
Handling Multiple Processor Failure Using Diskless Checkpointing Approach

Ms. Dipali B Parase

Walchand Institute of Technology, Solapur,

Solapur University, Solapur, Maharashtra,

India.

Dr. Mrs. Sulabha Apte

Professor, CSE Department, Walchand

Institute of Technology, Solapur, Solapur

University, Solapur, Maharashtra, India.

Abstract

In a distributed or parallel computing system a

partial failure may easily halt the entire operation of

the system. Therefore, many systems employ the

checkpoint/ rollback recovery operation. In this

paper we are using diskless checkpointing approach.

This technique helps to reduce the disk overhead and

the memory requirement. To achieve this we are

storing the checkpoint of a processor into its set of

allowable peer processor and which is in turn

responsible for storing the checkpoint for others. The

proposed scheme allows failure recovery in a

distributed manner.

1. Introduction
Fault tolerance is one of the most desirable properties

for many distributed or parallel computing systems.

As the number of processors grows, the system’s

mean time between failures (MTBF) significantly

decreases. Normally, processors checkpoints must be

stored in disk-based stable storage. Although stable

storage can protect against hardware and power

failures, the latency of writing checkpoints to a hard

disk and reading from the disk incurs significant

overhead for the system and may result in significant

performance degradation. Researchers have devised

various techniques to minimize this source of

overhead. These techniques include incremental

checkpointing, checkpoint buffering with copy-on-

write, compression, and memory exclusion.

However, the performance of stable storage medium

remains a major concern with all of these techniques

for the systems.

 One method of diskless checkpointing is

neighbor-based diskless checkpointing [3]. In this

technique, each processor saves its checkpoints in

the memory of peer processors. Each checkpoint is

stored in its entirety in peer memory, and no coding

is involved. Whenever a processor fails, the last

checkpoint can be readily recovered from one of

these peer processors. However, this approach may

consume a large amount of memory to tolerate

multiple failures. But our aim is to reduce memory

requirement. Therefore, we are proposing a new

approach to neighbor-based diskless checkpointing

that tolerates multiple failures using simple

checkpoint and failure recovery operations without

relying on dedicated checkpoint processors [2]. In

the proposed scheme [1], each processor saves its

checkpoints at a set of peer processors and in return

is responsible for storing a collection of checkpoints

for other peer processors using simple XOR

operations. The processor which stores its

checkpoint into its peer processor, we call them as

storage nodes. And the same processor may acts as

storage node for other processor; we call it as

coverage node [1].

2. Existing Techniques
 Due to storing checkpoint in the stable storage,

it increases operational access overhead to the

system. Also, the number of checkpoints a system

can take is typically restricted. Several techniques

have been proposed to reduce the overhead involved

in checkpointing and failure recovery operations.

Diskless checkpointing approach was first proposed

in [6] to avoid the excessive overhead associated with

stable storage operation. The various diskless

checkpointing techniques that followed can be

broadly classified into three categories: neighbor-

based, parity-based, and Reed-Solomon code-based.

In the neighbor-based approach, each processor

saves its checkpoints in the memory of another

processor. When a processor fails, the checkpoint

data can be recovered from the corresponding

checkpoint processor. There are three different

neighbor-based checkpointing schemes: mirroring

[3], pairing [3], and ring structured [3]. In the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

mirroring scheme, each application processor is

assigned a dedicated checkpoint processor in which it

stores checkpoints. The pairing scheme organizes

application processors into pairs. Each processor

sends checkpoints to its partner in the pair and, in

return, receives and stores checkpoints for the partner

processor. Therefore, dedicated checkpoint

processors are not necessary. The ring-structured

scheme organizes all processors into a virtual ring.

Each processor sends its checkpoints to the following

neighbor processor. The neighbor-based approach is

simple. However, a failed processor cannot recover

its state if its partner or neighbor storing its

checkpoint fails at the same time. The parity-based

diskless checkpointing technique [5] requires that all

application processors coordinate to take

checkpoints, with parity data of the checkpoints

being saved in the main memory of a dedicated parity

processor. When an application processor fails, the

dedicated parity processor and all the other

processors that are still alive cooperate to decode the

last checkpoint for the failed processor. Hence, the

amount of diskless checkpoint data to be stored is

small in the parity-based technique. However, the

time overhead for checkpointing and failure recovery

operations depends on the number of application

processors in the system. To deal with the scalability

problem, some schemes employ a binary tree-based

XORing operation for computing checkpoint parity

[4]. The Reed-Solomon coding-based approach

encodes checkpoints of multiple processors using

Galois Field arithmetic. When failures occur in the

system, a consistent checkpoint can be restored for

each failed processor through the decoding process.

However, coding-based techniques involve relatively

complex computations for checkpointing and failure

recovery.

3. Proposed Scheme
Existing parity-based and Reed-Solomon coding-

based techniques generally require extra dedicated

checkpoint processors for storing the encoded

checkpoint data. thus, we are enhancing neighbor

based checkpointing approach using parity and XOR

technique. In the neighbor based approach we require

storing the checkpoint into the memory of its peer

processor and are in turn responsible for storing the

checkpoint of other processors. But it requires large

amount of memory. To achieve our goal of minimum

memory requirement instead of storing the

checkpoint into peer processor, we first calculate the

parity and this parity is stored into the peer

processors memory. If suppose one of the processor

fails due to any reason it just sends request to one of

its peer processor. Then it will XOR the parity and

calculates the checkpoint and sends back to

requesting processor [1]. The failure recovery, it can

be done only when at least one of its storage nodes

should be alive and at least one node should be

common in storage node and coverage node. The

proposed system architecture is as shown in figure

1.1. Here, it consists of three main parts-1) Process

Execution Module 2) Network Module 3) Checkpoint

Management Module.

1) Process Execution Module – To take checkpoint at

regular intervals we require large computation to be

performed. So, in this paper we are dividing a large

computation among several processors in the

network. Each processor communicates with each

other by message passing.

2) Network Module- A network module performs

two major tasks. First, it does the node discovery.

Second, it sends and receives parity of checkpoint

across the network.

3) Checkpoint Management Module- Checkpoint

Module is responsible for three major tasks. First, it

takes checkpoint as process state and calculates

parity. First it stores into its own memory then it

sends the calculated parity to its set of peer

processor through network module. Second major

task of checkpoint module is to if suppose the

processor fails, then when processor restarts then

this module sends request to its peer processors for

getting the parity through network module. Third,

major task is to calculate checkpoint from received

parity and recover the last status of the process.

4. Data Flow Diagrams
Data flow diagrams for overall execution of a

proposed scheme is shown in the figure3.1

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Data flow diagram for Process Execution Module is

shown in the figure3.2.

Data flow diagram for Checkpoint management

Module is shown in the figure3.2

Data Flow Diagram for Network Module is as

shown in figure 3.4

5. Conclusion
Diskless checkpointing is based on main memory.

Also, it is based on coordinated checkpointing, a

collection of processors with memories coordinate to

have checkpoint of the process state. There are two

main memory checkpointing schemes that can be

used without hardware changes: neighbor-based

checkpointing and parity-based checkpointing. While

the neighbor-based checkpointing scheme saves the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

checkpoints in the main memory of other processors,

parity based checkpointing is based on parity

approach.

Thus, we are trying presenting a new

approach to enhancing neighbor-based schemes to

tolerate multiple failures. It does not require

dedicated checkpoint processors. This method allows

checkpoint related operations to be evenly distributed

among all processors, achieving good load balance.

6. References
[1]Ge-Ming Chiu, Member, IEEE Computer Society, and

Jane-Ferng Chiu, “A New Diskless Checkpointing

Approach for Multiple Processor Failures”, IEEE

transactions on dependable and secure computing, vol. 8,

no. 4, july/august 2011.

[2] Z. Chen and J. Dongarra, “A Scalable Checkpoint

Encoding Algorithm for Diskless Checkpointing,” Proc.

IEEE Symp.High Assurance Systems Eng. Symp. (HASE

’08), pp. 71-79, Dec. 2008.

[3] Z. Chen, G.E. Fagg, E. Gabriel, J. Langou, T. Angskun,

G. Bosilca,and J. Dongarra, “Fault Tolerant High

Performance Computing by a Coding Approach,” Proc.

ACM Symp. Principles and Practice of Parallel

Programming (PPoPP ’05), pp. 213-223, June 2005.

[4] Z. Chen and J. Dongarra, “Highly Scalable Self-Healing

Algorithms for High Performance Scientific Computing,”

IEEE Trans.Computers, vol. 58, no. 11, pp. 1512-1524,

Nov. 2009.

 [5] J.S. Plank, Y. Kim, and J. Dongarra, “Fault-Tolerant

Matrix Operations for Networks of Workstations Using

Diskless Checkpointing,” J. Parallel Distributed

Computing, vol. 43, no. 2, pp. 125-138, 1997.

[6] J.S. Plank and K. Li, “Faster Checkpointing with N + 1

Parity,”Proc. IEEE Symp. Fault-Tolerant Computing

(FTCS ’94), pp. 288-297,June 1994.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 9, November- 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

