
Hardware Implementation of Tag Tree in

JPEG2000 Encoder

Bach Tuan Dong
Department of Electrical and Electronic Engineering

Ho Chi Minh City University of Technology and Education

Ho Chi Minh City, Vietnam

Huynh Hong Tram
Department of Computational Engineering

Vietnamese – German University

Binh Duong Province, Vietnam

Trinh Hoai An
Department of Electrical and Electronic Engineering

Ho Chi Minh City University of Technology and Education

Ho Chi Minh City, Vietnam

Le My Ha
Department of Electrical and Electronic Engineering

Ho Chi Minh City University of Technology and Education

Ho Chi Minh City, Vietnam

Abstract—Hierarchical data structure takes an importance

rule in many files such as computer graphic, information

storage and retrieval, image processing etc. Quad-tree is a kind

of hierarchical data structure which is applied widely in image

coding. Tag tree, a particular type of quad-tree, is a coding

mechanism used in tier-2 coding engine in JPEG2000 encode. In

this paper, we propose a hardware implementation of tag tree in

JPEG2000 encode system. Tag tree is successful implemented on

hardware system, tested by using OpenJPEG and simulated on

Modelsim and VCS tools.

Keywords—Quad-tree; tag tree; JPEG2000; OpenJPEG;

packet; packet header; node; parent node

I. INTRODUCTION

JPEG2000 is a new image compression standard, which

was created by Joint Photographic Expert Group committed in

2000. It shows many advances such as superior compression

performance, multiple resolution representation, progressive

transition support, lossless and lossy compression etc. Based

on the independent coding mechanism, with JPEG2000, the

relevant byte in a compressed codestream can be extracted and

reassembled into a different codestream without decompress

the codestream [2]. The only thing we have to do is changing

the packing way of the codestream, which is processed in Tier

2. Tier-2 reorders and packs the codeblock bit-stream into the

full-feature bit-stream.

T1
Low-level embedded block coding engine

T2
Layer formation and block summary information Coding engine

Blocks of sub-band sample

Embedded block bit-streams

and summary information

Full-featured bit-stream

Fig. 1. Tier-1 coding and Tier-2 coding in JPEG2000

All compressed image data representing a specific tile,

layer, component, resolution level and precinct appears in the

code stream in a contiguous segment called a packet. Packet

data is aligned at 8-bit (one byte) boundaries [1].

0,1

1kpacket
1,1

1k packet

bodyhead Head body

1,1

1k

Head body

packet

Fig. 2. Bit-stream organization

A packet includes packet header and packet data, which is

described as follows.

A packet header describes:

 Zero length packet;

 Code-block inclusion;

 Zero bit-plane information;

 Number of coding passes;

 Length of the code-block compressed image data from

a given code-block.

 The code-block inclusion and zero bit-plane information

are coded with the tag tree coding algorithm.

This paper is organized as follows. The section 2 deals

with the introduction of tag tree coding scheme. Hardware

implementation of tag tree is discussed in section 3. Finally,

the result and conclusion are presented in section 4 and section

5.

II. TAG TREE ENCODING PROCEDURE

A. Tag tree encode algorithm

Tag tree is a way of representing a two-dimensional array

of non-negative integer in hierarchical way. It successive

creates reduced resolution levels of this two dimension array,

forming a tree. At every node of this tree the minimum integer

of the (up to four) nodes below it is recorded [1].

The following is an example of a tag tree. Assuming that

qi(m,n) is the value of an array at row m, column n and level i.

3 (0,0)q 3 (0,1)q 3 (0,2)q 3 (0,3)q 3 (0,4)q 3 (0,5)q

3 (1,0)q 3 (1,1)q 3 (1,2)q 3 (1,3)q 3 (1,4)q 3 (1,5)q

3 (2,0)q 3 (2,1)q 3 (2,2)q 3 (2,3)q 3 (2,4)q 3 (2,5)q

1

2

2

2

2

2

22

2

2 1

33 2

31 4

3

Fig. 3. Level 3 of tag tree

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110542

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

595

(1,3,2,2) 1Min 

2 (0,0)q 2 (0,1)q

(2,3,1,4) 1Min  (2,3,3,2) 2Min 

2 (0,2)q

(2,2) 2Min  (2,2) 2Min  (1,2) 1Min 

2 (1,0)q 2 (1,1)q 2 (1,2)q

Fig. 4. Level 2 of tag tree

1 (0,0)q 1 (0,1)q

1 1

Fig. 5. Level 1 of tag tree

0 (0,0)q

Fig. 6. Level 0 of tag tree

B. Encoding method:

Each coded node of a tag tree includes d bit zeros and one

bit 1 (d is the difference of the value of the current node and

its parent node). Specially, the parent node of a root node is 0.

1) Example 1:

Encode q3(0,0) in the previous example. In order to encode

the node q3(0,0), we should consider q2(0,0), q1(0,0), q0(0,0)

The parent node of q0(0,0) is 0; and q0(0,0) = 1 q0(0,0) –

0 = 1  the coding value at the node q0(0,0) includes one bit 0

and one bit 1 the coding value of q3(0,0) is “01”.

The parent node of q1(0,0) is q0(0,0); and q1(0,0) = 1,

q0(0,0) = 1  q1(0,0) – q0(0,0) = 0  the coding value of

q1(0,0) includes zero bit 0 and one bit 1. Combining with the

coding value of the previous node, the current coding value is

“0 1 1”.

Similarly, the parent node of q2(0,0) is q1(0,0); and q2(0,0)

= 1 and q1(0,0) = 1  q2(0,0) – q1(0,0) = 0  the coding

value at the node q2(0,0) includes zero bit 0 and one bit 1.

Combining with the coding value of the previous nodes, the

current coding value is “0 1 1 1”.

Similarly, the coding value at the node q3(0,0) is “0 1 1 1 1”

2) Example 2:

Coding q3(0,1). The parent node of q3(0,1) is q2(0,0).

Because the node q2(0,0) has already coded, we just consider

q2(0,0) when coding q3(0,1).

The parent node of q3(0,1) is q2(0,0), q3(0,1) – q2(0,0) = 2

 the coding value of the node q3(0,1) includes two bit 0s and

one bit 1  The coding value is “001”.

III. IMPLEMENT TAG TREE ON HARDWARE

SYSTEM

A. Some problems had to solve to build a tag tree on

hardware system

 In order to encode data at a specific position, the tree

structure has to build first (for example, the coding

value of q3(0,0) is obtained by finding the differences

of q0(0,0) and 0, q1(0,0) and q0(0,0), q2(0,0) and

q1(0,0), q3(0,0) and q2(0,0)

 To determine whether a node is encoded, a flag is used

to mark an encoded node. If that node is not encoded,

encode that node and jump to its parent node. If that

node is encoded, encode that not and stop the coding

process for that node.

 Beginning from the input array of the maximum level,

we can find the minimum values of groups of four

elements to determine array data values of the next

levels.

 The number of coding bit of a tag tree cannot be

predetermined; it depends on the input values.

Therefore, we need two kinds of signals to express the

output. The first one is the “coding”, which shows the

coded values. The second one is “mask”, which shows

the number of valid bits in the “coding” signal.

The tag tree on hardware system is divided into 3 parts:

 Part 1: Save data into RAM and build the tree.

 Part 2: Read data from RAM and encode.

 Part 3: Pack encoded data into packets and send packet

out.

B. Tag tree hardware architecture overview

1) Part 1:

The input data is sent to the tag tree module in raster order.

“Line buffer” module captures data and groups them into

groups of four elements. Each group is sent to “min” module,

which finds the minimum value of groups of four elements.

These minimum values are saved in RAM. Besides, these

minimum values also push out to the next level. The similar

method is applied for all levels.

 The tree structure is generated and saved in RAM.

Fig. 7. Tag tree structure - Part 1

2) Part 2:

Part 2 is the reading (from RAM) and encoding process.

The main purpose of this part is sending out the coding values

which are suitable with the input positions.

3) Part 3:

Part 3 is the parking process. It sends out packets and mask

packets.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110542

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

596

Transfer addess

RAM

(level 3)

RAM

(level 2)

RAM

(level 1)

RAM

(level 0)

Read-level_Max

Read-level_i

Read-level_i

Read-level_0

Choose data

packing

Row column

Read_level

Fig. 8. Tag tree structure - Part 2 and 3

C. Tag tree architecture in details

1) Module “combine address and data”

Combine data_in , row_in and column _in into a data

line.

2) Module “line buffer”

a) Function:

Create two consecutive rows.

b) Example:

Assume that we have a 4x4-input array. The output data

from the “line buffer” module is described as following:

0,1

1,1

2,1

3,1

0,0

1,0

2,0

3,0

0,2

1,2

2,2

3,2

0,3

1,3

2,3

3,3

0,0

1,0

0,1

1,1

0,2

1,2

0,3

1,3

2,0

3,0

3,1

3,1

2,2

3,2

2,3

3,3

Line_buffer

Fig. 9. Line buffer – even height

In case of the height is odd, the values at A, B, C, D is the

maximum performed value. For example, we need 4 bits to

perform the input values of “line buffer”; it means that the

values at cells A, B, C, D are 1111b.

0,0

1,0

0,1

1,1

0,2

1,2

0,3

1,3

2,0 3,1 2,2 2,3

A C DB

Fig. 10. Line Buffer –odd height

The output values of the “line buffer” module are the input

values of the “array” module.

3) Module “Array”

Group the data out from the “line buffer” module into

groups of four elements. The input value gotten from the “line

buffer” module is processed by the “array” module and creates

the following output order:

0,0

1,0

0,1

1,1

0,2

1,2

0,3

1,3

2,0

3,0

3,1

3,1

2,2

3,2

2,3

3,3

Fig. 11. Array Module

Each group includes 4 data lines sent to the “min” module in

parallel.

The main purpose of “combine_address_data”, “line buffer”

and “array” is grouping data into arrays of 2x2 elements and

inserting the maximum possible values into every missing

element. Therefore, there are always 4 data lines sent to the

“min” module.

4) Module “min”:

Find the minimum value of 4 elements gotten from “array”

module.

 Create the information described for a node. The

information includes parent node address, flag (which is used

to mark coded nodes) and the differences of each element in a

2x2 array and the minimum value of that 2x2 array. The

structure of a tag tree is saved in RAM.

5) Save tag tree module into RAM

Consider the following array as an example:

Level = 3, width3 = 6, height3 = 2;

3 (0,0)q 3 (0,1)q 3 (0,2)q 3 (0,3)q 3 (0,4)q 3 (0,5)q

3 (1,0)q 3 (1,1)q 3 (1,2)q 3 (1,3)q 3 (1,4)q 3 (1,5)q

3 (2,0)q 3 (2,1)q 3 (2,2)q 3 (2,3)q 3 (2,4)q 3 (2,5)q

1

2

2

2

2

2

22

2

2 1

33 2

31 4

3

Fig. 12. Group data in level 3

Consider the 2x2 green array; min (q3(0,0), q3(0,1),

q3(1,0), q3(1,1)) = q2(0,0), q2(0,0) (the 1x1 yellow array) is the

parent node of the green array.

Level = 2; width2 = 3; height2 = 2

(1,3,2,2) 1Min 

2 (0,0)q 2 (0,1)q

`

(2,3,1,4) 1Min  (2,3,3,2) 2Min 

2 (0,2)q

(2, 2) 2Min  (2, 2) 2Min  (1,2) 1Min 

2 (1,0)q 2 (1,1)q 2 (1,2)q

Fig. 13. Group data in level 2

Level = 1; width1 = 2; height1 = 1

1 (0,0)q 1 (0,1)q

1 1

Fig. 84. Group data in level 2

Each cell in RAM describes the information of a 2x2 array

block. It means that an address in RAM permits to access to a

2x2-block. Following with an address line is a position line,

which permits to access a specific value in that 2x2-block.

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110542

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

597

6) Module “Transfer address”

The input node address is described in term of row and

column, the “transfer address” module gets that row and

column and changes them into respective address to access

RAM level max (address and position)

This module is used once in case of level max, the

remaining levels of RAM base on the parent node saved in

RAM at that level to access the upper level.

7) Module “Read_level”:

The encoding is proceeded here. It is connected to RAM in

encode period to control reading data out from RAM and

writing the flag when finishing coding a node.

The output data of this module is “coding” and “mask”.

“Coding” is the encoded value, and “mask” is the number of

valid bit in “coding”.

The “read_level” module includes 2 parts: “coding” and

“choose”. “Coding” encodes for a node, “choose” selects one

data line of levels to send out.

The following is the data flow of the “read_level” module.

Current Address, current

position LEVELMAX

Coding

Level = 0

Start

Stop

Current Address = Parent Address

Current Position = Parent Position

Level = Level - 1

Flag current = 1

Yes

No

Yes

Coding

Flag current = 1

Fig. 95. Encoding flow of the “read_level” module.

IV. RESULT

A. Parameter

 Level max =
max([log2(WITH_TAG_TREE)],[log2(HEIGHT_TAG_TREE)])

 Memlength(i)=
   
   
   


0

{[*[]}
2 2

]
Levelmax WIDTHi HEIGHTi

 WIDTH_LEVEL= [
2

]
Levelmax

level

WIDTHlevel 
 
 



 HEIGHT_LEVEL= [
2

]
Levelmax

level

HEIGHTlevel 
 
 



B. Compile result

Assume that WIDTH = 32, HEIGHT = 32, PACKET_LEN =

8, we have the compile result on Quartus II version 11.0:

Altera
Device

Area Fmax
(MHz)

Mem DSP

Cyclone II

EP2C35F672C6

14,867

LEs

92.89 0 0

Stratix II

EP2S30F672C3

4,891

ALUTs

151.38 0 0

V. CONCLUSION

Based on the tag tree encoding algorithm, this paper presents

the implementation of a tag tree on hardware system. This

core is processed through three parts. Part 1 is saving data

and building the tree structure. Part 2 is encoding; and part 3

is packing. Although the input array values of a tag tree

require the raster-scan order, the information in the tree may

be coded in any order. The input array dimension, data input

bit-width and the maximum length of a packet are defined in

an inclusion file by users. The architecture is successfully

applied on theJPEG2000 Encoder IP of ICDREC. The tag

tree operates at more than 150 MHz on Stratix II Family of

Altera FPGA

REFERENCES

[1] JPEG2000 Part 1 Final Committee Draft Version 1.0, ISO/IEC

JTC1/SC 29/WG N1646R, 2000.

[2] David S. Taubman, JPEG2000 Image Compression Fundamentals,

Standards and Practice, 2002
[3] Coding of Still Pictures, ISO/IEC JTC 1/SC 29/WG 1 WG1N1684,

April 25, 2000

[4] Schelkens, Skodras, Ebrahimi The JPEG 2000 Suite, 2009
[5] Chung-JrLian, “Lifting Based Discrete Wavelet Transform

Architecture for JPEG2000”, 2009

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS110542

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 3 Issue 11, November-2014

598

