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Abstract— Learning has emerged as a powerful tool in various 

domains, revolutionizing traditional approaches and achieving 

remarkable results. In the realm of database management and 

optimization, researchers and practitioners have started exploring 

the potential of learning techniques to enhance performance and 

efficiency. This paper presents a comprehensive review of 

learning-based database optimizations, highlighting recent 

advancements and their impact on various aspects of database 

systems. In this paper, we explore the initial endeavors in this field, 

examine recent progress, identify constraints and unresolved 

aspects, and propose potential avenues for future research. 
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I.  INTRODUCTION  

For over four decades, query optimization has remained a 
dynamic and extensively researched domain. However, the 
problem's combinatorial complexity has posed challenges in 
devising a single comprehensive solution. As a result, the current 
research landscape predominantly revolves around heuristic and 
cost-based approaches, which may yield satisfactory results 
under certain limiting assumptions. Numerous techniques, such 
as pruning and randomized methods, have been proposed to 
address query optimization. However, in certain edge cases, 
these techniques tend to falter and generate suboptimal 
execution plans. 

The emergence of machine learning and deep learning 
technologies has sparked a new trend in data management 
research. This trend explores the potential benefits of 
augmenting existing programmed heuristics with learned 
approaches, employing dynamic, self-learning methods for cost 
modeling, and enhancing traditional plan generation strategies 
through learning from past planning instances. These 
advancements aim to significantly reduce search time for future 
planning tasks. 

In this realm, deep neural network-based learning techniques are 
widely utilized, falling into two broad categories: query-based 
and data-based approaches. Query-based methods are typically 
supervised learning models, trained on running queries and 
utilizing statistics, such as cardinalities, as labels. On the other 
hand, data-based methods employ unsupervised learning to 
capture distributions and correlations within the joint probability 
density functions of the underlying data. 

By incorporating machine learning and deep learning into data 
management, researchers envision optimizing various aspects of 
the process, making it more efficient, adaptable, and capable of 
learning from its own experiences. These developments hold 
promise for revolutionizing data management systems and 
driving significant advancements in the field. 

 

II. REVIEW SCOPE 

 

This review article strives to offer an extensive examination of 

optimization methodologies achieved via learning or deep 

learning, focusing on (a) the progress made in learning query 

optimization, the knowledge acquired, and the existing gaps; 

(b) the comparative advantages of learning-based approaches 

over or in conjunction with traditional query optimization; and 

(c) the potential impact of learning query optimization on 

production systems. This paper plans to discuss the areas listed 

below where significant research has happened in the area of 

optimizations in databases with learning. 

1. Query optimization with learning 

2. Cost estimation with learning 

3. Runtime prediction with learning 

4. Benchmarks, metrics, and data preparation 

5. Future research scope 

III. QUERY OPTIMIZATION WITH LEARNING 

a. On system design level, some experts believe that ML can 

pave the way for smarter and more user-friendly DBMSs, 

making tasks like maintenance, tuning, and optimization easier. 

There is even a proposition that learned components could 

entirely replace fundamental elements of a DBMS, including 

data structures, indices, sorting algorithms, and query execution 

processes [6], [19], [48]. Several system frameworks, such as 

SageDB [18] and openGauss [24], are actively exploring this 

direction.  

SageDB[18] uses ML algorithms to learn from historical query 

performance data. By analyzing past query execution patterns, 

it can identify common bottlenecks and inefficiencies. With this 

knowledge, SageDB can automatically suggest better query 

plans and optimize the execution process, leading to improved 

overall performance. 

openGauss[24] employs advanced query optimizers that 

analyze SQL queries to find the most efficient execution plans. 

It considers factors like available indexes, data distribution, 

statistics, and resource usage to generate optimal query 

execution plans, resulting in faster query response times. 

 

b. Query optimizations are attempted with join ordering 

too. Reinforcement learning (RL) has found application in 

optimizing join ordering in the context of query execution. Two 

prominent examples are DQ [20] and ReJOIN [32], which 

leverage RL in combination with a pre-defined cost  

model. This combination allows them to autonomously learn 

effective search strategies for exploring the vast space of 

potential join orderings. 
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RTOS [22] builds upon DQ and ReJOIN by introducing a Tree-

LSTM, a specialized type of recurrent neural network, to 

calculate query costs. By using this enhanced cost estimation, 

RTOS further refines the join ordering process. 

SkinnerDB [45] takes a different approach by employing RL to 

learn the best join orders in real-time during query execution. 

This approach enables quick switching between different join 

orders, leading to more efficient query processing. 

AlphaJoin [23] adopts the Monte Carlo Tree Search (MCTS) 

technique to determine join ordering. Additionally, it employs 

a decision network (ADN) to choose between plans generated 

by AlphaJoin for longer queries and those produced by 

PostgreSQL for shorter queries. 

 

c. Optimizers have also been explored in this area for 

improving query optimization with learning. Neo [33]: 

Taking a more radical approach, Neo replaces many traditional 

optimizer components with ML models and deep neural 

networks. This integration of advanced ML techniques allows 

Neo to optimize queries effectively, catering to a variety of 

scenarios. 

Bao [31]: Bao adopts a schema and data agnostic approach to 

learning optimization. It executes queries with predefined hints 

and maintains a ranked plan using a tree convolutional neural 

network (TCNN). Periodic retraining ensures a balance 

between exploring new optimization strategies and exploiting 

learned knowledge. 

Elfino [4] is a self-driving query optimizer that monitors queries 

throughout their entire lifecycle. It leverages an AI algorithm to 

learn from the mistakes made by the Spark Optimizer, enabling 

continuous improvement and more efficient query 

optimization. 

Microlearner [14]: Focusing on complex cloud workloads, 

Microlearner divides the workload into subsets and learns 

micro-models independently and in parallel. This decentralized 

learning approach allows Microlearner to optimize query 

performance efficiently. 

 

IV. COST ESTIMATION WITH LEARNING 

a. Selectivity estimation is a fundamental aspect of query 
optimization. Some research works in this area are as follows: 
LATEST [37] adopts a combination of classification and 
decision trees to determine the most suitable selectivity 
estimators for time windows in streaming data scenarios. This 
approach enables LATEST to dynamically choose the best 
estimator for each time window, leading to more accurate 
selectivity predictions. 

ASTRID [39] takes a different approach by building neural 
language models specifically for selectivity estimation of prefix 
and substring queries. By employing these language models, 
ASTRID can better predict the selectivity of such queries, 
leading to improved query optimization. 

A. Dutt [7] proposes lightweight models, such as neural 
networks and tree-based ensembles, offer a more flexible and  

adaptive approach to selectivity estimation. 

[11] demonstrates improved accuracy in predicting query 
selectivity by using deep learning models for selectivity 
estimation of multi-attribute queries. The authors utilize neural 

density estimation to construct a selectivity estimator for the 
joint probability distribution based on data samples. 

b. Cardinality. R. Hayek and O. Shmueli[12] uses CRN 
(Cardinality Estimation using Containment Rates) technique 
that employs deep learning to estimate cardinalities by analyzing 
the containment rates among queries. 

Incorporating uncertainty information into a deep learning 
model, Fauce [25] enhances cardinality estimation accuracy. 
This approach utilizes deep ensembles to capture diverse 
patterns and provides not only cardinality estimates but also 
confidence intervals, resulting in a more robust estimation 
process. 

DeepDB [13] introduces a data-driven approach for database 
management that is capable of accommodating workload and 
data changes. It enables fast retraining, ensuring adaptability to 
evolving conditions. Moreover, it maintains reasonable accuracy 
even for queries not previously encountered, making it a 
versatile and efficient solution. 

In [36], a comprehensive evaluation of deep learning techniques 
is conducted, focusing on the trade-offs between model size, 
training time, and prediction accuracy. 

UAE (Uncertainty-Aware Estimation) [42] is a cardinality 
estimation technique that utilizes both data and queries to 
achieve accurate cardinality estimates, even in scenarios where 
there are shifts in the data or workload. This approach is 
designed to handle dynamic and evolving database 
environments effectively, ensuring reliable cardinality 
estimation despite changes in the data or query patterns. 

c. Cost model estimation: In [29], the feature space is 
partitioned using decision trees, and for each partition or split, a 
regression model is built.  

CherryPick [2] constructs performance models by identifying 
deployments that meet a specified performance target through 
the use of Bayesian optimization. CLEO [40] adopts a learning-
based approach to construct cost models from production 
workloads. These cost models are then integrated into a query 
optimizer. 

V. RUNTIME PREDICTION WITH LEARNING 

In the early stages, learning techniques were employed for 
runtime prediction, as demonstrated in [8], [10], and [46]. 
However, [1] reveals that linear regression for mapping 
PostgreSQL's estimated execution time to actual time is 
ineffective. [43] proposes that optimizer estimates can be 
valuable when the cost model is fine-tuned just before making 
the estimate. Additionally, Q-Cop [44] and ActiveSLA [35] 
leverage query runtime prediction for admission control 
purposes. 

Recent advancements in learning-based techniques have 
shown promising outcomes in runtime prediction for database 
management systems (DBMS). These approaches treat the 
DBMS as a black-box and focus on constructing efficient query 
runtime prediction models, as evidenced by studies such as [26], 
[34], and [17]. For instance, Prestroid [15] utilizes tree-
structured convolutional neural networks (TCNN) to predict 
resource consumption in large-scale queries, reducing cost. 

Furthermore, RouLette [41] employs reinforcement learning 
(RL) to identify shareable work among Select-Project-Join (SPJ) 
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queries, enabling multi-query optimization and runtime 
adaptation. MB2 [28] leverages machine learning to create and 
maintain prediction models for self-driving databases, 
enhancing their autonomy and efficiency. 

Seagull [38], on the other hand, leverages runtime prediction 
to optimize resource allocation on cloud platforms, ensuring 
effective utilization and performance. These research endeavors 
demonstrate the potential of learning-based techniques in 
revolutionizing runtime prediction for DBMS, leading to more 
efficient, adaptive, and self-optimizing database systems. 

VI. BENCHMARKS, METRICS, AND DATA PREPARATION 

a. Benchmarks: Traditional benchmarks such as the TPC suite 

are not well-suited for learning-based approaches. Instead, 

recent benchmarks have been designed to address specific 

challenges, like join ordering (JOB [21]) and learned indexes 

[30]. However, there remains a need for more comprehensive 

benchmarks that are based on realistic datasets. Synthetic data, 

which is either too random or too easily predictable, is not 

sufficient for evaluating the complexities of learning-based 

methods. 

 

Richer benchmarks are required, which should support dynamic 

workloads and schemas, provide descriptive metrics about the 

specialization of the tested systems, be adaptable to data and 

schema changes, exhibit similarity between workloads and data 

distributions, and consider the cost associated with training and 

maintaining the models [5], [30]. By creating such benchmarks, 

researchers can better evaluate the performance, effectiveness, 

and general applicability of learning-based techniques in 

database optimization and management. 

 

b. Metrics and statistics: Learning optimizers have the 

advantage of scaling beyond conventional database statistics 

and can access a broader range of raw information. This 

includes metrics related to execution containers, processes, 

services, and applications. By leveraging this rich pool of data, 

learning techniques can create profiling models, pinpoint the 

root cause of failures, and generate recommendations for 

enhancing performance and resource allocation [3], [9]. The 

ability to tap into diverse data sources empowers learning-based 

optimizers to make informed decisions, adapt to dynamic 

environments, and drive significant improvements in overall 

system efficiency and effectiveness. 

 

c. Data preparation: DataFarm [47] adopts a user-provided set 

of small workload patterns to create a labeled dataset. By 

employing adaptive learning, it iteratively executes sample jobs 

to generate labels, constructing a machine learning runtime 

prediction model for unlabeled jobs. Similarly, Robopt [16] 

offers a training data generator, which creates a query workload 

with query runtime estimates. Using polynomial interpolation, 

it labels new queries based on existing acquired labels. 

On the other hand, HAL [27] takes a different approach by 

generalizing a learned database component across various 

datasets and workloads. This enables HAL to apply its 

knowledge efficiently and effectively to different scenarios, 

leading to improved performance and adaptability. These 

techniques demonstrate the potential of learning-based 

approaches in generating labeled datasets, improving prediction 

models, and enhancing database components for a wide range 

of workloads and datasets. 

 

VII. FUTURE RESEARCH SCOPE 

There are several promising directions to explore in the realm 

of applying machine learning to database management systems: 

Identifying Consistent Techniques: Given the vast array of 

machine learning methods available, research should focus on 

identifying approaches that consistently perform well across 

various scenarios and workloads. 

Rethinking System Architecture: This involves considering 

new runtime environments, decomposing monolithic database 

systems into mini-services for instance-optimized databases, 

and exploring entirely new approaches instead of merely 

replacing traditional databases with machine learning-based 

solutions. 

Expanding Analysis: The scope of analysis should encompass 

complex data types such as graphs, spatial, and streaming data, 

distributed or federated architectures involving multiple 

execution engines, and diverse optimization objectives beyond 

just cost. 

Generalization across Database Systems: Many machine 

learning-based optimization models are designed for specific 

database systems, limiting their general applicability. Research 

on developing models that can generalize across different 

database systems is needed. 

Handling Complex Query Structures: Existing research often 

focuses on simple queries, but many real-world queries involve 

complex structures. Developing machine learning models that 

can efficiently optimize complex queries is an important 

research direction. 
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