
Harnessing Learning for Database Optimization:

A Paradigm Shift

Ujjwal Gupta

Senior software engineer, Walmart Global Tech

Abstract— Learning has emerged as a powerful tool in various

domains, revolutionizing traditional approaches and achieving

remarkable results. In the realm of database management and

optimization, researchers and practitioners have started exploring

the potential of learning techniques to enhance performance and

efficiency. This paper presents a comprehensive review of

learning-based database optimizations, highlighting recent

advancements and their impact on various aspects of database

systems. In this paper, we explore the initial endeavors in this field,

examine recent progress, identify constraints and unresolved

aspects, and propose potential avenues for future research.

Keywords- Learning, deep learning, optimization

I. INTRODUCTION

For over four decades, query optimization has remained a
dynamic and extensively researched domain. However, the
problem's combinatorial complexity has posed challenges in
devising a single comprehensive solution. As a result, the current
research landscape predominantly revolves around heuristic and
cost-based approaches, which may yield satisfactory results
under certain limiting assumptions. Numerous techniques, such
as pruning and randomized methods, have been proposed to
address query optimization. However, in certain edge cases,
these techniques tend to falter and generate suboptimal
execution plans.

The emergence of machine learning and deep learning
technologies has sparked a new trend in data management
research. This trend explores the potential benefits of
augmenting existing programmed heuristics with learned
approaches, employing dynamic, self-learning methods for cost
modeling, and enhancing traditional plan generation strategies
through learning from past planning instances. These
advancements aim to significantly reduce search time for future
planning tasks.

In this realm, deep neural network-based learning techniques are
widely utilized, falling into two broad categories: query-based
and data-based approaches. Query-based methods are typically
supervised learning models, trained on running queries and
utilizing statistics, such as cardinalities, as labels. On the other
hand, data-based methods employ unsupervised learning to
capture distributions and correlations within the joint probability
density functions of the underlying data.

By incorporating machine learning and deep learning into data
management, researchers envision optimizing various aspects of
the process, making it more efficient, adaptable, and capable of
learning from its own experiences. These developments hold
promise for revolutionizing data management systems and
driving significant advancements in the field.

II. REVIEW SCOPE

This review article strives to offer an extensive examination of

optimization methodologies achieved via learning or deep

learning, focusing on (a) the progress made in learning query

optimization, the knowledge acquired, and the existing gaps;

(b) the comparative advantages of learning-based approaches

over or in conjunction with traditional query optimization; and

(c) the potential impact of learning query optimization on

production systems. This paper plans to discuss the areas listed

below where significant research has happened in the area of

optimizations in databases with learning.

1. Query optimization with learning

2. Cost estimation with learning

3. Runtime prediction with learning

4. Benchmarks, metrics, and data preparation

5. Future research scope

III. QUERY OPTIMIZATION WITH LEARNING

a. On system design level, some experts believe that ML can

pave the way for smarter and more user-friendly DBMSs,

making tasks like maintenance, tuning, and optimization easier.

There is even a proposition that learned components could

entirely replace fundamental elements of a DBMS, including

data structures, indices, sorting algorithms, and query execution

processes [6], [19], [48]. Several system frameworks, such as

SageDB [18] and openGauss [24], are actively exploring this

direction.

SageDB[18] uses ML algorithms to learn from historical query

performance data. By analyzing past query execution patterns,

it can identify common bottlenecks and inefficiencies. With this

knowledge, SageDB can automatically suggest better query

plans and optimize the execution process, leading to improved

overall performance.

openGauss[24] employs advanced query optimizers that

analyze SQL queries to find the most efficient execution plans.

It considers factors like available indexes, data distribution,

statistics, and resource usage to generate optimal query

execution plans, resulting in faster query response times.

b. Query optimizations are attempted with join ordering

too. Reinforcement learning (RL) has found application in

optimizing join ordering in the context of query execution. Two

prominent examples are DQ [20] and ReJOIN [32], which

leverage RL in combination with a pre-defined cost

model. This combination allows them to autonomously learn

effective search strategies for exploring the vast space of

potential join orderings.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

298

www.ijert.org
www.ijert.org

RTOS [22] builds upon DQ and ReJOIN by introducing a Tree-

LSTM, a specialized type of recurrent neural network, to

calculate query costs. By using this enhanced cost estimation,

RTOS further refines the join ordering process.

SkinnerDB [45] takes a different approach by employing RL to

learn the best join orders in real-time during query execution.

This approach enables quick switching between different join

orders, leading to more efficient query processing.

AlphaJoin [23] adopts the Monte Carlo Tree Search (MCTS)

technique to determine join ordering. Additionally, it employs

a decision network (ADN) to choose between plans generated

by AlphaJoin for longer queries and those produced by

PostgreSQL for shorter queries.

c. Optimizers have also been explored in this area for

improving query optimization with learning. Neo [33]:

Taking a more radical approach, Neo replaces many traditional

optimizer components with ML models and deep neural

networks. This integration of advanced ML techniques allows

Neo to optimize queries effectively, catering to a variety of

scenarios.

Bao [31]: Bao adopts a schema and data agnostic approach to

learning optimization. It executes queries with predefined hints

and maintains a ranked plan using a tree convolutional neural

network (TCNN). Periodic retraining ensures a balance

between exploring new optimization strategies and exploiting

learned knowledge.

Elfino [4] is a self-driving query optimizer that monitors queries

throughout their entire lifecycle. It leverages an AI algorithm to

learn from the mistakes made by the Spark Optimizer, enabling

continuous improvement and more efficient query

optimization.

Microlearner [14]: Focusing on complex cloud workloads,

Microlearner divides the workload into subsets and learns

micro-models independently and in parallel. This decentralized

learning approach allows Microlearner to optimize query

performance efficiently.

IV. COST ESTIMATION WITH LEARNING

a. Selectivity estimation is a fundamental aspect of query
optimization. Some research works in this area are as follows:
LATEST [37] adopts a combination of classification and
decision trees to determine the most suitable selectivity
estimators for time windows in streaming data scenarios. This
approach enables LATEST to dynamically choose the best
estimator for each time window, leading to more accurate
selectivity predictions.

ASTRID [39] takes a different approach by building neural
language models specifically for selectivity estimation of prefix
and substring queries. By employing these language models,
ASTRID can better predict the selectivity of such queries,
leading to improved query optimization.

A. Dutt [7] proposes lightweight models, such as neural
networks and tree-based ensembles, offer a more flexible and

adaptive approach to selectivity estimation.

[11] demonstrates improved accuracy in predicting query
selectivity by using deep learning models for selectivity
estimation of multi-attribute queries. The authors utilize neural

density estimation to construct a selectivity estimator for the
joint probability distribution based on data samples.

b. Cardinality. R. Hayek and O. Shmueli[12] uses CRN
(Cardinality Estimation using Containment Rates) technique
that employs deep learning to estimate cardinalities by analyzing
the containment rates among queries.

Incorporating uncertainty information into a deep learning
model, Fauce [25] enhances cardinality estimation accuracy.
This approach utilizes deep ensembles to capture diverse
patterns and provides not only cardinality estimates but also
confidence intervals, resulting in a more robust estimation
process.

DeepDB [13] introduces a data-driven approach for database
management that is capable of accommodating workload and
data changes. It enables fast retraining, ensuring adaptability to
evolving conditions. Moreover, it maintains reasonable accuracy
even for queries not previously encountered, making it a
versatile and efficient solution.

In [36], a comprehensive evaluation of deep learning techniques
is conducted, focusing on the trade-offs between model size,
training time, and prediction accuracy.

UAE (Uncertainty-Aware Estimation) [42] is a cardinality
estimation technique that utilizes both data and queries to
achieve accurate cardinality estimates, even in scenarios where
there are shifts in the data or workload. This approach is
designed to handle dynamic and evolving database
environments effectively, ensuring reliable cardinality
estimation despite changes in the data or query patterns.

c. Cost model estimation: In [29], the feature space is
partitioned using decision trees, and for each partition or split, a
regression model is built.

CherryPick [2] constructs performance models by identifying
deployments that meet a specified performance target through
the use of Bayesian optimization. CLEO [40] adopts a learning-
based approach to construct cost models from production
workloads. These cost models are then integrated into a query
optimizer.

V. RUNTIME PREDICTION WITH LEARNING

In the early stages, learning techniques were employed for
runtime prediction, as demonstrated in [8], [10], and [46].
However, [1] reveals that linear regression for mapping
PostgreSQL's estimated execution time to actual time is
ineffective. [43] proposes that optimizer estimates can be
valuable when the cost model is fine-tuned just before making
the estimate. Additionally, Q-Cop [44] and ActiveSLA [35]
leverage query runtime prediction for admission control
purposes.

Recent advancements in learning-based techniques have
shown promising outcomes in runtime prediction for database
management systems (DBMS). These approaches treat the
DBMS as a black-box and focus on constructing efficient query
runtime prediction models, as evidenced by studies such as [26],
[34], and [17]. For instance, Prestroid [15] utilizes tree-
structured convolutional neural networks (TCNN) to predict
resource consumption in large-scale queries, reducing cost.

Furthermore, RouLette [41] employs reinforcement learning
(RL) to identify shareable work among Select-Project-Join (SPJ)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

299

www.ijert.org
www.ijert.org

queries, enabling multi-query optimization and runtime
adaptation. MB2 [28] leverages machine learning to create and
maintain prediction models for self-driving databases,
enhancing their autonomy and efficiency.

Seagull [38], on the other hand, leverages runtime prediction
to optimize resource allocation on cloud platforms, ensuring
effective utilization and performance. These research endeavors
demonstrate the potential of learning-based techniques in
revolutionizing runtime prediction for DBMS, leading to more
efficient, adaptive, and self-optimizing database systems.

VI. BENCHMARKS, METRICS, AND DATA PREPARATION

a. Benchmarks: Traditional benchmarks such as the TPC suite

are not well-suited for learning-based approaches. Instead,

recent benchmarks have been designed to address specific

challenges, like join ordering (JOB [21]) and learned indexes

[30]. However, there remains a need for more comprehensive

benchmarks that are based on realistic datasets. Synthetic data,

which is either too random or too easily predictable, is not

sufficient for evaluating the complexities of learning-based

methods.

Richer benchmarks are required, which should support dynamic

workloads and schemas, provide descriptive metrics about the

specialization of the tested systems, be adaptable to data and

schema changes, exhibit similarity between workloads and data

distributions, and consider the cost associated with training and

maintaining the models [5], [30]. By creating such benchmarks,

researchers can better evaluate the performance, effectiveness,

and general applicability of learning-based techniques in

database optimization and management.

b. Metrics and statistics: Learning optimizers have the

advantage of scaling beyond conventional database statistics

and can access a broader range of raw information. This

includes metrics related to execution containers, processes,

services, and applications. By leveraging this rich pool of data,

learning techniques can create profiling models, pinpoint the

root cause of failures, and generate recommendations for

enhancing performance and resource allocation [3], [9]. The

ability to tap into diverse data sources empowers learning-based

optimizers to make informed decisions, adapt to dynamic

environments, and drive significant improvements in overall

system efficiency and effectiveness.

c. Data preparation: DataFarm [47] adopts a user-provided set

of small workload patterns to create a labeled dataset. By

employing adaptive learning, it iteratively executes sample jobs

to generate labels, constructing a machine learning runtime

prediction model for unlabeled jobs. Similarly, Robopt [16]

offers a training data generator, which creates a query workload

with query runtime estimates. Using polynomial interpolation,

it labels new queries based on existing acquired labels.

On the other hand, HAL [27] takes a different approach by

generalizing a learned database component across various

datasets and workloads. This enables HAL to apply its

knowledge efficiently and effectively to different scenarios,

leading to improved performance and adaptability. These

techniques demonstrate the potential of learning-based

approaches in generating labeled datasets, improving prediction

models, and enhancing database components for a wide range

of workloads and datasets.

VII. FUTURE RESEARCH SCOPE

There are several promising directions to explore in the realm

of applying machine learning to database management systems:

Identifying Consistent Techniques: Given the vast array of

machine learning methods available, research should focus on

identifying approaches that consistently perform well across

various scenarios and workloads.

Rethinking System Architecture: This involves considering

new runtime environments, decomposing monolithic database

systems into mini-services for instance-optimized databases,

and exploring entirely new approaches instead of merely

replacing traditional databases with machine learning-based

solutions.

Expanding Analysis: The scope of analysis should encompass

complex data types such as graphs, spatial, and streaming data,

distributed or federated architectures involving multiple

execution engines, and diverse optimization objectives beyond

just cost.

Generalization across Database Systems: Many machine

learning-based optimization models are designed for specific

database systems, limiting their general applicability. Research

on developing models that can generalize across different

database systems is needed.

Handling Complex Query Structures: Existing research often

focuses on simple queries, but many real-world queries involve

complex structures. Developing machine learning models that

can efficiently optimize complex queries is an important

research direction.

REFERENCES

[1] M. Akdere et al., “Learning-based query performance modeling and

prediction,” in ICDE, 2012

[2] O. Alipourfard et al., “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in NSDI, 2017.

[3] A. Arvanitis et al., “Automated performance management for the big data
stack,” in CIDR, 2019

[4] S. Babu and A. Popescu, “Using ai to build a self-driving query
optimizer,” in Spark+AI Summit, 2018.

[5] L. Bindschaedler et al., “Towards a benchmark for learned systems,” in
ICDE Workshops, 2021.

[6] J. Ding et al., “ALEX: an updatable adaptive learned index,” in SIGMOD,
2020.

[7] A. Dutt et al., “Selectivity estimation for range predicates using
lightweight models,” in PVLDB, 2019.

[8] A. Ganapathi et al., “Predicting multiple metrics for queries: Better
decisions enabled by machine learning,” in ICDE, 2009.

[9] H. Grushka-Cohen et al., “Diversifying database activity monitoring with
bandits,” CoRR:abs/1910.10777, 2019.

[10] C. Gupta et al., “Pqr: Predicting query execution times for autonomous
workload management,” in ICAC, 2008.

[11] S. Hasan et al., “Deep learning models for selectivity estimation of multi-
attribute queries,” in SIGMOD, 2020.

[12] R. Hayek and O. Shmueli, “Improved cardinality estimation by learning
queries containment rates,” in EDBT, 2020, pp. 157–168.

[13] B. Hilprecht et al., “DeepDB: Learn from data, not from queries!”
PVLDB 13(7), 2020.

[14] A. Jindal et al., “Microlearner: A fine-grained learning optimizer for big
data workloads at microsoft,” in ICDE, 2021.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

300

www.ijert.org
www.ijert.org

[15] J. K. Z. Kang et al., “Efficient deep learning pipelines for accurate cost
estimations over large scale query workload,” in SIGMOD, 2021.

[16] Z. Kaoudi et al., “Ml-based cross-platform query optimization,” in ICDE.
IEEE, 2020.

[17] X. Zhou et al., “Query performance prediction for concurrent queries
using graph embedding,” in PVLDB 13(9), 2020.

[18] T. Kraska et al., “Sagedb: A learned database system,” in CIDR, 2019.

[19] T. Kraska et al., “The Case for Learned Index Structures,” in SIGMOD,
2018.

[20] S. Krishnan et al., “Learning to optimize join queries with deep
reinforcement learning,” 2018, CoRR:abs/1808.03196.

[21] V. Leis et al., “How good are query optimizers, really?” in PVLDB 9(3),
2015.

[22] X. Yu et al., “Reinforcement learning with tree-lstm for join order
selection,” in ICDE, 2020.

[23] J. Zhang, “Alphajoin: Join order selection a la alphago,” in ` PVLDB-
PhD, 2020.

[24] G. Li et al., “openGauss: An autonomous database system,” in PVLDB
14(12), 2021.

[25] J. Liu et al., “Fauce: Fast and accurate deep ensembles with uncertainty
for cardinality estimation,” PVLDB 14(11), 2021.

[26] L. Ma et al., “Query-based workload forecasting for self-driving database
management systems,” in SIGMOD, 2018.

[27] L. Ma et al., “Active learning for ML enhanced database systems,” in
SIGMOD, 2020.

[28] L. Ma et al., “MB2: decomposed behavior modeling for self-driving
database management systems,” in SIGMOD, 2021.

[29] T. Malik et al., “A black-box approach to query cardinality estimation,”
in CIDR, 2007.

[30] R. Marcus et al., “Benchmarking Learned Indexes,” inPVLDB
14(1),2021.

[31] R. Marcus et al., “Bao: Making learned query optimization practical,” in
SIGMOD, 2021.

[32] R. Marcus and O. Papaemmanouil, “Deep reinforcement learning for join
order enumeration,” in aiDM@SIGMOD, 2018.

[33] R. C. Marcus et al., “Neo: A learned query optimizer,” in PVLDB 12(11),
2019.

[34] R. C. Marcus and O. Papaemmanouil, “Plan-structured deep neural
network models for query performance prediction,” inPVLDB 12(11),
2019.

[35] P. Xiong et al., “Activesla: a profit-oriented admission control framework
for database-as-a-service providers,” in SoCC, 2011.

[36] J. Ortiz et al., “Learning state representations for query optimization with
deep reinforcement learning,” in DEEM@SIGMOD, 2018.

[37] M. Patil and A. Magdy, “LATEST: learning-assisted selectivity
estimation over spatio-textual streams,” in ICDE, 2021.

[38] O. Poppe et al., “Seagull: An infrastructure for load prediction and
optimized resource allocation,” in PVLDB 14(2), 2021.

[39] S. Shetiya et al., “Astrid: Accurate selectivity estimation for string
predicates using deep learning,” in PVLDB 14(4), 2021.

[40] T. Siddiqui et al., “Cost models for big data query processing: Learning,
retrofitting, and our findings,” in SIGMOD, 2020.

[41] P. Sioulas and A. Ailamaki, “Scalable multi-query execution using
reinforcement learning” in SIGMOD, 2021

[42] P. Wu and G. Cong, “A unified deep model of learning from both data
and queries for cardinality estimation,” in SIGMOD, 2021.

[43] W. Wu et al., “Predicting query execution time: Are optimizer cost models
really unusable?” in ICDE, 2013.

[44] S. Tozer et al., “Q-cop: Avoiding bad query mixes to minimize client
timeouts under heavy loads,” in ICDE, 2010.

[45] I. Trummer et al., “Skinnerdb: Regret-bounded query evaluation via
reinforcement learning,” in SIGMOD, 2019.

[46] S. Venkataraman et al., “Ernest: Efficient performance prediction for
large-scale advanced analytics,” in NSDI, 2016.

[47] F. Ventura et al., “Expand your training limits! generating training data
for ml-based data management,” in SIGMOD, 2021.

[48] A. Wasay et al., “Deep learning: Systems and responsibility,” in
SIGMOD, 2021.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070104
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

301

www.ijert.org
www.ijert.org

