
Hardware Acceleration of Elliptic Curve 

Cryptographic (ECC) Scalar Multiplication Unit 

over Binary Polynomial based  

Galois Field GF (2
m

) using Verilog HDL 

 
Iqbalur Rahman Rokon ,Mohammad Abdul Momen, Md. Ishtiaque Mahmood 

Department of Electrical and Computer Engineering 

 North South University 

Dhaka, Bangladesh 

 
Abstract- This paper describes algorithms and implementation 

of those algorithms that will hardware accelerate scalar 

multiplication unit of ECC over binary polynomial based 

Galois fields in the particular case of the K-163 NIST-

recommended curve. The hardware/circuit design has been 

done in Verilog and synthesized and simulated in Altera 

Quantus-II and Modelsim, respectively. In finite field 

operations, GF Division is used instead of GF Inversion which 

makes the division operation in finite field more independent 

and faster. Furthermore, instead of double-and-add algorithm, 

Frobenius Map algorithm is used which makes the hardware 

faster.     

 

Keywords- Elliptic Curve Cryptography, Frobenius Map, 

Hardware Acceleration, Galois Field. 

 

I. INTRODUCTION 
 

In several cryptographic algorithms, signature schemes, 

public-key encryption or symmetric key generation Elliptic 

curve (EC) scalar multiplication is basic operation. 

Traditionally, scalar multiplication is implemented in 

software using generalpurpose processors or on digital 

signal processors. In some cases software time constraints 

cannot met with instruction-set processors and as a result 

specific hardware or circuit must be designed for executing 

very complex operations which will take much less time 

than software. 
 

Now-a-days for developing specific circuits Field 

Programmable Gate Arrays (FPGA) is used instead of 

Application Specific Integrated Circuits (ASIC) because of 

reprogrammable option, small production quantities and 

much lower engineering cost than ASIC’s. 
 

This paper describes algorithms and implementation of 

those algorithms that will hardware accelerate scalar 

multiplication unit of ECC over binary polynomial based 

Galois fields in the particular case of one of the NIST-

recommended Koblitzcurves, namely K-163.. The circuit 

design has been done in Verilog and synthesized and 

simulated in Altera Quantus-II and Modelsim, respectively. 

In the design, efficient bit-series algorithms are compared 

and implemented for Galois Field Operations and EC 

Scalar Multiplication Operation considering among speed, 

cost and area constrains, so that the proposed circuit 

requires consumption of both smaller area and less 

computational time, being m the degree of the irreducible 

polynomial (m = 163). After implementing the design of 

EC scalar multiplication, computational time was reduced 

from 46.6 µs [1] to 14.6 µs. 

 

II. ELLIPTIC CURVE 
 

Suppose K is finite field and elliptic curve E over K is 

defined by a non-singular Weierstrass equation [2, 3] y
2
+ 

a1xy +a3y = x
3
 + a2x

2
 + a4x + a6 where a1, a2, a3, a4, a6 

belong toK. GivenL of K is an extension field,the following 

relation defines the corresponding  

elliptic curve E(L): 
 

E(L) =  {(x,y) ∈L x L: 

y
2
 + a1xy+ a3y = x

3
 + a2x2 + a4x + a6} ∪{∞} 

 

∞ is point at infinity, which is an additional point.Given an 

elliptic curve E modulo p, the number of points of L on the 

curve is denoted by E (L) [4] and is bounded by: 
 

p + 1 − 2 √p≤ E (L) ≤ p + 1 + 2 √p (1) 
 

Number of points is approximately equal to thenumber of 

field elements: 

  #E(L) ≅ p(2) 
 

Equation of an elliptic curve E(L) over K is 

 y
2
 +xy=x

3
 +x

2
 +1                          (3) 

 

GF (2
163

) is the extension field L and Reduction 

Polynomial representation of GF (2
163

) is used. 
 

F(x) = x
163

 + x
7
 + x

6
 + x

3
 + 1(4) 

 

E(L) can be defined as addition operation. Here neutral 

element is point at infinity ∞ and the point addition is 

defined as follows:  
 

Let elements of E(L) be P (x1, yl) and Q(x2, y2); then 
 

P+ ∞ = ∞ +P =P, (x y)+(x, x+y) = ∞; 
 

if P ≠ Q and P ≠ -Q, then P+Q =(x3, y3) where 
 

x3= 𝜆2
+𝜆+x1+x2+a 

y3 = 𝜆(x1+ x3)+x3+y1 
𝜆 =

𝑦1 + 𝑦2

𝑥1 + 𝑥2
(5) 

 

if P = Q and P ≠ -P, then P + P = (x3, y3) where 
 

x3= 𝜆2
+ 𝜆+x1+x2+a 𝜆 =

𝑦1 + 𝑦2

𝑥1 + 𝑥2
(6) 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050986

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

937



y3 = 𝜆(x1+ x3)+x3+y1 

 

For the basic operation of ECC We consider a primitive 

elementP and another element T. kPis the scalar product of 

a natural number k by a curve point P can be defined as 
 

T = kP = P+ P+ · · · + P (K times) 
 

ECC Scalar Multiplicationis based on Binary Polynomial 

Based Galois Field arithmetic. Figure 1 depicts this 

hierarchical structure of arithmetic operations usedfor 

elliptic curve cryptography over finite fields. 
 

Scalar Multiplication

Point Addition (if P≠Q)
  Q = P + Q

Point Doubling  (if P= Q)
Q = P + P

Elliptic Curve 
Cryptographic 

Operation

MultiplicationAddition InversionSquare

`Galois Field 
Operation

 
Figure 1: Basic Hierarchy of Elliptic Curve. 

 

III. GALOIS FIELD ARITHMETIC 
 

EC over field𝐹2𝑚 includes arithmetic of integer with length 

m bits. The binary string can be declared as polynomial: 

Binary String: (𝑎𝑚−1 …  𝑎1𝑎0) 

Polynomial: 𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 + ⋯+ 𝑎2𝑥
2 +

𝑎1𝑥 + 𝑎0where 𝑎𝑖 = 0 

 

A. Addition over GF(2
m
) 

Addition of field elements is performed bitwise, and the 

sum of 𝐴(𝑥) and 𝐵(𝑥) given as 

𝐶 𝑥 =  𝐴 𝑥 + 𝐵 𝑥 =  (𝑎𝑖 + 𝑏𝑖)
𝑚−1
𝑖=0 (7) 

The bit additions in 𝑎𝑖  +  𝑏𝑖 is performed by 𝑚𝑜𝑑𝑢𝑙𝑜 2 and 

translate to an 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 − 𝑂𝑅 (𝑋𝑂𝑅) operation. 

 

B. Multiplication over GF(2
m
) 

Multiplication of two elements 𝑎 𝑥 , 𝑏 𝑥  in 𝐺𝐹(2𝑚 ) can 

be expressed as 
 

𝐶 𝑥 = 𝑎 𝑥 𝑏 𝑥 𝑚𝑜𝑑 𝑓 𝑥 

= 𝑎 𝑥   𝑏𝑖𝑥
𝑖

𝑚−1

𝑖=0

  𝑚𝑜𝑑 𝑓 𝑥  

=   𝑏𝑖

𝑚−1

𝑖=0

𝑎 𝑥 𝑥𝑖  𝑚𝑜𝑑 𝑓(𝑥) 

 

Therefore, the product 𝑐 𝑥 can be computed as 
 

𝑐 𝑥 =  𝑏0𝑎 𝑥 + 𝑏1𝑎 𝑥 𝑥 + 𝑏2𝑎 𝑥 𝑥
2 + ⋯+ 𝑎 𝑥 𝑥2 +

⋯+ 𝑏𝑚−1𝑎 𝑥 𝑥
𝑚−1 𝑚𝑜𝑑𝑓(𝑥) (8) 

 

In order to compute above equation a quantity of the form 

𝑥𝑎 𝑥 where  𝑥 = 𝑎𝑚−1𝑥
𝑚−1 + ⋯+ 𝑎1𝑥 + 𝑎0′ , with 

𝑎𝑖 ∈ 𝐺𝐹(2) has to be reduced modulo 𝑓(𝑥). The product 

𝑑 = 𝑥𝑎(𝑥) can be computed as follows: 
 

𝑑 = 𝑥 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑚−1𝑥
𝑚−1 = 𝑎0𝑥 + 𝑎1𝑥

2 + ⋯+
𝑎𝑚−1𝑥

𝑚 (9) 
 

Using the fact that 𝑓 𝑥 = 𝑥𝑚 + 𝑓𝑚−1𝑥
𝑚−1 + ⋯+ 𝑓1𝑥 +

𝑓0′  we have𝑥𝑚 = 𝑓0 + 𝑓1𝑥 + ⋯+ 𝑓𝑚−1𝑥
𝑚−1, where 𝑓𝑖𝑠 are 

the coefficient of the irreducible polynomial. Substituting 

this expression in equation (8) we obtain 
 

𝑑 = 𝑑0 + 𝑑1𝑥 + ⋯+ 𝑑𝑚−1𝑥
𝑚−1(10) 

 

Where, 

𝑑0 = 𝑎𝑚−1𝑓0 

𝑑𝑖 = 𝑎𝑖−1 + 𝑎𝑚−1𝑓𝑖′ 𝑖 = 1,2,… ,𝑚 − 1   (11) 
 

Assume that the function, 
functionProduct_alpha_A(a,f: 

poly_vector) return poly_vector 
 

implementing Eq. (9) according to Eq. (10) & Eq. (11) and 

therefore the polynomial 𝑥𝑎 𝑥 𝑚𝑜𝑑 𝐹(𝑥) has been 

defined, where 𝑝𝑜𝑙𝑦_𝑣𝑒𝑐𝑡𝑜𝑟 is a bit vector from 0 to 

𝑚 − 1. 
 

Assume also that the functions   
function m2abv(x: bit; y: poly_vector) 

return poly_vector 

function m2xvv(x, y: poly_vector) 

return poly_vector 
 

In a least-significant-bit (LSB) multiplier, the coefficients 

of b(x) are processed starting from the least-significant bit 

𝑏0and continue with the remaining coefficients one at a 

time in ascending order. Thus multiplication according to 

this scheme is performed in the following way: 
 

𝑐 𝑥 = 𝑎 𝑥 𝑏 𝑥 𝑚𝑜𝑑 𝑓 𝑥  
 
=  𝑏0𝑎 𝑥 + 𝑏1𝑎 𝑥 𝑥 + 𝑏2𝑎 𝑥 𝑥

2 + ⋯
+                  𝑏𝑚−1𝑎 𝑥 𝑥

𝑚−1 𝑚𝑜𝑑 𝑓(𝑥)          
=  𝑏0𝑎 𝑥 + 𝑏1(𝑎 𝑥 𝑥) + 𝑏2(𝑎 𝑥 𝑥2) + ⋯
+                  𝑏𝑚−1(𝑎 𝑥 𝑥𝑚−1) 𝑚𝑜𝑑 𝑓(𝑥) 

         =  𝑏0𝑎 𝑥 + 𝑏1(𝑎 𝑥 𝑥) + 𝑏2(𝑎 𝑥 𝑥)𝑥 + ⋯+
𝑏𝑚−1(𝑎 𝑥 𝑥𝑚−2)𝑥 𝑚𝑜𝑑 𝑓 𝑥                    (12) 

 

Algorithm 1: LSB-first multiplier 

for i in 0 . . m-1 loop c(i) := 0; end loop; 

for i in 0 .. m-1 loop 

c := m2xvv(m2abv (b(i) , a,), c)  

a := Product_alpha_A(a,f ) 

end loop; 

 

C. Squaring over GF(2
m
) 

𝑎2𝑚𝑜𝑑𝑢𝑙𝑜 𝑓 computation is done br a specific synthesized 

circuit [8]. It can be shown that𝑎2 = 𝑠 + 𝑡 + 𝑢 𝑤𝑕𝑒𝑟𝑒, 
𝑠 = 𝑠162𝑧

162 + ⋯+ 𝑠1𝑧 + 𝑠0 

𝑊𝑖𝑡𝑕𝑠𝑗 = 𝑎
 
𝑗+163

2   
𝑖𝑓𝑗𝑖𝑠𝑜𝑑𝑑,  

𝑠𝑗 = 𝑎
 
𝑗

2  
𝑖𝑓𝑗𝑖𝑠𝑒𝑣𝑒𝑛(13) 

𝑡 = 𝑡162𝑧
162 + ⋯+ 𝑡1𝑧 + 𝑡0 

𝑊𝑖𝑡𝑕𝑡𝑗 = 0 𝑖𝑓𝑗 < 7,  

𝑡7 = 𝑎82 ,  
𝑡𝑗 = 𝑎

 
𝑗+156

2  
𝑖𝑓𝑗𝑖𝑠𝑒𝑣𝑒𝑛&𝑗 ≥ 8,  

𝑡𝑗 = 𝑎
 
𝑗+157

2  
𝑖𝑓𝑗𝑖𝑠𝑜𝑑𝑑&𝑗 ≥ 8,(14) 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050986

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

938



𝑢 = 𝑢162𝑧
162 + ⋯+ 𝑢1𝑧 + 𝑢0 

𝑊𝑖𝑡𝑕𝑢0 = 𝑎160  

𝑢1 = 𝑎160 + 𝑎162  

𝑢2 = 𝑎161  

𝑢3 = 𝑎160 + 𝑎161  

𝑢4 = 𝑎82 + 𝑎160  

𝑢5 = 𝑎161 + 𝑎162  

𝑢6 = 𝑎83 + 𝑎160 + 𝑎161  

𝑢7 = 0 

𝑢8 = 𝑎84 + 𝑎160 + 𝑎161  

𝑢9 = 0 

𝑢10 = 𝑎85 + 𝑎161 + 𝑎162  

𝑢11 = 0 

𝑢12 = 𝑎86 + 𝑎162  

𝑢𝑗 = 0 𝑖𝑓𝑗 > 12 &𝑗𝑜𝑑𝑑, 

𝑢𝑗 = 𝑎
 
𝑗+160

2  
𝑖𝑓𝐽 > 12 𝑎𝑛𝑑𝑗𝑒𝑣𝑒𝑛(15) 

All outputs 𝑎2
𝑖 , but  𝑎2

6 , 𝑎2
8  and  𝑎2

10 , are Boolean 

functions of less than five variables, while  𝑎2
6 , 𝑎2

8  and  

𝑎2
10are five-variable Boolean functions. Thus, the 

computation time of 𝑎2 is approximately equal to the 

computation time of a five-variable Boolean function. 
 

D. Inversion over GF(2
m
) 

 Extended Euclidean algorithm for polynomials 

The greatest common divisor (GCD) of ‘𝑎’and 

‘𝑏’(‘𝑎’and‘𝑏’ are binary polynomials and they are not zero), 

are denoted by 𝑑 = 𝑔𝑐𝑑(𝑎, 𝑏). ‘𝑑’ is the largest common 

divisor. In the classical Euclidean algorithm,𝑑𝑒𝑔(𝑏)  ≥
 𝑑𝑒𝑔(𝑎)computes the 𝑔𝑐𝑑 of binary polynomials. ‘𝑏’is 

divided by ‘𝑎’to obtain a quotient ‘𝑞’. A remainder 

‘𝑟’ satisfying 𝑏 =  𝑞𝑎 + 𝑟and 𝑑𝑒𝑔(𝑟)  <  𝑑𝑒𝑔(𝑎). 

In such state, the problem in determining 𝑔𝑐𝑑(𝑎, 𝑏)reduces 

the computation of 𝑔𝑐𝑑(𝑟, 𝑎), where (𝑟, 𝑎)have lower 

degrees than (𝑎, 𝑏). The process should be repeated until 

one of the arguments reaches to zero. Then the result is 

immediately obtained since 𝑔𝑐𝑑(0,𝑑) = 𝑑. The algorithm 

is reached and ended since the degrees of the remainders 

decrease. The Euclidean algorithm can be extended to find 

binary polynomials ‘𝑥’ and ‘𝑦’ satisfying 𝑎𝑥 + 𝑏𝑦 =
 𝑑 where 𝑑 =  (𝑔𝑐𝑑 𝑎, 𝑏). 
 

𝑎𝑥1 + 𝑏𝑦1 = 𝑔1   (16) 

𝑎𝑥2 + 𝑏𝑦2 = 𝑔2    (17) 
 

The algorithm ends when u value reaches zero, in the case 

of 𝑔2 = gcd⁡(𝑎, 𝑏)& 𝑎𝑥2 + 𝑏𝑦2 = 𝑑. The next algorithm is 

used to compute 𝑔𝑐𝑑(𝑎, 𝑏) (Hankerson, et al. 2004) (Liu 

2007). 

 

Algorithm 2: Inversion in F2m using the extended Euclidean 

algorithm 

for i in 0 .. m loop 

s(i) := f(i); r(i) := a(i); v(i) := 0; 

u(i) := 0; auxm(i) := 0; 

end loop; 

u(0) := 1; d := 0; 

for i in 1 .. 2*m loop 

if r(m) = 0 then 

r := rshiftm(r); 

u := rshiftm(u); 

d := d + 1; 

else 

if s(m) = 1 then 

s := m2xvvm(s,r); 

v := m2xvvm(v,u); 

end if; 

s := rshiftm(s); 

if d = 0 then 

auxm := s; s := r; r := auxm; 

auxm := v; v := u; 

u := rshiftm(auxm); 

d := 1; 

else u := lshiftm(u); d := d - 1; end if; 

end if; 

end loop; 

 

E. Division over 𝐺𝐹 2𝑚   
 

Given three polynomials  

𝑔 = 𝑔𝑚−1𝑧
𝑚−1 + 𝑔𝑚−2𝑧

𝑚−2 + ⋯+ 𝑔1𝑧 + 𝑔0 

𝑕 = 𝑕𝑚−1𝑧
𝑚−1 + 𝑕𝑚−2𝑧

𝑚−2 + ⋯+ 𝑕1𝑧 + 𝑕0 

𝑓 = 𝑓𝑚−1𝑧
𝑚−1 + 𝑓𝑚−2𝑧

𝑚−2 + ⋯+ 𝑓1𝑧 + 𝑓0 
 

The quotient 𝑞 =  𝑔𝑕−1  𝑚𝑜𝑑𝑢𝑙𝑜 𝑓 can be computed with 

an algorithm based on the following properties(𝑔𝑐𝑑 =
 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑑𝑖𝑣𝑖𝑑𝑒𝑟): given two polynomials 

𝑎 𝑎𝑛𝑑 𝑏 where 𝑏 is not divisible by𝑧, that is 𝑏0 =  1, then  
 

𝑖𝑓 𝑎 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 𝑧, 𝑡𝑕𝑎𝑡 𝑖𝑠 𝑎0  =  0, 𝑡𝑕𝑒𝑛 𝑔𝑐𝑑(𝑎, 𝑏)  =
 𝑔𝑐𝑑(𝑎/𝑧, 𝑏) (18) 
 

𝑖𝑓 𝑎 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 𝑧, 𝑡𝑕𝑎𝑡 𝑖𝑠 𝑎0 =
 1, 𝑡𝑕𝑒𝑛 𝑔𝑐𝑑(𝑎, 𝑏)  =  𝑔𝑐𝑑((𝑎 + 𝑏)/𝑧, 𝑏) =  𝑔𝑐𝑑((𝑎 +
𝑏)/𝑧, 𝑎)(19) 
 

The following formal algorithm, in which the function 

divides by 𝑧(𝑐, 𝐽) computes, 𝑐𝑧−1𝑚𝑜𝑑𝑢𝑙𝑜 𝑓,  generates the 

quotient 𝑞 =  𝑔𝑕−1 𝑚𝑜𝑑𝑢𝑙𝑜𝑓 

 

Algorithm 3: Division of polynomials modulof (binary 

algorithm) 

a := f; b := h; c := zero; d := g; alpha := m; beta := m-1; 

while beta >= 0 loop 

if b(0) = 0 then 

b := shift_one(b); d := divide_by_x(d, f); beta :=beta - 1; 

else 

old_b := b; old_d := d; old_beta := beta; 

b := shift_one(add(a, b)); 

d := divide_by_x(add(c, d),f); 

if alpha > beta then 

a := old_b; c := old_d; beta := alpha - 1; alpha :=old_beta; 

else beta := beta - 1; 

end if; 

end if; 

end loop; 

if b(0) = 0 then z := d; else z := c; end if; 
 

The sum of two binary polynomials amounts to the 

component-by-component 𝑋𝑂𝑅, and the division by 𝑧 to a 

one-bit left shift. The more complex primitive is the 

division by 𝑧 𝑚𝑜𝑑𝑓It is computed as follows:  
 

𝑐𝑧−1𝑚𝑜𝑑 𝑓 = 𝑐0𝑧
𝑚−1 +  𝑐𝑚−1 + 𝑐0𝑓𝑚−1 𝑧

𝑚−2+ 

 𝑐𝑚−2 + 𝑐0𝑓𝑚−2 𝑧
𝑚−3 + ⋯ + 𝑐1 + 𝑐0𝑓1(20) 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050986

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

939



The circuit corresponding to the computation of 𝑐𝑧−1or 

 𝑐 − 𝑑 𝑧−1 𝑚𝑜𝑑𝑢𝑙𝑜 𝑓, according to the value of𝑎0 , is the 

more time consuming operation). The number of steps of 

algorithm 3 is smaller than2𝑚. Thus, the total computation 

time of 𝑞 =  𝑔𝑕−1  𝑚𝑜𝑑𝑢𝑙𝑜 𝑓 is smaller than 2𝑚 times the 

computation time of the circuit, that is 2𝑚 times the 

computation time of a five-variable Boolean function if 𝑓 is 

assumed to be constant.  
 

In this paper instead of using GF Inversion, we used GF 

Division for division operation. By using GF 

Inversion(Figure 2)for a division operation first the 

denominator (y) had to inverted (y
-1

) and then it had to 

multiply (x *{y
-1

}) to get division output which makes the 

system slow and dependable. By using GF Division(Figure 

3), now division operation first of all independent and 

secondly requires less computation time.  
 

Y
-1

 X * Y
-1 Y 

 X 
Input Output

Figure 2: Division Using GF Inversion 
 

 X / YInput Output

 
Figure 3: GF Division 

 

IV. POINT MULTIPLICATION 
 

The parameter sets of the K-163 binary koblitz curves 

standardized by NIST [10] for ECC is below (hexadecimal) 
 

p(t) = 800000000000000000000000000000000000 

000C9, a = 1, G_x =2fe13c0537bbc11acaa07d793d 

e4e6d5e5c94eee8, G_y  = 289070fb05d38ff58321f 

2e800536d538ccdaa3d9, r = 584600654932361167 

2814741753598448348329118574063  
 

where p(t) is the reduction polynomial, a is the curve 

coefficient, G_x and G_y is the x and y coordinates of the 

base generator point G, r is the base point's order.  

 

A. Double-and-Add (basic) Algorithm 
 

Let the binary representation of k be (km-1, km-2,…,k0) that is k 

= km-1*2
m-1

 + km-2*2
m-2

 + ... + k0*2
0
.Then according to the 

following schemeKP can be computed (right to left) 
 

kp = k0p + k1(2p) + k2(2
2
p) + ... + km-1(2

m-1
p) (21) 

 

(21) can be implemented with algorithm 1 which consists 

of m iteration steps, each of them including atmost two 

function calls point adding (Q = Q+P) and/or point 

doubling(P = P+P). 

 

Algorithm 4: Scalar multiplication (Q = kP) 

Q:= point at infinity; 

for i in .. m-1 loop 

P := P + P; 

if k(i) 1 then Q := Q + P; end if; 

end loop; 

 

 

 

B. Frobenius Map 

The chosen curve is a Koblitz curve for which an 

interesting property can be used. Define the Frobenius map 

[11] X from E(L) to E(L): 
 

τ(∞) = (∞) ,τ(x, y) = (x
2
, y

2
)              (22) 

 

It can be demonstrated thatP +P = − τ
2
(P) + μτ(P) 

with μ = 1 if c = 1 and μ = − 1 if c = 0 
 

More generally, it is possible to express kP under the form: 
 

kP= rt− 1τ
t − 1

(P) + rt− 2τ
t − 2

(P) + . . . + r1τ(P) + r0Pwith ki∈ 

{ −1, 0, 1}                                            (23) 
 

to which correspond the formal algorithms 2 in which 

frobenius is a function computing relations (8), which in 

turn includes three computation primitives: adding (whenki 

= 1), subtracting (when ki = -1) and τ. The difference with 

the basic algorithm is that point doubling has been 

substituted by the Frobenius map computation, that is 

squaring, an easy operation over a binary field. Obviously 

it remains to express kP under the form (4). Given two 

integers a and b, define an application cc = a + bt from 

E(L) to E(L): α (P) = aP + b τ (P). Then look for two 

integers a' and b' such that 
 

α(P) = α' (τ(P)) + rP 

where α ' = a' + b' τ and r ∈ {-1, 0, 1}(24) 
 

To summarize: 

1. If a is even, then r = 0, b' = − a/2, and a' = b − μb' = b + 

μa/2. 

2. If a is odd and a1⊕b0 = 0, then r = 1, b' = − (a − 1)/2, 

and a' = b − μ b' = b + μ(a − 1)/2. 

3. If a is odd and a1⊕b0 = 1, then r = − 1, b' = − (a + 1)/2 

and a'= b − μ b' = b + μ(a + 1)/2. 

Equation defines a kind of integer division of α by τ, that is 

α = α ' τ + r with r ∈ {−1, 0, 1} 

By repeatedly using the previous relation, an expression of 

α can be computed:  
 

α = α1τ + r0 

α1 = α2τ + r1 

. . . 

αt − 1 = αtτ + rt– 1(25) 
 

withri∈ { − 1, 0, 1}. Thus (multiply the second equation by 

τ, the third one by τ
2
, and so on, and sum up the t 

equations) 
 

α = r0 + r1τ + . . . + rt− 1τt − 1 + αtτ t(26) 

 

Algorithm 5: Point multiplication (Q = kP), Koblitz curve 

Q :=point_at_infinity; 

for i in 0 .. t-1 loop 

       if r(i) = 1 then Q := Q + P; 

elsif r(i) = -1 then Q := Q-P; 

       end if; 

       P := frobenius(P); 

end loop; 
 

Assume that algorithm 5 is used. The coefficients ki can be 

computed in parallel with the other operations of algorithm 

5. As the value of t is not known in advance, the 

computation is performed as long as aj = aj + bjt≠ 0, that is 

aj≠ 0 and b j ≠ 0. Initially a0 = k, that is a0 = k and b0 = 0: 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050986

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

940



 

Algorithm 6:Point multiplication (Q = kP), Koblitz curve, τ 

-ary representation 

Q := point_at_infinity; a := k; b := 0; 

if a /= O then 

loop 

if a(0) = 0 then r_i := 0; 

elsif (a(1) + b(0)) mod 2 = 0 then 

r_i := 1; Q := Q + P; 

else r_i := -1; Q := Q - P; end if; 

old_a := a; a := b + (old_a -r i)/2; 

b (r i - old a)/2; 

if a = 0 and b = 0 then exit; 

end loop; 

end if; 
 

To summarize, doubling has been substituted by squaring, 

an operation executable in one clock cycle. Furthermore, 

among two successive coefficients ki, at least one is equal 

to 0, so that the number of non-zero coefficients Ki is 

smaller than m. Thus, the computation of KP includes at 

most m operations (adding or subtracting), so that the total 

computation time should be roughly half the computation 

time of the basic algorithm. 
 

The algorithm 7, deduced from algorithms 5 and 6, 

computes Q = kP, with k < n and P of order n. At the end 

of step number i of algorithm 5, Q = k0P + kl τ(P) + k2τ
2
 

(P) +...+ ki-1 τ
i-1

(P). If can be shown that, unless all 

coefficients k0, k1, ... , ki-1, are equal to 0, Q ≠ ∞. As before, 

instead of defining a specific representation for 0o, 

Boolean flags Q infinity and R infinity are used. Figure 4 

reflects full operation of algorithm 7. 

 

Algorithm 7: Point multiplication (k < 2m), 

Frobenius map 

Q_infinity true; xxP =xP; yyP = yP; 

a = k; b= zero; 

while ((a /= zero) or (b /= zero)) loop 

if a(0) = then r_i = 0; 

elsif a(l) = b(0) then r_i = 1; 

if Q infinity then 

(xQ,yQ) =(xxP,yyP); Q_infinity = false; 

else (xQ,yQ) = adding ((xxP , yyP) , (xQ , yQ)); 

end if; 

else r_i = -1; 

if Q_infinity then xQ = xxP 

yQ = xxP + yyP; Q_infinity = false; 

else (xQ,yQ) = adding ((xxP , xxP + yyP) , (xQ , 

yQ)); 

end if; 

end if; 

xxP = square(xxP);  yyP = square(yyP); old a  = a; 

a = b + (old_a  - r_i)/2;  b = (r_i - old_a)/2; 

 if a = 0and b = 0 then exit 

end loop; 

 
 

Start

Input: P (Px, Py), KPrivate Key

Stop

Output: APublic Key = KPrivate Key * Q (Qx, Qy)

Square GF (2m)

square_y = (yyP)2

xxP = Px 
yyP = Py

a  = k
b  = 0 (zero) 

Q_infinity = 1 

a[0] = 0 a[1] = b[0]
No

Calculate updated_a 
and  updated_b

Calculate updated_a 
and  updated_b

Calculate updated_a 
and  updated_b

Yes Yes

No

a = 0
&

 b = 0

Q_infinity =1

Point Addition

 P,Q

Square GF (2m)

square_x = (xxP)2

xxP = square_x 
yyP = square_y
a  = updated_a
b  = updated_b  

Qx = xxP
Qy = yyP

Q_infinity = 0
Qx = xR
Qy = yR

R

Q_infinity =1

Point Addition

Qx = xxP
Qy = (xxP ⊕ yyP)

Q_infinity = 0
Qx = xR
Qy = yR

R

(xxP ⊕ yyP)

Yes

No
No

No

Yes

 P,Q
 yyP 

Yes

 

 

Figure 4: Flowchart Point multiplication (k < 2m), Frobenius map 

 

Point Addition
Elliptic Curve 
Cryptographic 

Operation

MultiplicationAddition DivisionSquare

Galois Field 
Operation

Scalar Multiplication
(Frobenius Method)

 
 

Figure 5: Design Hierarchy of Point multiplication  

(Frobeniusmap) 

After applying Frobenius map as a point multiplication 

algorithm and above stated Galois Field algorithms the 

design hierarchy changes drastically (Figure 5). Only for 

Frobenius map speed has boosted about 50% just because 

of we are using GF Square instead of point doubling. 

Figure 5 Design Hierarchy of Point multiplication 

(Frobenius map). 
 

V. HARDWARE DESIGN OF THE SYSTEM 
 

A. Top View 
 

Figure 6 shows the block diagram of Scalar Multiplication 

and Table I is the pin description Scalar  

 

 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050986

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

941



Multiplicationblock. 
 

Scalar 
Multiplication

xP [162:0]

yP [162:0]

k [162:0]

clk

start reset

done

xQ [162:0]

yQ [162:0]

 
Figure 6: Block Diagram of Scalar Multiplication 

 

Table I 

Pin Description of Top Block 

Pin Name Input/Output Description 

xP [162:0]  

 

 
Input 

Curve Generator Point Co-

ordinate x  

yP [162:0] Curve Generator Point Co-
ordinate y 

K [162:0] Private Key 

reset Reset Flag 

start Start Flag 

clk System Clock  

xQ [162:0]  
Output 

Public Key/Scalar 
Multiplication Co-ordinate 

x  

yQ [162:0] Public Key/Scalar 
Multiplication Co-ordinate 

y 

done Done Flag  

 

Point 
Addition
Control 

Unit

Addition GF(2m)Addition GF(2m)

Division GF(2m)

Addition GF(2m)

Addition GF(2m) Addition GF(2m)

Square GF(2m)

Multiplication GF(2m)

clk

RESET

Square GF(2m)

Square GF(2m)

Scalar 
Multiplication

Control 
logic
Unit

Point Addition

Scalar Multiplication

xP [162:0]

yP [162:0]

k [162:0]

xQ [162:0]

xQ [162:0]

done

start

Figure 

7: Internal Block diagram of Scalar Multiplication 

 

Figure 7 displays the entire hardware internal block 

diagram of Scalar Multiplication Unit. In this diagram, 

how the input/output pins are connected to Scalar 

Multiplication Control Logic Unit (SMCLU) (Figure 8)and 

the SMCLU is connected to the Point Addition and GF 

Square unit is shows. Furthermore, displays how the 

input/output connections of Point Addition and GF 

Arithmetic Operations are controller by Point Addition 

Control Unit(Figure 9). 
 

SCALAR_MULTIPLICATION 
Control Logic Unit

xP [162:0]
yP [162:0]

k [162:0]

xQ [162:0]

xQ [162:0]

done (SCALAR_MULTIPLICATIPON)

start (SCALAR_MULTIPLICATIPON)

rx [162:0]

ry [162:0]

done (POINT_ADDITION)

px [162:0]

py [162:0]

qx [162:0]

qy [162:0]

reset start (POINT_ADDITION)
clk

 

Figure 8: Scalar Multiplication Control Logic Unit 

 

POINT_ADDITION 
Control Unitrx [162:0]

ry [162:0]

done 
(POINT_ADDITION)

clk

start (POINT_ADDITION)

start 
(GF Addition)

done (GF Multiplication)

start (GF Multiplication)

done  
(GF Addition)

start 
(GF Division)

done  
(GF Division)

reset

Flag: Squaring output 
non zero

 

Figure 9: Point Addition Control Unit 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 
 

A. Synthesis Result 
 

Altera Quantus-II was used to Analyze and synthesize the 

design. Synthesis report is shown in Table II, III and IV. 

Figure 10 shows the RTL view of Altera Quantus-II 

synthesis tool. 
 

 
Figure 10: Register Transfer Levelviewof Scalar Multiplication from 

Altera Quantus-II 

 
Table II 

Quantus II Flow Summary 

Flow Status 

Quartus II 64-Bit 
Version 

14.1.0 Build 186 12/03/2014 SJ Web 
Edition 

Revision Name scalar_multiplication 

Top-level Entity Name scalar_multiplication 

Family Cyclone V 

Device 5CSEMA5F31C6 

Timing Models Final 

Logic utilization (in 

ALMs) 

3,982 

Total registers 6576 

Total pins 819 

 

Table III 

Resource Usage summary 

Resource Usage 

Estimate of Logic utilization (ALMs 

needed) 3585 

Combinational ALUT usage for logic 4932 

    -- 7 input functions 1 

    -- 6 input functions 181 

    -- 5 input functions 846 

    -- 4 input functions 1492 

    -- <=3 input functions 2412 

Dedicated logic registers 6576 

I/O pins 819 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050986

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

942



Resource Usage 

Maximum fan-out node 

clk~in

put 

Maximum fan-out 6576 

Total fan-out 40417 

Average fan-out 3.07 

 

Table IV 

General Register Statistics 

Statistic Value 

Total registers 6576 

Number of registers using Synchronous 

Clear 2612 

Number of registers using Synchronous 

Load 1469 

Number of registers using Clock Enable 3770 

 

B. Simulation Result 
 

ModelSimwas used to simulate the design. Figure 11 and 

12 gives a full view of the simulation of Scalar 

Multiplicationand Point Addition, respectively. 
 

 

Figure 11: Simulation Scalar multiplication 

 
Figure 12: Simulation Point Addition 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

VII. CONCLUSION 
 

This paper represents an implementation of hardware 

accelerated Elliptic Curve co-processor components, 

Scalar Multiplication and Point addition. By only using 

Frobenius Mapfor Scalar Multiplication, the computation 

is accelerated about 50%. Furthermore, in Galois Field 

operations most efficient algorithms are used for GF 

Addition, GF Multiplication, GF Square and GF Division. 

As a result, after implementing the algorithms, 

computational time for Scalar Multiplication has been 

reduced from 46.6 µs [1] to 14.6 µs which is about 68.67% 

faster.In order to further accelerate the computation process 

more efficient algorithms are required perform the field 

arithmetic operations and Point/Scalar 

Multiplicationoperation. At the circuit level, some 

optimizations are required which will even accelerate the 

process.  

 

ACKNOWLEDGMENT 
 

Authors would like to express their gratitude towards 

Almighty for giving them the opportunity to do this work. 

They would also like to thank Dr. Arshad M. Chowdhury, 

Chairman of the ECE Department at North South 

University. 

 

REFERENCE 
[1]. MubarekKedir (2008) Hardware Acceleration of Elliptic Curve 

Based Cryptographic Algorithms: Design and Simulation 

[2]. D.Hankerson, A.J.Menezes, and S.Vanstone, Guide to Elliptic Curve 

Cryptography, Springer-Verlag, 2004. 
[3]. F.Rodriguez-Henriquez, N.A.Saqib, A.Diaz Perez, and Q.K.Koq, 

Cryptographic Algorithms on Reconfigurable Hardware, Springer, 

2007. 

[4]. I.VBlake, G.Seroussi, and N.Smart, Elliptic Curves in Cryptography, 

Cambridge University Press, 2002. 

[5]. N.Koblitz, A course in Number Theory and Cryptography,Springer, 
1994. 

[6]. Ch.-H.Wu, Ch.-M.Wu, M.-D.Shieh, and Y.-T.Hwang, "Novel 

Algorithms and VLSI Design for Division over GF(2m)", IEICE 
Transactions Fundamentals, vol.E85-A, no 5, May 2002, pp. 1129-

1139. 

[7]. J.-P.Deschamps and G.Sutter, "Hardware Implementation of Finite-
Field Division", ActaApplicandaeMathematicae, vol.93, no 1-3, 

September 2006, pp.119-147. 

[8]. J.-P.Deschamps, "Squaring over GF(2163)", UniversityRovira i 
Virgili, Inter Research Report DESS21, Oct 2006. 

[9]. Paar, C., &Pelzl, J. (2009). Understanding cryptography a textbook 

for students and practitioners. Berlin: Springer. 
[10]. NIST Koblitz Curves Parameters. (n.d.). Retrieved May 16, 2015, 

from 

http://en.wikisource.org/wiki/NIST_Koblitz_Curves_Parameters 

[11]. Deschamps, J., & A, J. (2009). Hardware implementation of finite-

field arithmetic. New York: McGraw-Hill. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS050986

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 05, May-2015

943


