tan−1  
−E −  E2 − 4DF

2D
                           (2.10) 

where, 

D=cosθ2 -K1+K4cosθ2+K5, E= -2 sinθ2 

andF=K1+(K4-1)cosθ2+K5 (2.11) 

 

These solutions may be (i) real and equal (ii) real 

and unequal and (iii) complex conjugates. If the 

discriminates E
2
-4DF is negative, then solution is 

complex conjugate, which simply means that the 

link lengths chosen are not capable of connection for 

the chosen value of the input angle θ2. This can occur 

either when the link lengths are completely incapable 

of connection in any position. Except this there are 

always two values of θ3 corresponding to any one 

value of θ2. These are called, (i) crossed 

configuration (plus solution) and (ii) Open 

configuration of the linkage (minus solution) and 

also known as the two circuits of the linkage. The 

other methods such as Newton-Raphson solution 

technique can also be used to get approximate 

solution for θ3. The positionof coupler P, with respect 

to world coordinate system XOY is finally defined by: 

Px= x0+ Pxr cosθ0 - Pyr sinθ0   (2.12) 

Py= y0+ Pxr sinθ0 + Pyr cosθ0  (2.13) 

3. Position Errors as objective Function 

The objective function is usually used to 

determine the optimal link lengths and the coupler 

link geometry. In path synthesis problems, this part 

is the sum squares which computes the position error 

of the distance between each calculated precision 

point (Pxᵢ, Pyᵢ) and the desired points (Pxdᵢ,Pydᵢ) 

which are the target points indicated by the designer. 

This is written as:  

 

f X =    Pxdᵢ − Pxᵢ  2

𝑁

i=1

+  Pydᵢ − Pyᵢ 2  (2.14) 

where X is set of variables to be obtained by 

minimizing this function. Some authors have also 

considered  additional  objective  functions  such  

as  the  deviation  of  minimum  and maximum 

transmission angles μmin and μmax from 90
o
, for all the 

set of initial solutions considered.  

4. The constraints of the linkages 

The synthesis of the four-bar mechanism greatly 

depends upon the choice of the objective function 

and the equality or the inequality constraints 

which is imposed on the solution to get the 

optimal dimensions. Generally the objective 

function is minimized under certain conditions so 

that the solution is satisfied by a set of the given 

constraints. The bounds for variables considered 

in the analysis are treated as 20 one set of 

constraints, while the other constraints include: 

Grashof condition, input link order constraint and the 

transmission angle constraint.  

I)  Grashof criterion  

For Grashof criterion, it is required that one of the 

links of mechanism, should revolve fully by 360
o 

angle. There are three possible Grashof linkages for 

a four-bar crank chain: (a) Two crank-rocker 

mechanisms (adjacent link to shortest is fixed) (b) 

One double crank mechanism (shortest link is 

fixed) and (c) One double rocker mechanism 

(opposite to shortest link is fixed). Of all these, in 
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the present task, only crank-rocker mechanism 

configuration is considered. Here, the input link of 

the four-bar mechanism to be crank. Grashof 

criterion states that the sum (Ls+Ll) of the shortest 

and the longest links must be lesser than the sum 

(La+Lb) of the rest two links. That is:  

              (Ls+Ll ≤ La+Lb)  

(or)   2(Ls+Ll)  ≤  a+b+c+d 

(or)    𝑔1 = 2(Ls + Ll) / (a + b + c + d) – 1 ≤ 0   (2.15) 

 

In the present work violation is defined as follows:  

Grashof‟s = 1 if 𝑔1> 0 

Or =0 if  𝑔1 ≤ 0 

 

II) Input link angle order Constraint  

Usually a large combination of the mechanisms 

exists that generates the coupler curves passing 

through the desired points, but those solutions may 

not satisfy the desired order. To ensure that the 

final solution honors the desired order, testing for 

any order violation is imposed. This is achieved by 

requiring that the direction of rotation of the crank 

as defined by the sign of its angular increments 

∆θ2
i
=(θ2

i
-θ2

i-1
), between the two positions i and i-1, 

where i=3,4,5….,N, have same direction as that 

between the 1
st
 and the 2

nd
 positions (θ2

2
- θ2

1
). That 

checks the following: 

 

Is sign (∆θ2
i
) = sign (θ2

1
-θ2

1
) for all i=3 to N?       (2.16) 

where,     sign(Z)=1 if Z ≥ 0 

= -1 if Z<0                             (2.16a)If this condition is 

not satisfied the solution is rejected.  

III) Transmission Angle Constraint  

For  a  crank-rocker  mechanism  generally  the  

best  results  the  designers  recognize  when  the 

transmission angle is close to 90 degree as much 

as possible during entire rotation of the crank. 

Alternatively, the transmission angle during entire 

rotation of crank should lie between the minimum 

and maximum values. This can be written as one 

of the constraints as follows. First of all, the 

expressions for maximum and minimum 

transmission angles for crank-rocker linkage are 

defined. 

 

μmax= 2cos−1  
b2  −(d+a)2+c2

2bc
   

μmin=2cos−1  
b2  −(d−a)2+c2

2bc
                             (2.17) 

 

The actual value of transmission angle at any 

crankθ2 
𝑖

angle is given by:         

μmax = 2cos−1  
b2  −a2−d2+c2+ 2ad  cos θ2 

𝑖

2bc
 (2.18) 

The condition to be satisfied is:μmin μ μmax(2.19) 

The constraint given by equations (2.15), (2.16) 

and (2.19) are handled by penalty method. That is 

the  non-dimensional  constraint  deviation  is  

directly  added  to  the  objective  function  for 

minimization. For example, constraint eq.(2.19) if 

not satisfied, the penalty term is given as follows:  

𝑇𝑟𝑎𝑛𝑠 =   1 − 𝑇𝑟𝑎𝑛𝑠min)(μ − μmin  
2

𝑛

𝑖=0

+  1 − 𝑇𝑟𝑎𝑛𝑠max)(μ − μmax  
2 

Where, 

Transmin = sign (b
2
+c

2
-(d-a)

2
-2bc cosμmin) 

Transmax =sign (2bc cosμmax -b
2
+c

2
(a+d)

2
) 

Thus the solution seeks to obtain a feasible set of 

optimum values.                        

 

3)   Variable Bounds  

All variables considered in the design vector 

should be defined within pre specified minimum 

and maximum values. Often, this depends on the type 

of problem. For example, if we have 19 variables in a 

10 point optimization problem, all the variables 

may have different values of minimum and 

maximum values. Generally, in non-conventional 

optimization techniques starting with set of initial 

vectors, this constraint is handled at the beginning 

itself, while defining the random variable values. 

That is we use the following simple generation rule:  

X=Xmin +rand (Xmax-Xmin) 

Where, rand is a random number generator between 

0 and 1. 

5. OVERALL OPTIMIZATION PROBLEM 

The objective function is the sum of the error 

function and the penalties assessed to violation the 

constraints as follows:  

F (k) = f(X) + W1 × Grashof + W2 × Tran , whereas ,   whereas  

W1 is the weighting factor of the Grashof‟s 

criteria anW2  

is the weighting factor of the Transmission 

angle constraints .these additional terms acts as 

scaling factors to fix the order of magnitude of the 

different variables present in the problem or the 

objective function. 
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6. STEEPEST DESCENT METHOD 

The method of steepest descent is the simplest of the 

gradient methods. Imagine that there‟s a function 

F(x), which can be defined and differentiable 

within a given boundary, so the direction it decreases 

the fastest would be the negative gradient of F(x). 

To find the local minimum of F(x),  The  Method  

of  The  Steepest  Descent  is employed, where it 

uses a zigzag like path from  an  arbitrary  point 

X0and  gradually  slide  down  the  gradient,  until  

it converges to  the actual point ofminimum. 

 

FIG. 4.1 The Method of Steepest Descent finds the local 

minimum through iterations, as the figure shows, it starts with 

an arbitrary point x0  and taking small steps toward the 
direction of Gradient since it is the direction of fastest 

changesand stops at the minimum. 

It is not hard to see why the method of steepest descent 

is so popular among many mathematicians:  it is 

very simple, easy to use, and each repetition is fast. 

But the biggest advantage of this method lies in the 

fact that it is guaranteed to find the minimum through 

numerous times of iterations as long as it exists. 

However, this method also has some big flaws: If 

it is used on a badly scaled system, it will end up 

going through an infinite number of iterations 

before locating the minimum, and since each of 

steps taken during iterations are extremely small, 

thus the convergence speed is pretty slow, and this 

process can literally take forever. Although a larger 

step size will increase the convergence speed, but it 

could also result in an estimate with large error. 

I)  Algorithm 

The algorithm is initialized with a guess x1, a 

maximum iteration count Nmax, a gradient norm 

tolerance ϵg  that is used to determine whether the 

algorithm has arrived at a critical point, and a step 

tolerance ϵx to determine whether significant progress is 

being made. It proceeds as follows.  

1       For, k = 1, 2. . . Nmax:  

2x
k+1

 ← xk – αk∇f(x
k
) 

3.        If ||∇f (x
 k+1

) || < ϵg then return "Converged on 

critical point"123 

4.        If ||xk − x
 k+1

|| < ϵx then return "Converged on 

an x value" 

5.        If f (x
 k+1

) > f (x
k
) then return "Diverging" 

6.      Return "Maximum number of iterations 

reached"  

The variable αk is known as the step size, and should 

be chosen to maintain a balance between convergence 

speed and avoiding divergence. Note that αkmay depend 

on the step k. Note that the steepest decent direction at 

each iteration is orthogonal to previous one. Therefore 

the method zigzags in the design space and is rather 

inefficient. The algorithm is guaranteed to converge, but 

it may take an infinite number of iterations. The rate of 

converge is linear. Usually, a substantial decrease is 

observed in the few iteration, but the method is very 

slow. Where, 

x
k
, x

k+1    
= Values of variable in k and k+1 iteration  

f(x)        =  Objective function to be minimized  

∇f(x) = Gradient of objective function   

αk        =  The size of the step in direction of travel 

 

II) FLOW CHART OF STEEPEST DESCENT 

METHOD: 

 

 

 
 

FIG 5.3 Flow chart of steepest descent method. 
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7. RESULT AND DISCUSSION 

 
7.1) Path synthesis problem having 10 points and 

19 variables 

Ten Points Path Generation and 19 design variables:  

Design variables are:  

X=[a,b,c,d,ly,lx,,𝜃2
3 ,𝜃2

4,𝜃2
5,𝜃2

6,𝜃2
7,𝜃2

8,𝜃2
9,𝜃2

10 , θ0,

𝑙yo, lxo] 

Target Points: 𝐶𝑑
𝑖 = 

[(20,10),(17.66,15.142),(11.736,17.878),(5,16.928), 

(0.60307,12.736),(0.60307,7.2638),  

(5, 3.0718),(11.736,2.1215),(17.66,4.8577),(20,10)]  

 

Limits of the variable:  

 

a, b, c, d,   ϵ [5,60]; 

 

lyo,lxo, ly, lx,   ϵ [-60,60];  

 

𝜃2
1,𝜃2

2 ,𝜃2
3,𝜃2

4,𝜃2
5,𝜃2

6 … ,𝜃2
10 , θ0ϵ [0, 2ᴨ];  

 

The synthesized geometric parameters and the 

corresponding values of the precision points (Pxd, 

Pyd) and  the  traced points by the coupler point 

(Px,Py) and the difference between them are 

shown in table (7.1) and table (7.2) respectively 

Although the constraint of the sequence of the input 

angles during the evolution is ignored in this 

case. The accuracy of the solution in case  has 

been remarkably improved using the present 

method.fig (7.1) shows the convergence of steepest 

descent algorithm. Fig 7.2 shows ten target points 

and the coupler curve obtained using the steepest 

descent search method. 

 

7.2) Optimized values for the ten target point’s 

problem 

 

a b c d lx ly 𝜽𝟐
𝟏 𝜽𝟐

𝟐 𝜽𝟐
𝟑 𝜽𝟐

𝟒 

65.

492

1 

78.

616

1 

65.

699

9 

10.

174

8 

36.

996

1 

46.

80

83 

4.3

04

9 

4.7

14

5 

1.

05

63 

1.

70

4 

 

𝜽𝟐
𝟓 𝜽𝟐

𝟔 𝜽𝟐
𝟕 𝜽𝟐

𝟖 𝜽𝟐
𝟗 𝜽𝟐

𝟏𝟎 𝜽𝟎 lx0 ly0 

2.2

251 

2.6

147 

3.0

282 

3.4

990 

3.9

342 

4.3

049 

1.2

727 

9.8

114 

7.9

970 

 

Table 7.1 Optimized values for the ten target point‟s problem 

 

7.3)  Actual points which is traced by the coupler 

link and the precision points 

 

 

Table 7.2 Actual points which is traced by the coupler link and the 

precision points 

7.4)  Multiple solution of coupler curve 

 

 

Fig (7.1)multiple solution of coupler curve 

7.5) Ten target points and the coupler curve 

obtained 
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Fig 7.2 (Ten target points and the coupler curve obtained). 

 

 

7.6) The Matlab program shows the final output 

as final minimize error for 10 points and 21 

variables 

 

X = 

 

Columns 1 through 16 

 

69.7541   83.4937   57.7889   12.8368   29.0996   

49.9909   11.0996   10.4460   -0.5152    3.7542    

6.7239    7.8453    8.1098    8.7228   10.1396   

11.0996 

 

Columns 17 through 19 

 

34.4372    3.8311    7.9678 

 

 

f =4.0008e+003 

 

msg 

--------------------------------- 

X = 

 

 Columns 1 through 16 

 

 65.9145   79.0994   64.9069   10.4386   36.2136   

47.1237    4.9782    5.2825    0.9006    1.9093    

2.6710    3.1331    3.5318    4.0167    4.5492    4.9782 

 

Columns 17 through 19 

 

4.5593    9.2188    7.9941 

 

f =3.3802e+003 

 

msg 

------------------------------- 

X = 

 

Columns 1 through 16 

 

65.6375   78.7892   65.3948   10.2563   36.7092   

46.9506    4.1708    4.5727    0.9279    1.5803    

2.1124    2.5205    2.9677    3.4441    3.8369    4.1708 

Columns 17 through 19 

 

0.4439    9.6930    7.9628 

 

f = 

 

794.5327 

 

msg = 

--------------------------------- 

X = 

Columns 1 through 16 

65.6375   78.7892   65.3948   10.2563   36.7092   

46.9506    4.1708    4.5727    0.9279    1.5803    

2.1124    2.5205    2.9677    3.4441    3.8369    4.1708 

 

Columns 17 through 19 

 

0.4439    9.6930    7.9628 

 

f =794.5327 

 

msg 

 

--------------------------------- 

 

Solver stopped prematurely. 

 

fminunc stopped because it exceeded the function 

evaluation limit, 

options.MaxFunEvals = 1900 (the default value). 

 

 

x = 
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Columns 1 through 16 

 

65.4921   78.6161   65.6899   10.1748   36.9961   

46.8083    4.3049    4.7145    1.0563    1.7064    

2.2251    2.6147    3.0282    3.4990    3.9342    4.3049 

 

Columns 17 through 19 

 

1.2727    9.8114    7.9970 

 

 

fval =13.1193 

 

mymsg = 

 

My final minimised error 

 

final error = 13.1193 

 

8. Conclusion 
In this paper we have consider a crank rocker 

mechanism of four-bar linkage. The objective 

function namely path error varies with respect to 

the number of precision points specified. The two 

different cases were considered. It is found that in 

each case the computational time for convergence 

of 10,000 cycles changes. In some examples even 

the constraint violation is maintained, the 

minimum value of the objective function is 

found to be close to the published results 

available in the literature by other methods. In 

each case the convergence of multiple iteration 

graph, coupler curves & tables of optimum 

dimensions and final coupler point coordinate were 

reported.  

 

9. Scope of Future work 
Even this work has concentrated on path synthesis 

part with some important constraints, some more 

constraints like mechanical advantage of the 

linkage, and flexibility effects can be also 

considered to get the accuracy. Also as in hybrid 

synthesis approach, the same linkage may be 

adopted both for path synthesis applications as well 

as motion synthesis applications. The objective 

function should be modified so as to get a different 

optimum link dimensions. Finally fabrication of the 

proto-type of this linkage may be done to know the 

difference between theoretically obtained coupler 

coordinates and actual values achieved.  

These approaches are very useful for the 

kinematician those who are working in the field of 

mechanism synthesis, robotics, assembly line, 

automation material handling and conveyors. 
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