
H264/AVC Video Stream Parser For Baseline

Profile

Vinita Malu

Dept.VLSI & EMBEDDED SYSTEM

 Ganpat University

Mehsana, INDIA

Abstract—H264/AVC has been

a

popular technology for video

compression due to its high coding efficiency. The H264 bit

stream contains the encoded information such as motion vector,

coded block pattern (CBP), residual data, macroblock types

which can directly use in many algorithms like motion detection

and object detection and tracking. This compressed domain

algorithms use the

encoded information

which shows

fast

computation in real time.

This paper presents entropy level decoding of H264 baseline

profile video stream. Partial decoding is an efficient way to

improve the performance of many video applications.

In this

paper the time taken by partial

decoding is compared with whole

decoding process.

The time taken by partial

decoding is very less

compare

the decoding process.

Keywords—H264/AVC, Video bit stream, Network

abstraction layer (NAL) Sequence parameter set (SPS), Picture

parameter set (PPS), Macroblock

, CODEC, Context Adaptive

variable length coding (CAVLC).

I.

INTRODUCTION

The recent technology for video and computer vision has

evolved more intelligence due to video analytics. Video

analytics includes analyzing video streams and extracting

information like

background object motion,

scene situation

and so on. The object information illustrated above can be

used in surveillance or interactive broadcasting services. There

are

two

approaches to provide intelligence to video content:

pixel domain approach

and the compressed domain approach.

Pixel domain approach requires additional computation to

decode the video stream. As an effective alternative of this

problem is compressed domain approach. Unlike the pixel

domain approach, the compressed domain algorithms utilize

the encoded information like motion vector, DCT coefficient

and macroblock types which are include in encoded bit

stream. The encoded information is beneficial to reduce the

computational complexity because it can be directly exploited

as

effective clues for many compressed domain algorithms.

The method presented in this paper provide this partially

decoded data without full decoding which with compressed

domain algorithm

analysis

video in real time.

A.

H264

And H264 Profiles

H264/MPEG-4 Part 10 or AVC (Advance Coding Standard) is

a video compression format which is currently most widely

used for video recording, compression and distribution of video

content.

H264 is a method for video compression, the process

of converting digital video into a format that takes up less

capacity to store or transmit.

This compression technique is

used in multiple applications such as DVD-

Video, mobile TV,

video

conferencing and internet video streaming.

In H264

each profiles define

specific set of tools define in

standards. A H264 bit stream that conforms to a particular

profile

that can be coded using some or all the tool with in

profile. The profiles therefore act as constraints on the

capabilities required by decoder.

Baseline profile features are following:

1) Bit depth per sample is 8.

2) Chroma format is 4:2:0.

3) Slices –

I slice, P slice (Present) and B slice (Absent).

B.

H264 codec work

Compression involves complimentary pair of system, a

compressor (encoder) and decompressor (decoder). The

encoder reduce the original bit stream before it store or

transmit and the decoder convert the reduced bit stream into

original bit stream before it plays. The Encoder/Decoder pair

often describe as CODEC.

As per above definition of codec H264 codec have encoder

and decoder with in it. An H264 encoder carries out

prediction, transformation and encoding process and H264

decoder carries out complimentary process of decoding

process, inverse transformation and reconstruction.

The

decoded video stream is not identical to original video steam;

there were some bits loss

because H264 is a lossy compression

technique.

Fig.

1 the H264 encoding and decoding process [1]

1609

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041536

International Journal of Engineering Research & Technology (IJERT)

C. Decoding process

Decoding process includes three processes which are

following:

1) Bit stream decoding

2) Rescaling and inverse transform

3) Reconstruction

1) Bit stream decoding

A video decoder receive compressed H264 video bit stream,

extract each of information such as quantized transform

coefficients, prediction information, compressed data

structure, compression technique and decodes each of syntax

elements.

2) Rescaling and inverse transform

The quantized coefficients are rescaled. These coefficients are

multiply by integer value to restore the original scale. Then the

inverse DCT transform is applied on rescaled values.

3) Reconstruction

Decoder forms an identical prediction for each macroblock of

slice. This prediction can be either from the same frame which

known as Intra prediction or from the other frame know as

Inter prediction. So these predictions are added with residual

and reconstruct macroblock which can display as part of video

frame.

This paper is organized as follows. In section 2, describe about

the hierarchical structure of H264 syntax. Then in section 3

Algorithm for partial decoding is discussed. In section 4

results is shown. Finally the conclusion is drawn in section 5.

II. THE H264 SYNTAX

The H264 syntax is a hierarchical structure which consists of

various elements. The syntax is hierarchical, from the highest

level, the video sequence level, down through the separate

frames or fields (access units), subset of access units (slices),

to macroblocks. Control parameter and video information are

stored in separate syntax such as Picture parameter set and

Sequence parameter set

.

Fig. 2 the H264 syntax [1]

A. NAL

The Network abstraction layer consist series of NAL units.

Each NALU contains one byte of header. This header

contains:

1 bit of forbidden_zero_bit indicates error. If it is zero means

NALU should not contain any bit stream error. If it is one

means NALU may contain bit error.

2 bit of nal_ref_idc specifies that content of NAL unit may or

may not be used to reconstruct reference pictures.

5 bit of nal_unit_type describes the type of NAL Unit. The

types of NAL are shown in following figure:

Fig. 3 NAL unit [1]

1610

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041536

International Journal of Engineering Research & Technology (IJERT)

 Sequence Parameter set

A Sequence parameter set contains parameters which are

common to entire video sequence such as profile id, level id,

constrains flag, maximum number of reference frame, and

macroblock size, height, width etc.

B. Picture Parameter Set

A Picture parameter set contains parameters which are

common to a sequences or subset of coded frames such as

number of active reference frames, entropy coding type and

initialization parameters. It also contain its own identifier,

picture parameter set id, points to SPS identifier.

C. Slice

Slice contains the slice header and slice data. The slice header

is of variable bit length. The slice header is contain common

information for all macroblock in that slice such as slice type

which determine which type of macroblock types are allowed,

the frame number, reference picture setting, and default

quantization parameter.

The slice data contains series of macroblock that make up a

slice. The coding technique can be either CAVLC or CABAC

depend on entropy coding type flag to decode the macroblock.

As B slice is absent in baseline profile therefore CAVLC

coding technique is used in this parsing process.

D. Macroblock

Macrobock contains encoded information such as motion

vectors, coded block pattern, DCT coefficient, macroblock

type, macroblock address, prediction type and residue

information.

In these five syntax macroblock have all the encoded

information so to get all this information the parser should

decode up to the macroblock. To reach macroblock first we

decode the entire syntax one by one and at the end

macroblock. Then we can directly use that encoded

information in different algorithms.

III. ALGORITHMS FOR PARTIAL DECODING

Partial decoding includes two algorithms. First is Exp-Golomb

Coding which is used to decode the starting NAL unit SPS,

PPS and the second one is CAVLC which is used for further

decoding in which it includes the slice data that are

macroblock header and data.

A. Exp-Golomb Coding

The main algorithm in H264 is Exp-Golomb-coded integer.

Exp-Golomb codes are special Huffman codes with regular

construction that favours small numbers by assigning them

short codes.

Exp-Golomb codes are variable length codes with the

following properties:

1) Code length is increases with index code number.

2) Each code can be constructed logically and decoded

arithmetically without the need of look up table.

The Exp-Golomb code word has following structure:

[Zero prefix][1][INFO] [1]

The code word consist of a prefix of M zeros, where M is zero

or positive integer, a 1 and M bit of information, INFO. Each

code word arithmetically generated in following manner

M = floor (log 2 [code_num + 1])

INFO = code_num + 1 − 2
M

Conversely code_num may be generated.

Step1: Read a series of consecutive zeroes until first 1 is

detected. Count the number of zeroes.

Step2: The First detected 1 is ignore.

Step3: Read the next bits after 1 which should be equal to the

total number of zeros which were in suffix.

Step4: code_num = 2
M

 + INFO – 1. [1]

Fig. 4 Exp-Golomb Codewords [1]

B. Context Adpative Variable Length Coding

This method is used to decode the residual, zigzag ordered 4x4

or 2x2 block of transform coefficients. CAVLC process of

decode the transform coefficient is as follows:

Step1: Decode the number of coefficients and trailing ones

Number of coefficient can be anything from 0 to 16 and

trailing ones can be from 0 to 3.

For calculating coefficients and trailing ones there are four

choices of look-up table which are define in standards to use

for decoding coefficient token, the choice of table depends on

the number of non-zero coefficients in the left and upper

previously coded blocks, nA and nB respectively. Non-Zero

coefficients nC is calculated as follows:

1) If upper and left blocks are both available, i.e. in the same

coded slice, nC = (nA + nB + 1) >> 1, where >> indicates

binary right shift.

2) If only the upper is available, nC = nB.

3) If only the left block is available, nC = nA.

4) If neither neighboring block is available, nC = 0.

1611

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041536

International Journal of Engineering Research & Technology (IJERT)

Match the bit stream till the long prefix is match with each

entry in column of table. The unique code is obtained from the

bit stream which gives trailing one and number of coefficient.

Step2: Decode the sign of each trailing ones

For each trailing +/−1 T1 the sign is decoded with a single bit.

Decode the next bit stream, substitute +1 for 0 and -1 for 1.

Step3: Decode the levels of the remaining non-zero

coefficients.

If number of coefficient is greater than trailing ones, then the

remaining non zero coefficient are called level, and those level

are decode by Prefix – Suffix method.

Prefix – Suffix Method:

This method includes four steps:

1) Prefix Calculation: Prefix calculated by reading a series of

consecutive zeroes until first 1 is detected. <Prefix> will have

<zeroes 1>.

2) Suffix Calculation:

If it is first level:

If (number of coefficient > 10 && trailing ones < 3)

 suffix length = 1

else

suffix length = 0

Else

If (suffix length = 0 && abs(level_code) > 3)

 suffix length = 2

else if (suffix length = 0)

 suffix length = 1

else if (abs (level_code) > (3 << (suffix length -1)

 && suffix length < 6)

 suffix length = suffix length + 1

 Here abs (level_code) = previous level code

3) Level Code Calculation:

If it is first level:

If (number of coefficient > 10 && trailing ones < 3)

 If (prefix < 14)

 If (suffix length)

 level_code = (prefix << 1) + read 1 bit

 else

 level_code = prefix

 else if (prefix == 14)

 If (suffix length)

 level_code = (prefix << 1) + read 1 bit

 else

 level_code = prefix + read 4 bit

 else

 level_code = 30

 if (prefix >= 16)

 level_code = level_code + (1 << (prefix-

 3)) -4096

 level_code = level_code + read (prefix –

 3) bit

Else

 If (prefix < 15)

 level_code = (prefix << suffix length) + read

 suffix length bit

 else

 level_code = (15 << suffix length) + read

 (prefix - 3) bit

 if (prefix >= 16)

 level_code = level_code + (1 << (prefix-3)) -4096

Step4: Decode the total number of zeroes before the last

coefficient (Total zeroes)

Total Zeroes is the sum of all zeroes preceding the non-zero

coefficient, read the next bit stream match with the each entry

of table, the unique code obtained from bit stream which gives

total number of zeroes.

Step5: Decode each run of zeros (the location of those

embedded zeroes [run before]).

The number of zeroes preceding each non-zero coefficient

(run before) is decoded in following steps:

If (number of coefficients = maximum number of coefficients)

Total zeroes = 0

Else

Read the next bit stream, match with the each entry of table,

the unique code obtained from bit stream which tells the

position where the zeros will be embed.

IV. RESULT

I have used ubuntu 12.04 machines and ffmpeg library for the

results. I have checked our results for two different frame

resolutions that are 640 x 480 and 800 x 600. The result got

from the machine; we can say the total time taken in parsing

technique is reduced by 66% to the whole decoding process.

CONCLUSION

Our study showed that the parsing technique can be used

effectively to get encoded data. The performance of parsing

technique is sufficient to get not only the encoded data but

also perform algorithms on it in real time. It shows better

performance than whole decoding process. Therefore we

conclude that using parsing technique the compress domain

algorithm can implement.

ACKNOWLEDGEMENT

I would like to express my deep gratitude to Mr. Sudhir

Bhadauria, my research supervisor and Professor Vijay K.

Patel at Ganpat University for their expert guidance,

enthusiastic encouragement of this research work.

1612

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041536

International Journal of Engineering Research & Technology (IJERT)

REFERENCES

[1] The H.264 Advanced Video Compression Standard Second Edition Iain

E. Richardson Vcodex Limited, Uk.

[2] ITU-T Rec. H.264 (05/2003) – Series H: Audio-visual and Multimedia

Systems.
[3] RFC3984 – H.264.

[4] H.264 / Mpeg-4 Part 10 White paper.

[5] CAVLC_Example.pdf.
[6] Link: Wikipedia.org.

[7] H.264 and MPEG-4 Video Compression – Video Coding For next-

generation Multimedia, Iain E.G.Richardson, The Robert Gordan
University, Aberdeen, UK.

[8] Michael Horowitz, Anthony Joch, Faouzi Kossentini “H.264/AVC

Baseline Profile Decoder Complexity Analysis” in Ieee Transactions
On Circuits And Systems For Video Technology, Vol. 13, No. 7, July

2003.

[9] Atul Puria,, Xuemin Chenb, Ajay Luthrac “Video Coding Using The
H.264/MPEG-4 AVC Compression Standard” in Puri Signal

Processing: Image Communication 19 (2004) 793–849.

1613

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041536

International Journal of Engineering Research & Technology (IJERT)

