Graphoidal Covering Number Of Product Graphs

T. Gayathri

Department of Mathematics, Sri Manakula Vinayagar Engineering College, Puducherry605 107, India

Abstract

A Graphoidal cover of a graph G is a collection ψ of paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$. Also, if every member in graphoidal cover is an open path then it is called an acyclic graphoidal cover. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by $\eta_{a}(G)$ or η_{a}. Here we find minimum graphoidal covering number and minimum acyclic graphoidal covering number of Cartesian product, weak product and strong product of some graphs.

1. Introduction

A Graph is a pair $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ where V is the set of vertices and E is the set of edges. Here we consider only nontrivial, finite, connected and simple Graphs. $|V(G)|=p$ and $|E(G)|=q$.[3]

The concept of graphoidal cover was introduced by B.D Acharaya and E. Sampathkumar [1].

Definition 1.1 [1] - A graphoidal cover of a graph G is called a collection ψ of (not necessarily open) paths in G satisfying the following conditions:
(i) Every path in ψ has at least two vertices.

S. Meena
Department of Mathematics,Government Arts and Science College, Chidambaram-608 102, India

(ii) Every vertex of G is an internal vertex of at most one path in ψ.
(iii) Every edge of G is in exactly one path in ψ

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$.

Definition 1.2 [2] — A graphoidal cover ψ of a graph G is called an acyclic graphoidal cover if every member of ψ is an open path. The minimum cardinality of an acyclic graphoidal cover of G is called the acyclic graphoidal covering number of G and is denoted by $\eta_{a}(G)$ or η_{a}.

Definition 1.3 [6] — A graphoidal cover ψ of a graph G is called an induced acyclic graphoidal cover if every member of ψ is an induced path. The minimum cardinality of an induced acyclic graphoidal cover of G is called the induced acyclic graphoidal covering number of G and is denoted by $\eta_{i a}(G)$ or $\eta_{i a}$.

Definition 1.4 [1] — Let ψ be a collection of internally edge disjoint paths in G. A vertex of G is said to be an internal vertex of ψ if it is an internal vertex of some path in ψ, otherwise it is called an external vertex of ψ.

Definition 1.5[7] - For two graphs G and H, their Cartesian product $G \times H$ has vertex set $V(G) \times V(H)$ in which $\left(g_{1}, h_{1}\right)$ is joined $\left(g_{2}, h_{2}\right)$
iff $g_{1}=g_{2}$ and $h_{1} h_{2} \varepsilon E(H)$ or $h_{1}=h_{2}$ and $g_{1} g_{2} \varepsilon E(G)$.

Definition 1.6[7] - For two graphs G and H, their Weak product $G \circ H$ has vertex set $V(G) \times V(H)$ in which $\left(g_{1}, h_{1}\right)$ is joined $\left(g_{2}, h_{2}\right)$ iff $g_{1} g_{2} \varepsilon E(G)$ and $h_{1} h_{2} \varepsilon E(H)$.

Definition 1.7[7]— For two graphs G and H , their strong product $G \otimes H$ has vertex set $V(G) \times V(H)$ and edge set is $E(G \times H) \cup E(G \circ H)$.

Theorem 1.8 [1] — For any graphoidal cover ψ of G , let t_{ψ} denote the number of exterior vertices of ψ.Let $\mathrm{t}=\min t_{\psi}$ where the minimum is taken over all graphoidal covers of G. Then $\eta=q-p+t$.

Corollary 1.9 [1] - For any graph G, $\eta \geq q-p$. Moreover the following are equivalent
(i) $\eta=q-p$
(ii) There exists a graphoidal cover without exterior vertices.
(iii) There exists a set of internally disjoint and edge disjoint paths without exterior vertices.

Theorem 1.10[1] - For any graph G, $\delta \geq 3$, $\eta=q-p$.

2. Main Results

Theorem 2.1[4]— For $p_{m} \times p_{n}$, the acyclic graphoidal covering number is $\eta_{a}=q-p$.

$$
\text { Proof: Let } \mathrm{p}=\mathrm{mn} \text { and } \mathrm{q}=\mathrm{m}(\mathrm{n}-1)+\mathrm{n}(\mathrm{~m}-1)
$$

The acyclic graphoidal cover of $p_{m} \times p_{n}$ is as follows:

$$
\begin{aligned}
& P_{1}=g_{1} h_{2}, g_{1} h_{1}, g_{2} h_{1}, g_{3} h_{1}, \ldots, g_{m} h_{1}, g_{m} h_{2} \\
& P_{2}=g_{1} h_{3}, g_{1} h_{2}, g_{2} h_{2}, g_{3} h_{2}, \ldots, g_{m} h_{2}, g_{m} h_{3} \\
& P_{3}=g_{1} h_{4}, g_{1} h_{3}, g_{2} h_{3}, g_{3} h_{3}, \ldots, g_{m} h_{3}, g_{m} h_{4}
\end{aligned}
$$

$$
\begin{gathered}
\vdots \\
P_{n-1}=g_{2} h_{n}, g_{1} h_{n}, g_{2} h_{n-1}, g_{3} h_{n-1}, \ldots, g_{m} h_{n-1}, g_{m} h_{n} \\
P_{n}=g_{2} h_{n-1}, g_{2} h_{n}, g_{3} h_{n}, g_{3} h_{1}, \ldots, g_{m-1} h_{n}, g_{m-1} h_{n-1} \\
P_{n+1}=\text { The remaining edges }
\end{gathered}
$$

From above we see that all the vertices of $p_{m} \times p_{n}$ are internal vertices.

Therefore $\quad \eta_{a}=q-p$
Theorem 2.2[5] - For $p_{m} \circ p_{n}$,the acyclic graphoidal covering number is $\eta_{a}=q-p+6$

Proof: Case (i): m is even

$$
P_{1}=g_{1} h_{1}, g_{2} h_{2}, g_{3} h_{1}, g_{4} h_{2}, \ldots, g_{m-1} h_{1}, g_{m} h_{2}, g_{m-1} h_{3}
$$

$P_{2}=g_{2} h_{1}, g_{1} h_{2}, g_{2} h_{3}, g_{3} h_{2}, g_{4} h_{3}, \ldots, g_{m-1} h_{2}, g_{m} h_{3}, g_{m-1} h_{4}$
$P_{3}=g_{2} h_{2}, g_{1} h_{3}, g_{2} h_{4}, g_{3} h_{3}, g_{4} h_{4}, \ldots, g_{m-1} h_{3}, g_{m} h_{4}, g_{m-1} h_{5}$
\vdots

$$
P_{n-1}=g_{2} h_{n-2}, g_{1} h_{n-1}, g_{2} h_{n}, g_{3} h_{n-1}, \ldots, g_{m-1} h_{n-1}, g_{m} h_{n}
$$

$$
L P_{1}=g_{3} h_{2}, g_{4} h_{1}, g_{5} h_{2}
$$

$$
L P_{2}=g_{5} h_{2}, g_{6} h_{1}, g_{7} h_{2}
$$

$$
\vdots
$$

$$
\begin{aligned}
& L P_{\frac{(m-3)-1}{}}^{2}=g_{m-3} h_{2}, g_{m-2} h_{1}, g_{m-1} h_{2} \\
& R P_{1}=g_{2} h_{n-1}, g_{3} h_{n}, g_{4} h_{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& R P_{2}=g_{4} h_{n-1}, g_{5} h_{n}, g_{6} h_{n-1} \\
& \quad \vdots \\
& \quad R P_{\frac{(m-3)-1}{2}}=g_{m-2} h_{n-1}, g_{m-3} h_{n}, g_{m-4} h_{n-1} \\
& S=\text { The remaining edges }
\end{aligned}
$$

From above we see that all the vertices of $p_{m} \circ p_{n}$ are internal vertices expect $g_{1} h_{1}, g_{2} h_{1}, g_{n} h_{n,} g_{1} h_{n}, g_{m-1} h_{n}, g_{m} h_{n}$.

Therefore $\quad \eta_{a}=q-p+6$
Case (ii): m is odd.

$$
P_{1}=g_{1} h_{1}, g_{2} h_{2}, g_{3} h_{1}, g_{4} h_{2}, \ldots, g_{m-1} h_{2}, g_{m} h_{1}
$$

$$
R P_{\frac{(m-4)+1}{2}}=g_{m-1} h_{n-1}, g_{m-2} h_{n}, g_{m-3} h_{n-1}
$$

$S=$ The remaining edges
From above we see that all the vertices of $p_{m} \circ p_{n}$ are internal vertices expect $g_{1} h_{1}, g_{2} h_{1}, g_{m-1} h_{1}, g_{m} h_{1}, g_{1} h_{n}, g_{m} h_{n}$.

Therefore $\quad \eta_{a}=q-p+6$
Theorem 2.3- For $p_{m} \otimes p_{n}$, the acyclic graphoidal covering number is $\eta_{a}=2 q-2 p+6$

Theorem 2.4- For $C_{m} \times p_{n}$, the acyclic graphoidal covering number is $\eta_{a}=q-p$

Proof:

follows: \vdots $P_{n-1}=g_{2} h_{n}, g_{1} h_{n}, g_{2} h_{n-1}, g_{3} h_{n-1}, \ldots, g_{m} h_{n-1}, g_{m} h_{n}$ $P_{n}=g_{2} h_{n-1}, g_{2} h_{n}, g_{3} h_{n}, g_{3} h_{1}, \ldots, g_{m-1} h_{n}, g_{m-1} h_{n-1}$ $P_{n+1}=$ The remaining edges

From above we see that all the vertices of $p_{m} \times p_{n}$ are internal vertices.

Therefore $\quad \eta_{a}=q-p$

$$
P_{n+1}=\text { The remaining edges }
$$

$$
P_{2}=g_{2} h_{1}, g_{1} h_{2}, g_{2} h_{3}, g_{3} h_{2}, g_{4} h_{3}, \ldots, g_{m-1} h_{3}, g_{m} h_{2}, g_{m-1} h_{\text {The acyclic graphoidal cover of } c_{m} \times p_{n} \text { is as }}
$$

$$
P_{3}=g_{2} h_{2}, g_{1} h_{3}, g_{2} h_{4}, g_{3} h_{3}, g_{4} h_{4}, g_{5} h_{3}, \ldots, g_{m-1} h_{4}, g_{m} h_{3}, g_{P_{1}-1}^{=} h_{1} h_{2}, g_{1} h_{1}, g_{2} h_{1}, g_{3} h_{1}, \ldots, g_{m} h_{1}, g_{m} h_{2}
$$

$$
\vdots \quad P_{2}=g_{1} h_{3}, g_{1} h_{2}, g_{2} h_{2}, g_{3} h_{2}, \ldots, g_{m} h_{2}, g_{m} h_{3}
$$

$$
P_{n-1}=g_{2} h_{n-2}, g_{1} h_{n-1}, g_{2} h_{n}, g_{3} h_{n-1}, g_{4} h_{n} \ldots, g_{m-1} h_{n-1}, g_{m} h_{3}=1 g_{1}^{g} h_{m_{4}-1} h_{\uparrow} h_{3} 2 g_{2} h_{3}, g_{3} h_{3}, \ldots, g_{m} h_{3}, g_{m} h_{4}
$$

$$
L P_{1}=g_{3} h_{2}, g_{4} h_{1}, g_{5} h_{2}
$$

$$
L P_{2}=g_{5} h_{2}, g_{6} h_{1}, g_{7} h_{2}
$$

$$
\vdots
$$

$$
L P_{\frac{(m-4)-1}{2}}=g_{m-2} h_{2}, g_{m-3} h_{1}, g_{m-4} h_{2}
$$

$$
R P_{1}=g_{2} h_{n-1}, g_{3} h_{n}, g_{4} h_{n-1}
$$

$$
R P_{2}=g_{4} h_{n-1}, g_{5} h_{n}, g_{6} h_{n-1}
$$

From above we see that all the vertices of $p_{m} \times p_{n}$ are internal vertices.

Therefore $\quad \eta_{a}=q-p$

Theorem 2.5[6]- For $p_{m} \times p_{n}$, the induced acyclic graphoidal covering number is $\eta_{i a}=q-p$.

$$
\text { Proof: Let } \mathrm{p}=\mathrm{mn} \text { and } \mathrm{q}=\mathrm{m}(\mathrm{n}-1)+\mathrm{n}(\mathrm{~m}-1)
$$

The acyclic graphoidal cover of $p_{m} \times p_{n}$ is as follows:

$$
\begin{aligned}
P_{1}= & g_{1} h_{2}, g_{1} h_{1}, g_{2} h_{1}, g_{3} h_{1}, \ldots, g_{m} h_{1} \\
P_{2}= & g_{1} h_{3}, g_{1} h_{2}, g_{2} h_{2}, g_{3} h_{2}, \ldots, g_{m} h_{2} \\
P_{3}= & g_{1} h_{4}, g_{1} h_{3}, g_{2} h_{3}, g_{3} h_{3}, \ldots, g_{m} h_{3} \\
& \vdots \\
P_{n-1} & =g_{1} h_{n}, g_{1} h_{n-1}, g_{2} h_{n-1}, g_{3} h_{n-1}, \ldots, g_{m} h_{n-1}
\end{aligned}
$$

$P_{n}=g_{m} h_{1}, g_{m} h_{2}, g_{m} h_{3}, \ldots, g_{m} h_{n}, g_{m-1} h_{n}, \ldots, g_{1} h_{n}$
$\mathrm{S}=$ The remaining edges not covered by $P_{1}, P_{2}, P_{3}, \ldots, P_{n-1}, P_{n}$

From above we see that all the vertices of $p_{m} \times p_{n}$ are internal vertices expect $g_{m} h_{1}$ and $g_{1} h_{n}(\mathrm{t}=2)$

Therefore $\quad \eta_{i a}=q-p+2$

References

[1] B. D. Acharya and E.Sampathkumar, "Graphoidal covers and graphoidal covering number of a graph", Indian J. Pure. Appl. Math., No.10, 18 (1987) 882-890.
[2] S. Arumugam, E.Sampathkumar, "Graphoidal covers of a graph: a creative review,In: proc.National Workshop on Graph Theoryand its applications", Manonmaniam Sundaranar University, Tirunelveli,Tata McGrawHill,New Delhi(1997),1-28.
[3] F. Harary, "Graph Theory", Addison-Wesley, Reading, MA (1969).
[4] C.Pakkiam, S. Arumugam, "On graphoidal covering number of unicyclic graphs", Indian J. Pure Appl. Math., No.2, 23(1992), 141-143.
[5] C.Pakkiam, S. Arumugam, "On graphoidal covering number of a graph", Indian J. Pure Appl.Math., 20(4), (1989), 330-333.
[6] K. Ratan Singh and P. K. Das, "InducedAcyclic Graphoidal Covers in a Graph", Int. J. of Comput. Math. Sci., 4:7 (2010).
[7] Skiena, S. "Products of Graphs." §4.1.4 in Implementing Discrete Mathematics: Combinatorics and Graph theory with Mathematica. Reading, MA: Addison-Wesley, (1990),pp. 133-135.

