
 HDL Based Design for High Bandwidth

Application

 M. Mohammed Kasim

1 K. Nagarajan
2 and P. Kumar

3
1,2,3. Assistant Professor, Dept of ECE,

 Nehru Institute of Engineering and Technology, Coimbatore – 641 105. Tamilnadu. India

Abstract— The objective was to configure a architecture

for high bandwidth applications such as multi-media

and wireless communications. The existing problem in

high bandwidth applications are inflexibility and

inefficiency .The loop level parallelism, reconfigurable

controller, memory bandwidth were addressed as

critical issues in the proposed architecture. The

architecture can be used for different word length

operations. This architecture can reduce the inflexibility

and inefficiency problems.

I. INTRODUCTION

 High bandwidth applications require high computing

power, flexibility, and scalability. The ASIC solution gives

high computing power requirement, but is inflexible and not

scalable. The general purpose microprocessors or DSP are

flexible, but insufficient in computing power. Since early

1990s, reconfigurable architectures compromise be fulfill

the two extreme solutions, and been applied for high

bandwidth applications such as multimedia [1].

 Critical loop operations in multimedia and

wireless communications usually consume a good portion of

the total execution cycles. Therefore, the key issue in

implementing multimedia or wireless algorithms onto a

reconfigurable architecture is to map critical loops into

processing elements optimally to meet the computing need

[2].

A reconfigurable architecture has evolved from fine grained

to coarse-grained architecture. This concerns only coarse

grained architectures due to some major advantages such as

efficient area high performance and low power [3]. Existing

coarse-grained architectures can be categorized into two

groups, data path-oriented and instruction oriented

architectures, based on the type of execution performed by

processing elements.

A processing element for a data path-oriented

architecture executes only one type of operation once it is

configured, and required data flow is constructed by routing

mesh structured processing elements. To implement the LLP

on a data path-oriented architecture, the body of the loop is

replicated on mesh and multiple iterations are executed

concurrently in a pipeline manner [4]. And also it does not

lead to high resource utilization when I/Os from/to

processing elements are limited. Data flow does not fit into

a given mesh topology. Also the degree of parallelism in

LLP is limited [5].
And in the same time processing element of an instruction-

oriented architecture performs sequence of operations,

which are defined by instructions, micro-code and/or control

signals. Instructions are stored in a configuration memory

and fetched by a controller to control the associated

processing element [7]. A processing element can execute

the entire body of a loop, but LLP is simply to assign

multiple processing elements running concurrently. So

instruction oriented architecture leads to high resource

utilization and more suitable than the former type of

architectures for multimedia and wireless

communication.Although the instruction-oriented

architectures are suitable for multimedia and wireless

communication, there are several problems in existing

architectures. To moderates these problems we proposed a

new instruction-oriented reconfigurable architecture.

 Some critical loop operations in multimedia and

wireless communications usually consume a good portion of

the total execution cycles. Therefore, the key issue in

implementing multimedia or wireless algorithms onto a

reconfigurable architecture is to map critical loops into

processing elements optimally to meet the computing need.

II. RECONFIGURABLE COMPUTING IN WIRELESS

This paper proposes about the computational demand of

wireless communication [8], a new approach was

implemented for new standards. Reconfigurable processing

can meet the needs for wireless base station design while

providing the programmability to allow upgrades as

standards.

A reconfigurable communication processor was

used here to meet the computational demand of wireless

industry. But the architecture cannot be used for wide band

width. The instruction memory is too small and Sub word

parallelism is used in a limited portion. Also this

architecture has complex interconnection.

Sub-word parallesim (SWP)

 Sub-word parallelism is used to increase to the

parallelism by partitioning the data path into sub word [9].

The multiple sub word can be processed concurrently to

increase the computational efficiency. This concept was

effectively used in high band width application. It deals

1117

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20583

parallelism at data level. The sub-word parallelism

increases parallelism at the data element path by partitioning

the data path of the processor.

The Bit adder can be partition. The figure 1

shown below was the best example for partitioning.

 Fig.1

SWP 16 bit adder

Loop level parallelism

 The loop level parallelism (LLP) method was

proposed [10]. The execution of the loop was considered

.The execution time must be minimized. Parallel processor

systems that have been built so far can execute in parallel

only singly nested parallel loops. However, it is crucial to be

able to exploit multidimensional parallelism which occurs in

multiply nested parallel loops. Processor assignment

algorithms are presented for simple and complex nested

parallel loops. These processor assignment schemes can be

used by the compiler to perform static processor which

allocated to multiply nested parallel loops.

The schemes for statically allocating processors to

several nested parallel loops such that parallel execution

time is minimized. This method was implemented in the

compiler or it can perform the assignment of processors to

loops in a dynamic way.

In parallel computers the parallelism was done in

single loop. Parallelism can be better utilized if a limited

number of processors are allocated to more than one loop.

The execution operation is concurrently done with

processing element. The schemes for statically allocating

processors to several nested parallel loops such that parallel

execution time is minimized. This method was implemented

in the compiler or it can perform the assignment of

processors to loops in a dynamic way.

Wide memory bandwidth in reconfigurable accelerator:

This is instruction oriented architecture.

Programming storage element (PSE) was mainly used here.

The source utilization is high. The paper considered

for memory band width operations. The memory access

requirement is high in certain time. So the processing

element with limited band width should wait until the

necessary data is available from the memory. The

processing elements exceed the available memory I/O. This

is limited bandwidth operation and not suitable for wide

bandwidth functions [11].

III. RECONFIGURABLE ARCHITECTURE OF HIGH BAND

WIDTH APPLICATIONS

The present work proposes new architecture for high

bandwidth applications. This resolves the problems like

inflexibility and inefficiency in the high bandwidth

applications. Wide memory bandwidth, loop level

parallelism was kept as main issues in reconfiguring the

architecture. The reconfigured architecture can increase the

performance of high bandwidth applications.

The architecture was designed by those blocks given below.

The overall architecture is shown in figure 2. It has an array

of processing elements slice (PES), which may be

concatenation for scalability. One PES consists of local

memories, XBSN (cross bar switch network), 16 PEM

(processing elements and multiplier) and a RC

(reconfigurable controller). A PES is a basic block for

execution of multiple iterations of a loop in parallel. The

number of iterations of a loop which can be executed

concurrently on a PES depends on the type of the

operations.

Fig 2: Reconfigurable architecture of high band width applications

IV. PROCESSING ELEMENT SLICE

 This basic unit for loop level execution. It has two

16 Kb memories for the demand of memory access. The

local memory has wide input and output port. Thus it

accesses the entire data in a single clock cycle. Like other

instruction-oriented architectures the proposed architecture

has a 1-d array of PESs. A PES is the basic processing unit

for the LLP execution

To meet the peak demand on memory access, the

PES has two 16 KB (256X512) column less memories. The

local memory has a 256-bit wide input/output port without a

column decoder, and thus accesses an entire row data on a

 64 bit input

Added output

 16 bit

addaddaddaddadder

Adder

er

 Partition

PEM 16 PEM 1 PEM 0

Register Register

 RC

1118

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20583

single clock cycle. Sense amplifiers are used as a register file,

which loads 64 8-bit data concurrently from the memory.To

support various types of memory accesses necessary for

multimedia and wireless communication applications and to

minimize the communication overhead among PEs and each

PES includes an XBSN.

Thus it accesses the entire data in a single clock

cycle. Like other instruction-oriented architectures the

proposed architecture has a 1-d array of PESs. A PES is the

basic processing unit for the LLP execution.

A. Memory:

This is the important part of processing element. The

basic memory details and the memory used for this

architecture was given below.RAM (random access memory)

is the place where the application programs, and data in

current use are kept so that they can be quickly reached . RAM

is much faster to read from and write to than the other kinds of

storage in a computer, the hard disk, floppy disk, and CD-

ROM. However, the data in RAM stays there only as long as

your computer is running. When you turn the computer off,

RAM loses its data. When you turn your computer on again,

your operating system and other files are once again loaded

into RAM. RAM can be compared to a person's short-term

memory and the hard disk to the long-term memory. The

short-term memory focuses on work at hand, but can only

keep so many facts in view at one time. If short-term memory

fills up, your brain sometimes is able to refresh it from facts

stored in long-term memory. A computer also works this way.

If RAM fills up, the processor needs to continually go to the

hard disk to overlay old data in RAM with new, slowing down

the computer's operation. Unlike the hard disk which can

become completely full of data so that it will accept any more,

RAM never runs out of memory. It keeps operating, but much

more slowly than you may want it to.

 During the peak cycles, processing elements

withal limited memory bandwidth should wait until the

necessary data is available from the memory. Therefore, a

wide memory bandwidth is a critical design issue to achieve a

high degree parallelism for the LLP, which is difficult for high

performance for instruction oriented architectures. The

existing architecture was not suitable for wide memory

bandwidth .

Here the Local memories store the input and output

data streams to read from or to write onto the host processor

and PEMs. To meet the peak demand on memory access, the

PES has two 16 kB (256x512) column less memories. The

local memory has a 256-bit wide input/output port without a

column decoder, and thus it accesses an entire row data on a

single clock cycle.

B. Cross bar switches:

Crossbar switches are widely used today in a variety

of applications including network switching, parallel

computing and various telecommunications applications. To

avoid the communication over head problem, the cross bar

switches are used. It avoids the over head communication

between program elements and program element slices.

 An XBSN includes two 32x32 8-bit crossbar

switches, so any 8-bit word of 32 operands (fetched from a

memory) can be available to each operand register. In other

words, 64 8-bit operands are fetched from the two memories

on a clock cycle and available to the two operand registers, in

turn, the 16 PEMs.

 A crossbar switch, also known as a cross point

switch, is

defined as a switch with n input lines and n output

lines (n port switch). The switch has n2 intersections, called
 cross points, where an input line and output line can be
 electrically connected .As can be seen from Figure,

the

number of cross points

grows as the square of the number of

lines into the switch. If we assume that a switch port does not

connect to itself, the number of cross points needed is given

by n(n-1)/2.For n=32, there are 496

cross point connections.

Splitting the crossbar switch into several smaller switches and

interconnecting them can dramatically reduce the number of

cross points. This technique is called space division switching.

There is a penalty inherent in this technique known as

blocking.

 The switch has 32 inputs that connect to any or all 32
 outputs via the 32 x 32 switch matrix. The switch matrix

is

constructed with thirty-two 32-input

multiplexers. Each

output

supports individual tri

state control. The MUX

select lines

(switch interconnects) and tristate control are

configured using

a set of double buffered configuration

registers. The LOAD

Registers are loaded for each port

individually by asserting the

LOAD and CS signals. The

Output Address lines are decoded

to select the port’s

LOAD register, and the input address lines

are latched

along with the TRI signal. The latched input

address lines

drive the port’s MUX select lines, and TRI

drives the

port’s tristate control. After the LOAD registers

have been

configured, the CNFG and CS signals are asserted,

 simultaneously configuring all 32 ports. This double

buffering

scheme prevents any data from being lost while

the switch

interconnects are updated.

C.

Reconfigurable controller:

The controller generates control signals for local

memories, cross bar switches, processing element and

multiplier. The finite state machine was used here to reduce

hardware complexity.

Controller generates control signals for

local memories, the XBSN, and PEMs for each instruction

pipeline stage.
 This employs a reconfigurable controller which is a fine

grained LUT (look up table) block like an FPGA. Unless

previous memory based controllers, the proposed controller

implements for a finite state machine (FSM) to generate

control signals

[11]. Since a combinational logic in FSM can

be minimized through logic optimization technique, more

functionality than the memory based controller can be

provided the given area.Also controller can be shared across

multiple processing elements through flexible implementation

of a FSM, which reduces the overall hardware complexity.

1119

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20583

D. Processing Element and Multiplier (PEM)

 The PEM consist of multiplier with 9 bit and two

processing elements. The processing element multiplier is

responsible for a single multiplication or two additions. The

processing element has three 8bit ALU’s and 8bit register,

temporary registers to store the output of arithmetic and logic

unit. This unit is responsible for addition, subtraction. It works

as a carry select adder.

The arithmetic-logic unit (ALU) performs all

arithmetic operations (addition, subtraction, multiplication,

and division) and logic operations. Logic operations test

various conditions encountered during processing and allow

for different actions to be taken based on the results. The data

required to perform the arithmetic and logical functions are

inputs from the designated CPU registers and operands. The

ALU relies on basic items to perform its operations. These

include number systems, data routing circuits (adders/

subtracters), timing, instructions, operands, and registers.

V. SUB WORD PARALLELISM WITH FLEXIBLE WORD

LENGTH SUPPORT:

This supports flexible word-length operations-

addition/ subtraction, shift and multiplication. For addition/

subtraction operations, multiple 8-bit PEs can simply

concatenate to construct a higher precision, where each PE

configures as a carry selection adder to minimize the critical

path delay of a long word-length addition/subtraction. For

shifting operation, the XBSN provides various word-length

parallel shift operations-8-bit, 16-bit and 32-bit. In the XBSN,

scramble multiplexer performs bit scrambling operation so

that the cross bar switch can arrange the bit position according

to the shift amount, and multiple shifted data can be obtained

by de-scrambling the output of crossbar switch.

A new method is proposed to provide flexible word-length

multiplications. Since any MAC(multiplication and

accumulation) operations can be expressed with low-precision

MACs, This provides various types of MACs using 8X8

atomic MAC units , PEMs, the XBSN divides multiplicands

into 8-bit.

VI. CONCLUSION

Architecture of high band width applications can be

reconfigured. This can increases the performance of the high

band width application architecture. The memory was

designed and the processing element multiplier (PEM) part

was simulated. The processing element multiplier has two

processing elements which can do arithmetic operations

parallel.

 REFERENCES

[1] R. Hartenstein, “A Decade of Reconfigurable Computing: a Visionary
Retrospective”, Design, Automation and Test in Europe, Conference and

Exhibition Proceedings, 2001.

[2] C.D. Polychronopoulous, et al., “Utilizing multidimensional loop
parallelism on large-scale parallel processor systems”, IEEE

Transactions on Computers, Vol. C-38, No. 9, Septembe1989.

[3] T. Miyamori and K. Olukotun, “A Quantative Analysis
ofReconfigurable Comprocessors forMultimedia Applications”,

IEEESymposium on FPGA for Custom Computing MachineApril 1998,

pp. 2- 11.
[4] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable

computingarchitecture with configurable instruction distribution and

deployable resources”, Proceedings. IEEE Symposium on FPGA for
Custom Computing Machines 1996.

[5] H. Singh, “MorphoSys: An Integrated Reconfigurable System for Data-
Poarallel and Computation-Intensive Applications”, IEEETrans. On

Computers, Vol. 49, No. 5, 2000.

[6] V. Baumagarten, “PACT XPP – a self-reconfigurable data processing
architecture”, Journal of Supercomputing, 2003, pp. 167-184.

[7] M.B. Taylor, “The Raw microprocessor: a computational fabric for

software circuits and general purpose programs”, IEEE Micro,Vol. 22,
Issue 2, March-April 2002, pp. 25-35.

[8] B. Salefski and L. Caglar, “Re-Configurable Computing in Wireless”,

Proceedings of Design Automation Conference, 2001, pp. 178-183.

 [9] J. Fridman, “Sub-word Parallelism in Digital Signal Processing”,IEEE

Signal Processing Magazine, March 2000.

 [10] J. Leijten, J. Huisken and E. Waterlander, A. V. Wel, “AVISPA:
AMassively Parallel Reconfigurable Accelerator”, Proceedings

ofInternational Symposium on System-on-Chip, 2003, pp. 165-168.

[11] C.D. Polychronopoulous, “Utilizing multidimensional loop parallelism
on large-scale parallel processor systems”, IEEE Transactions on

Computers, Vol. C-38, No. 9, Septembe1989.

1120

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS20583

