

Selvakkani K

PG Scholar,

Department of VLSI Design,

Sri Shakthi Institute of Engineering and

Technology

Tamilnadu, India.

Venkatesan K

Assistant Professor(S),

 Department of VLSI Design,

Sri Shakthi Institute of Engineering and

Technology

Tamilnadu, India.

Abstract
 Increasing design complexity and concurrency of integrated

circuits has made traditional directed test benches an

unfeasible solution for testing. Verification may be a

methodology used to demonstrate the functional correctness of

a design. With automation human errors in process are

minimized. Automation takes human intervention fully out of

the Method. However, automation is not always possible,

especially in processes that are not well defined process and

continue to require human ingenuity and creativity, such as

hardware design. Today testing is a word has been substituted

with verification with increasing adoption of UVM, there is a

growing demand for guidelines and best practices to ensure

successful verification IP. In this paper, a complete truncation

level verification environment based on UVM is proposed to

tackle the verification barrier of complex gigabit Ethernet

protocol IP. Ethernet has continued to be the most widely used

network architecture today. The main aim of the project is

verify the gigabit Ethernet IP with different interfaces. It also

explains verification strategy and reuse of design environment

with reference to verifying the Ethernet packet in Ethernet

Intellectual Property (IP) Core. The verification atmosphere

proposed in UVM will provide multiple levels of reuse, both

within projects and between projects. The whole verification

will done using system Verilog hardware description and

Verification languages. We are using cadence Incisive

simulator 12.2 for simulation.

Keywords— UVM, Verification IP, Gigabit Ethernet,

TLM, MDIO.

1. INTRODUCTION

The improvement in the semiconductor

manufacturing processes and the design methodologies led

to the possibility of bigger and sophisticated digital styles.

This scenario along with tighter time-to-market budgets

reduces the possibility of success within the first attempt. To

mitigate this example, industry drives to the development of

new design methodologies such as the reuse of Intellectual

Property (IP) cores design. In this context, the design

verification acquires relevant attention from the academic

and industrial environments. High confidence design

verification means high quality designs and less circuit

functional bugs transferred to the end user.

Design verification is the process to certify if the design

functionality is according to the design specification. Two

methods are commonly used:

Functional and Formal verification.

1. Functional verification or simulation-based

verification is the most used technique for

industrial applications. This technique is

straightforward to cope with, however nearly

always the foremost resource and “bottleneck” part

of the look flow.

2. Formal verification methods were also proposed

but only applied to low complexity circuits. In this

scenario, few functional verification experiences of

High Speed UVM B ased Verification IP For Gigabit Ethernet Protocol

3059

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120883

communications systems were reported. Most of

them were applied to processors designs.

Verification is a process used to demonstrate that the

intent of a design is preserved in its implementation.

Verification is always done in parallel to the design creation

process that is verification is carried out at each step of

manufacturing process. Verification is generally viewed as a

fundamentally different activity from design. This split has

led to the development of narrowly focused language for

verification and to the bifurcation of engineers into two

largely independent disciplines. This specialization has

created substantial bottlenecks in terms of communication

between the two groups. System Verilog addresses this issue

with its capabilities for both camps. Neither team has to give

up any capabilities it has to achieve success, but the

unification of both syntax and semantics of design and

verification tools improves communication. For example,

whereas a design engineer may not be able to write an

object-oriented test-bench environment, it is fairly

straightforward to read such a test and understand that what

is happening, enabling both the design and verification

engineers to work together to identify and fix problems.

Likewise, a designer understands the inner workings of his

or her block, and is that the best person is to write assertions

about it, but a verification engineer may have a broader view

needed to create assertions between blocks.

Another advantage of including the design, test-

bench, and assertion constructs in a single language is that

the test-bench has easy access to all parts of the environment

while not requiring the specialized APIs. The value of an

HVL is its ability to create high-level, versatile tests, not its

loop constructs or declaration style. System Verilog is based

on the Verilog constructs for that the engineers have used

for many years.

2. Universal Verification

Methodology(UVM)

The UVM (Universal Verification Methodology) was

introduced in December 2009, by a technical subcommittee

of Accellera. UVM uses the Open Verification Methodology

as its foundation. Accellera released a version UVM 1.0 EA

on May 17, 2010. UVM Class Library provides the building

blocks needed to quickly develop well-constructed and

reusable verification components and test environments. It

uses system Verilog as its language. All three of the

simulation vendors (Synopsys, Cadence and Mentor)

support UVM today which was not the case with other

verification methodology. Today, more and more logic is

being integrated on the single chip so verification of it is a

very challenging task. More than 70 present of the time is

spent on the verification of the chip. So it is a need of an

hour to have an common verification methodology that

provide the base classes and framework to construct robust

and reusable verification environment. UVM provides that.

UVM environment used for the functional verification for

the digital hardware, primarily using simulation. The

hardware or system is to be verified would typically be

described using Verilog, System Verilog, VHDL or SystemC

at any appropriate abstraction level. This might be

behavioral, register transfer level, or gate level. UVM is

expressly simulation-oriented, however UVM can also be

used alongside assertion-based verification, hardware

acceleration or emulation. UVM test benches are complete

verification environments composed of reusable verification

elements, and used as part of an overarching methodology of

constrained random, coverage driven verification. If you

currently run RTL simulations in Verilog or VHDL, you will

be able to consider UVM as replacing whatever framework

and coding style you use for your test benches. But UVM test

benches are more than the traditional HDL test benches,

which could wiggle many pins on the design-under-test

(DUT) and rely on the designer to inspect a waveform

diagram to verify correct operation. UVM Improves

productivity and ensures re-usability. Maintenance of the

verification components will be much easier because the

components are standardized.

Figure 1: UVM architecture

3060

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120883

2.1 GENERAL FEATURES OF UVM

2.1.1 Transaction-Level Modelling (TLM)

UVM uses TLM standard to describe

communication between verification components in a UVM

environment. One of the main advantages of using TLM is

that in abstracting the pins and timing details. Dealing, the

unit of data exchange between TLM components,

encapsulates the abstract read of stimulus that can be

expanded by a lower-level component.

2.1.2 Use of sequences for stimulus generation

The uvm_sequence and uvm_sequencer both

provides the flexibility of running different streams of

transactions without having to change the component

instantiation. The transactions have to be compelled by an

entity in the verification environment. Relying on a

component to generate the transactions is limiting because it

will require changing the component each time a different

sequence of transactions is required. Instead UVM allows

for flexibility by introducing uvm_sequence. uvm_sequence

when started, register itself with a uvm_sequencer which is

an uvm_component that acts as the holder of different

sequences and can connect to other uvm_components.

2.1.3 Layering

Layering is a powerful concept in which every

level takes care of the details at specific layers. UVM

layering may be applied to components, which can be called

hierarchy and composition, and to configuration and to

stimulus. Typically there is a correspondence between

layering of elements and objects. Layering stimulus, on the

other hand, may reduce the complexity of stimulus

generation.

2.1.4 Configurable

Configurable, an enabler to productivity and reuse,

is a key element in UVM. In UVM, user can change the

behaviour of an already instantiated component by three

means: configuration API, Factory overrides and callbacks.

2.1.5 Re-usability

All the tenets mentioned above lead to another

important goal which is reuse. Extensibility, configurability

and layering facilitate reuse. Horizontal reuse refers to

reusing Verification IPs (VIPs) across projects and vertical

reuse describes the ability to use block-level VIPs in cluster

and chip level verification environments.

3. PROPOSED SYSTEM

10Gigabit Ethernet MAC implements a MAC

controller conforming to IEEE 802.3 specification. It is

designed to use less than 2000 LCs/LEs to implement full

function. It will use inferred RAMs and PADs to reduce

technology dependence. A GUI configuration interface,

created by test benches, is convenient for configuring

optional modules, FIFO depth and verification parameters.

Furthermore, a verification system was designed with test

benches, by which the stimulus can be generated

automatically and the output packets can be verified with

CRC-32 checksum. In this proposed system consists of three

module namely management module, transmit module,

receive module.

 3.1. Management module. This section describes

the design of the management module for the 10-Gigabit

Ethernet. MDIO function of this module part is designed to

10-Gigabit Ethernet IEEE 802.3 ae-2002. Configuration and

statistic functions are also implemented. The MAC design is

loosely based on the Xilinx LogiCORE 10-Gigabit Ethernet

MAC, where the management function is similar with it too.

The management module will be specifically designed to

interface the client and the physical layer. The Management

Module provides the manage interface to the client. Client

can configure MAC and PHY via this interface.

Management Module is implemented with two sub-

modules, which are:

Figure 2: Internal Structure of the Management Module

 This sub-module contains configuration and

statistics registers. It responds read write requests from

client side. Read write requests to MDIO registers will be

Cli

ent

Si

de

Int

erf

ac

e

Configura

tion

Registers

Statistics

Registers

MDIO PHY

Interfac

e

Internal

Receive

&

Transmi

t

Manage registers

3061

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120883

dispatched to MDIO module. Figure 2 shows the internal

structure of Management register sub-module.

3.2. Transmit module. The transmit engine

provides the interface between the client and physical layer.

Figure 3 shows a block diagram of the transmit engine with

the interfaces to the client, physical, management and the

flow control.

Figure 3: Block Diagram of the Transmit Block

The transmit engine contains several blocks; input

and output FIFO/register, control logic and counters. The

input and output FIFO/registers are employ to receive data

from the client and distribute the data to the physical. All

data flow is all under controlled from the control logic.

 66 up to 1500

7 1 6 6 2 4

PRE SDF DA SA Type/

Length

LLC

Data

 PAD FCS

Figure 4: IEEE 802.3x Frame

The tx_ack signal is generated using a type of

counter circuitry to compensate when paused frame

transmission is invoked by the flow control block or the

inter frame delay is set at the start. The assertion of the

signal is achieve when the count equal to the delay value.

The request from the pause or inter frame will used to select

the counter delay value. The minimum inter frame gap is 96

bits. For a normal transmission, the delay value will be 2

clock cycles.

The control logic is essentially a state machine that

controls how the data is output to the physical by selecting

between the control bytes and the client data. There are four

different states in the control logic and there are IDLE,

START, DATA and PAUSE.

1. In the IDLE state, IDLE bytes (07) are transmitted to

the physical. When a receive fault occurs, the state

machine will be stuck at IDLE until the signal is de-

asserted.

2. In the START state, START control bytes,

PREAMBLE bytes and Start Frame Delimiter are

loaded into the output. Once the data is loaded, the

state changed to DATA.

3. In the DATA state, the FIFO empty 64 bits at a time to

the output until the empty flag is set. In this state, the

tx_data_valid bytes are inverted and output to the

command output, txc. If the empty flag is asserted in

any of the FIFO, the output register with no valid data

will be loaded with the TERMINATE and IDLE

control bytes. After the last frame is transmitted, the

state machine will either change to the IDLE state or

when fcTransPauseVal signal is asserted, the state

machine will change to the PAUSE state.

4. In the PAUSE state, a pause frame is sent out to the

physical. In this state, the tx_ack is delayed until the

pause frame is transmitted. The tx_ack signal is used to

indicate to the client that the first data column is

received.

P

R

E

S

D

F

D

A

S

A

Type/

Length

Op

code

Pass

time

Reser

ved

F

C

S

Figure 5: PAUSE Frame

When the tx_underrun is asserted by the client-

side, an error code will be inserted to the frame

transmission. When VLAN is enabled, the transmitter is

able to accept VLAN frames. Figure 6 shows the VLAN

frames. The VLAN ID has a value of 8100 and the total

frame size if extended to 1522 bytes.

 46 up to 1500

7 1 6 6 2 2 2 4

P

R

E

S

D

F

D

A

S

A

VL

AN

ID

Tag

cont

rol

Type/

Lengt

h

LLC

Data

 PA

D

FCS

Figure 6: Virtual LAN Frame

When FCS is required for the data from the client,

a parallel scheme is employed to generate the FCS. If the

7 1 6 6 2

6

2

6

2 42 4

3062

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120883

data is less than 46 bytes, padding is applied to the

appropriate FIFO or registers. This is only achieved when

the length of frame is received. The length will indicate if

the frame is below the minimum frame size. By knowing the

size, the appropriate FIFO or register can be applied with the

padding. If the frame is greater than the maximum size, a

counter is used to track the number of data columns and

using the length field, this will determine when to truncate

the data. An error code will be inserted to the transmission

to corrupt the frame.

3.3 Receive Module: The Receive Engine provides

the interface between the client and physical layer. Figure 7

shows a block diagram of the receive engine with the

interfaces to the client, physical, management and also the

flow control.

Receive Engine is enforced with nine sub-modules, which

are:

3.3.1Receiver Clock Generator

This sub-module is used to generate internal reset

and clock signals. In this design, DCM is used. Reset signal

is generated from DCM locked signal.

Figure 9: Block Diagram of the Receive Module

3.3.2 Receiver RS Layer

This sub-module implements the receive side

function of Reconciliation Sub layer, which is define in

IEEE 802.3ae Clause 46. This module samples xgmii_rxd

and xgmii_rxc on both rising edge and falling edge of

xgmii_rxclk. Besides, this module implements Link Fault

Signaling.

3.3.3 Receiver Data Path

This sub-module is the main data path of Receive

Engine. It has functions listed below:

1. Implements data pipeline;

2. Indicates SFD, EFD, and Error characters;

3. Gets Destination Address field and Length/Type

field;

4. Indicates tagged and pause frame by checking

Length/Type field;

5. Generates rx_good_frame and rx_bad_frame

signals properly.

6. Manages Receive FIFOes, FIFOes are

 a) Data FIFO: Data FIFO is used to store valid data from

receiving frame. It is a 4K Bytes FIFO,

which can store at least two frames.

 b) Control FIFO: Control FIFO is used to store control

signals, which is 512 Bytes. One bit in

Control FIFO presents one byte in Data

FIFO. If the bit is „1‟, then its

corresponding Byte is valid. If the bit is

„0‟, then the corresponding Byte is

invalid.

3.3.4 Receiver CRC

This sub-module implements frame CRC checker.

Its generating polynomial is:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 +

x8 + x7 + x5 + x4 + x2+x+1. It is composed of two CRC

modules. One is 64bit input width, and the other one is 8bit,

both are generated from easics. After checking the last byte

of frame, if the magic sequence 32‟hc704dd7b is generated,

then the signal crc_check_valid is asserted; if the magic

sequence is not generated, then the signal crc_check_invalid

is asserted.

3.3.5 Receiver Destination Address Checker

This sub-module is used for check destination

address of current frame. It checks four different types of

destination address.

 Individual address: the MAC address of this MAC

controller.

 Broadcast address: the broadcast address, whose

destination address field is filled with all „1‟s.

 Multicast address: this multicast address, which

may be organized by user logic. This reversed

MAC address is 01-80-C2-00-00-01. Control

Frames will be sent with this destination address.

3063

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120883

 Other address: the address of other stations. A

frame which carries these destination addresses

will be discarded. local_invalid signal is asserted

when destination address lies in other address.

3.3.6 Receiver State Machine

This sub-module implements state machine of

Receive Engine. There are six states:

 IDLE: Initial status. Controller starts receiving

process when SFD received (get_sfd).

 rxReceiveDA: During this state, controller receives

DA field.

 rxReceiveLT: During this state, controller receives

Length/Type field.

 rxReceiveDATA: In this state, controller receives

DATA field. Besides, it also watches DA invalid

and Length invalid signals. Any invalid signals will

turn state machine to rxGetError state. If no error

happens in receiving states, controller can address

rxIFGWait.

 rxGetError: During this state, controller stop

receiving, dessert receiving signal (assert when

controller is in rxReceiveDA, rxReceiveLT and

rxReceiveDATA status) and return controller to

IDLE state.

 rxIFGWait: It is sort of a turnaround state. It

depends on the defined minimum gap between

frames.

3.3.7 Receiver Number Counter

This sub-module is used for counting frame length.

It simply may be a counter.

3.3.8 Receiver Length Type Checker

This sub-module is used for checking current

frame‟s length. It takes three different situations into

account: normal frame, tagged frame and jumbo frame.

 Normal Frame: Minimum Length: 64bytes; Most

Length: 1518

 Tagged Frame: Minimum Length: 64bytes; Most

Length: 1522

 Jumbo Frame: Minimum Length: 64byte; Most

Length: 9K

 3.3.9 Receiver State Module

This sub-module is used to collect statistic

information of MAC controller.

4. SIMULATION RESULT

Figure 10: Frame Transmission with client supported

FCS

In the above figure its shows a normal

transmission from the client-side. FCS has to be generated if

it is not included with the data from the client-side. If the

data width is below 46 bytes, padding is needed to bring it in

line with the minimum frame size. A parallel scheme has to

be employ to generate the FCS.

Figure 11: Frame received at Receiver side interface

3064

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120883

5. CONCLUSION

 In this paper, an outline of the Universal

Verification Methodology was discussed. Verification is the

most important part in designing the SoC and VIPs.

Universal Verification Methodology (UVM) is one of the

most famous Verification Methodology for verifying a

complex IP and SoC. In this paper, Gigabit Ethernet is

analyzed and its protocol is verified based on the normal

testing methods using the test benches. The simulation result

shows that the proposed method increases the time

complexity and it has the test coverage up to 30%. In

Normal verification method we cannot reuse the verification

components for the projects, hence the UVM verification is

used to improve the test coverage and its verification

environment can be reused for the projects.

6. References

[1] Anjali Vishwanath, Ranga Kadambi, Infineon

 Technologies Asia Pacific Pte Ltd Singapore.

[2] Ben Chen, Cisco Systems, Shankar Hemmady,

 Rebecca Lipon of Synopsys, Verification IP reuse

 for complex networking ASICs- eetindia.com.

[3] Bergeron J, (2006)“Writing Test benches Using

 SystemVerilog”, Springer, ISBN-10: 0-387-29221-7,

 Business Media.

[4] Brendan Mullane and Ciaran MacNamee, Circuits

 and System Research Centre (CSRC), University of

 Limerick, Limerick, Ireland.

[5] Cadence Designs Systems and Mentor Graphics Inc.,

 (Sep 2008), “Open Verification Methodology User

 Guide” Version 2.0, available from

 .

[6] Developing a Reusable IP Platform within a System-

 On-Chip Design Framework targeted towards an

 Academic R&D Environment

[7] Hannes Froehlich, Verisity Design, Increased

 Verification Productivity through extensive Reuse,

 Design and Reuse, Industry articles.

[8] Iman S, (May 2008) “Step-by-step functional

 verification with SystemVerilog and OVM”, Hansen

 Brown Publishing,ISBN-10: 0-9816562-1-8.

[9] Radu M.E , Sexton S.M,(August 2008) “Integrating

 extensive functional verification into digital design

 education,”, IEEE Trans. On Education, Vol. 51,

 No. 3.

[10]

[11]

www.google.com

www.opencores.org

http://www.ovmworld.org

www.design-reuse.com/

3065

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120883

