
HoneyMesh: Preventing Distributed Denial of

Service Attacks using Virtualized Honeypots

Hrishikesh Arun Deshpande

Member of Technical Staff R&D,

NetApp India Pvt. Ltd,

Bangalore, India

Abstract— Today, internet and web services have become an

inseparable part of our lives. Hence, ensuring continuous

availability of service has become imperative to the success of any

organization. But these services are often hampered by constant

threats from myriad types of attacks. One such attack is called

distributed denial of service attack that results in issues ranging

from temporary slowdown of servers to complete non-availability

of service. Honeypot, which is a sort of a trap, can be used to

interact with potential attackers to deflect, detect or prevent such

attacks and ensure continuous availability of service. This paper

gives insights into the problems posed by distributed denial of

service attacks, existing solutions that use honeypots and how a

mesh of virtualized honeypots can be used to prevent distributed

denial of service attacks.

Keywords—Distributed denial of service, handler, agent, attack

source, victim server, firewall, honeypot, virtual machines, daemon,

behavioral analysis, challenge response, virtual network, flooding,

crashing, intrusion detection, router, honeywall, honeymesh.

I. INTRODUCTION

In today’s world of technology and computers, internet
serves as a critical platform for both service providers and
consumers. The success of any venture is critically dependent
on reliability and continuous availability of service. Thus, it’s
crucial for service providers to protect their servers from
various security threats and attacks. Of all the attacks that
hinder the availability of service, a denial of service attack
poses maximum threat to an organization since it has direct
effect on the service availability to a consumer. A denial of
service attack results in a temporary or long-term non-
availability of a service to its intended users by the way of
either crashing a service resulting in complete non-availability
or by flooding a server with fraudulent requests thereby
slowing down the delivery of service to real users [1].
Honeypot can be used as an intrusion detection mechanism that
can replicate some or all actions of a server and effectively
monitor potential attackers thereby enabling the server admins
to detect and prevent potential denial of service attacks to
ensure a reliable and continuous service to their intended users.

II. DISTRIBUTED DENIAL OF SERVICE ATTACKS

 A denial of service (DoS) attack is an attempt to make a

service, usually one offered over internet, unavailable to its

legitimate users [1-3]. This can result in either temporary

interruption in service by means of overwhelming the server

with several requests or a permanent one that causes the server

to crash.

Fig. 1 Distributed Denial of Service Attack (DDoS)

 A more hazardous version of DoS is a distributed denial of

service (DDoS) attack. A distributed denial of service attack is

the one in which intruders execute attacks from multiple

locations rather than a single one [2]. An attacker initially

compromises and gains control over local systems. These

compromised systems are called handlers or masters. Masters

are then used to further compromise systems that are close to

the target server. These systems called as DDoS agents or

slaves are then used to launch multiple attacks on the victim

server [3]. In most cases, IP addresses of attack sources are

forged to make the identification of the attacker location

difficult. A combined effect of relaying the attack from several

DDoS agents can potentially overwhelm the server with

thousands of requests resulting in a slowdown or crash.

A. Types of Distributed Denial of Service Attacks

DDoS attacks are of different types depending on the kind
of attack and the effect they have on the target server. As such
several DDoS attacks have been identified till date. Based on
the impact they have on the target server, DDoS attacks can be
broadly classified into two major types namely flood attack and
crash attack [2-3]. Flood attack involves overwhelming the
target server with several thousand requests thereby slowing
down the service for legitimate users [4]. On the other hand, a
crash attack exploits the vulnerabilities in the victim server
causing it to hang, reboot or crash. Table I summarizes various
types of DDoS attacks and their effects.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080325

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

263

TABLE I. Types of DDOS attacks

B. Effects of Distributed Denial of Service Attacks

DDOS attacks are known to disrupt services causing
inconvenience to intended users. The effects of such attacks
can be either temporary or permanent [3]. Typical temporary
effects include flooding, slowdown of services, rapid
consumption of resources, sudden spikes in processor usage
etc. These attacks manifest themselves as temporary outages
that cause non-availability of service for short periods of time
[4]. On the other hand, permanent attacks are catastrophic and
can result in server crashes, disruption of routing information,
data corruption or in extreme cases render the server hardware
unusable requiring complete hardware replacement. Such
attacks can result in long term outages and can severely
damage the reputation of an enterprise resulting in a decline of
user trust. Thus it has become imperative to protect vulnerable
servers against such attacks [1-4].

III. HONEYPOTS

Since distributed denial of service attacks can be potentially
harmful to a target server, it’s essential to effectively detect and
reduce such attacks. Although absolute prevention of attacks is
difficult, several techniques have been proposed to counter
DDoS attacks. The two main techniques that deal with DDoS
attacks involve mitigation of attacks and identification of the
attack source [4]. Honeypots can be effectively used in both of
these cases. Fig.2 illustrates the design of a basic honeypot.

Fig. 2 Basic Honeypot design

There are several ways in which a honeypot can be defined.
In simplest terms, a honeypot can be defined as a trap for an
attacker that mimics some or all activities of a real system and
records the activities of the attack source [5]. Honeypots can be
used in a flexible manner at the server side to not only detect
such attacks but to also protect the user’s critical data and
record possible malicious activities so as to track the attacker.
Honeypots can be broadly classified into two categories
namely low interaction and high interaction honeypots [6].
High interaction honeypots imitate most services of real
production systems and host a variety of tasks. They provide
more security and are hard to detect but are relatively
expensive to maintain. On the other hand, low interaction
honeypots simulate services that are frequently requested by
attackers. They consume fewer resources and can be easily
maintained [7]. Both types of honeypots can be implemented as
virtual machines and hosted on a single physical server [8].

A. Existing Solutions

Due to the potential threats posed by DDoS attacks, several
solutions have been already proposed to deal with these threats.
Bellovin’s ITRACE uses ICMP packets to determine the path
of a small subset of forwarded packets enabling the victim to
identify a compromised DDoS agent [9]. Other solutions
include marking the path traversed by packets to determine
their real source and reduce the number of markings by
utilizing the topology of network maps. But these solutions are
inefficient owing to the fact that they assume a large part of the
network to implement them and thus they fail to address
specific threats posed by DDoS attacks at production servers.

Some solutions also propose the usage of honeypots to
mitigate DDoS attacks. Weiler proposes implementation of a
cluster of physical honeypots servers that mimic the activities
of real servers [10]. This solution is expensive since every
honeypot needs a separate physical server which results in
wastage of resources and high maintenance costs. Das proposes
to mitigate denial of service attacks using a concept called
“Active Servers” (AS) [11]. Every production server is hidden
behind an AS that acts like a gateway to the production server.
Legitimate traffic is passed on to real server while malicious
traffic is halted. For malicious traffic, an AS acts like a
honeypot thus protecting real server from being compromised.
This solution is robust and secure but it slows down processing

Ser.
No

Attack Effect

1 Smurf attack Forged ICMP packets are sent to the

destination server which responds with
ICMP reply packets thereby flooding the

server with fake requests and denying

service to real users.

2. TCP/SYN Flood The target server is sent TCP packets with

unreachable addresses. The server wastes

all its time and resources in determining
the right destination causing denial of

service to others.

3. UDP Flood Attack This happens when the attacker sends a

forged UDP packet to a port which

responds with a destination unreachable

ICMP response. This floods the system if

several UDP packets are sent.

4. Teardrop Here, jumbled overlapping TCP/IP

fragments are sent to the victim server

which can crash the system due to
difficulty in reassembling the overlapping

fragments.

5. Ping of Death In this case, the destination server is sent

an ICMP packet much larger than its

expected size. The victim server is
unable to reassemble the packet and

crashes as a result.

6. Land Attack This happens when an attacker sends a
packet with identical source and

destination addresses. This confuses the

target server resulting in a crash.

7. Ping Flood This is the most common of the DDOS

attacks. Here the attacker sends repeated

ping commands to a server resulting in
flooding.

8. Nuke attack The destination server is flooded with

counterfeit ICMP packets that exploit the
vulnerabilities of Operating systems

causing the system to halt.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080325

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

264

of requests for real users since each and every request needs to
pass through an additional gateway. Moreover, separate
honeypot servers for each production server wastes resources
and is quite expensive. Also flooding attacks with thousands of
requests can clog these gateway servers thereby greatly
slowing down the access to production servers. This actually
ends up aiding the attacker by slowing down the service for
real users. Khattab proposed another solution to mitigate denial
of service attacks where honeypots and production servers are
frequently shuffled within the network [12]. Honeypots are
used to detect and prevent DoS attacks. This solution is
effective when most incoming requests are DoS requests. But if
majority of traffic is legitimate and only few requests are DoS
attacks, the solution is ineffective since a certain number of
servers function as honeypots irrespective of the traffic. This
again wastes resources and constant shuffling of honeypots and
production servers in fact slows down service for intended
users. Sridhar proposes the usage of honeypots to prevent
DDoS attacks for cloud infrastructure [13]. This solution
proposes a network of honeypots to monitor attacker activities
but doesn’t provide satisfactory solutions to mitigate flooding
attacks.

IV HONEYMESH- A NETWORK OF VIRTUALIZED
HONEYPOTS TO PREVENT DDOS ATTACKS

The proposed solution is to create a network of virtualized
honeypots within the existing infrastructure with minimal cost
and maintenance overheads. The existing security
infrastructure consists of services such as ftp, mail, web and
DNS that are offered to the outside world through a
demilitarized zone (DMZ) [14]. DMZ consists of two firewalls.
The first firewall is meant to protect these servers from external
malicious traffic while the second one is an internal firewall
meant to protect the organization’s internal network. The two
firewall approach provides multiple layers of protection to the
internal network. In addition to this, other security mechanisms
such as encryption, host based intrusion detection systems,
vulnerability scanners are used to bolster protection. Further,
the organization might choose to add further protection to its
local services using a virtual private network (VPN). These
mechanisms contribute towards securing the network.
However, effective detection and deflection of attacks together
with identification of attack sources is necessary. This is
accomplished using honeypots.

Unlike earlier solutions that used explicit servers as
honeypots to function as gateways and mimic a real server, the
new solution proposes to implement honeypots as virtual
machines (VM) that can be hosted on a few physical servers
[15]. Since VM’s share resources, multiple honeypots can be
hosted on a single server [16] as shown in Fig. 3.

 Honey VM’s have security mechanisms similar to the real
servers but some vulnerabilities are deliberately exposed so as
to lure the attacker into a trap [5][10][13]. These VM’s
continuously monitor the incoming traffic for potential
malicious activities and once an attack is discovered, all the
traffic from the attack source is routed to the honey VM
network. This ensures that malicious traffic doesn’t reach the
production servers. Also, each honeypot can be customized to
mimic specific servers. For example, one honey VM can
mimic a file server while another can imitate a web server. This
forms a network of virtual honeypot servers that constitutes a
honeypot farm.

Fig. 3 Honeymesh security infrastructure

 Additionally, each of these honeypots can have backup
VM’s that normally remain idle but can be activated the
moment an existing honey VM is compromised by an attacker.
This ensures that intrusion detection and deflection is not
halted when an existing honeypot is compromised by a DDoS
attack. This arrangement functions like a hybrid honeypot
network that mimics the functionalities of real servers similar
to high interaction honeypots while consuming fewer resources
just like low interaction honeypots [16].

 As opposed to the solution proposed by Das where separate
honeypot servers’ function as gateways to individual
production servers [11], the gateway honeypot can run as a
daemon process within the server itself. This honeypot
daemon, abbreviated as honey-d, works like a gateway and
performs initial authentication before passing on the
information to the actual server. Thus even if the honey farm
fails to detect an attack, honey daemon present within the
server provides an additional layer of security. This, together
with the hybrid network of honey VM’s functions like a mesh
of virtualized honeypots and ensures effective detection and
prevention of possible DDoS attacks.

A. Detection of an Attack

 Honeypot VM’s in the honey farm employ machine
learning algorithms to perform a behavioral analysis of
incoming traffic [18]. Since each production server receives
different types of requests, appropriate honey VM’s can be
tailored for the corresponding servers. For example, one honey
VM can analyze web server traffic while another can examine
file server requests. After analyzing a few thousand requests,
each honey VM generates a baseline model of expected traffic.
Incoming requests are compared against the baseline. If any
deviation is observed, further probing is necessary to confirm if
the request actually constitutes a DDoS attack.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080325

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

265

 Once the honeypot suspects a particular request based on
behavioral analysis, it needs to verify that the suspicious
request is actually a DDoS attack. For this, the honey VM then
employs a challenge-response model to gather more
information. This is accomplished by sending a set of challenge
queries to suspicious source [19]. Based on the responses
received, the honey VM decides whether further investigation
is necessary. If yes, more sophisticated challenges are sent to
the source. Based on the responses received and an intelligent
behavioral mechanism, the honey VM can conclude whether
the requests constitute a DDoS attack. This process is fully
automated and happens without human intervention thereby
guaranteeing excellent service for legitimate users.

 Similar mechanisms can be built into the honey daemons
that run on production servers. This ensures that even if the
honey farm misses out on a potential attack, it is reexamined by
honey-d’s running on respective servers. This provides an
additional level of authentication and intrusion detection.

B. Preventing Flooding Attacks

 Once an attack is discovered, the routing information in the
internal routers is modified so as to redirect all incoming traffic
from the attack source to the honey farm. Since malicious
traffic now flows to the honey farm, it ensures that the
production network is shielded from flooding attacks. Honey
VM’s in the farm keep the attacker engaged through a set of
challenge-response queries further slowing down the attacker
[19]. Also, once the attack source is confirmed, all incoming
traffic from that source is blocked at the firewall itself. This
mechanism mitigates the impact of flooding attacks to a great
extent.

C. Preventing Crashing Attacks

 Unlike flooding attacks that cause short term outages and
slowdown of services, crashing attacks manipulate
vulnerabilities in production servers causing data corruption,
theft of confidential information, server crashes and reboots
causing long term outages [4]. Thus, preventing such attacks
requires additional intelligence in honey VM’s and daemons.

 For this purpose, each VM in the honey farm is made to
mimic most services of real servers and implement most
security mechanisms provided for real servers. This lures the
attacker into believing that interactions are happening with real
servers [5][6][10][13]. The VM then sets a trap for the attacker
by deliberately exposing some flaws in its security mechanism
to fool the attacker into thinking that a DDoS attack has
succeeded. Meanwhile, the VM tracks the attack source
through a challenge-response mechanism and further requests
from the attack source are blocked by the firewall.

 Since a honey VM exposes some security flaws to the
attacker, there’s a chance that the VM can be compromised or
crash in worst case scenarios. The new design proposes to
maintain backup VM’s that can immediately take charge if the
current VM is compromised. By maintaining a pool of backup
VM’s, we can ensure continued intrusion detection and
prevention. Also since the compromised honeypot is a VM, it
can be easily restored with minimal cost [17].

 Fig. 4 illustrates a typical sequence of events that occur in
the honey mesh while detecting and preventing DDoS attacks.

Fig. 4 Honeymesh sequence flow

D. Advantages and Future Enhancements

The proposed solution of preventing DDoS attacks by

creating a mesh of honey VM’s and honey daemons has

several advantages over the existing solutions. These

advantages include:

 Since honeypots are implemented as virtual machines and

daemon processes rather than actual physical servers, this

solution is economical and has low maintenance costs

[17].

 Also, each honey VM is backed up by additional VM’s.

This ensures continuous intrusion detection and

prevention even if an existing VM is compromised.

 Restoring a compromised VM is very cheap and has

minimum downtime [17].

 The mesh of honey VM’s and daemons provides multiple

layers of security against DDoS attacks. Even if honey

VM’s in the honey farm miss out a possible attack, it can

be caught by honey-d’s running on individual servers.

This authentication provides enhanced security to the

production servers.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080325

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

266

 Since malicious traffic is routed to the honey farm, actual

production servers and network lines are protected from

flooding.

 Challenge response and behavioral analysis by honeypots

ensures effective intrusion detection and prevention of

crashing attacks [18-19].

Despite all the advantages mentioned, the proposed

solution has a few shortcomings which have been stated as

below:

 Although production servers and organization’s internal

network (LAN) are fully protected, there should be a

mechanism to protect the organization’s routers from

being flooded with malicious requests.

 Honeypot VM’s may be hosted on a network of servers to

create a more robust honey farm. Currently, all VM’s in

the honey farm are hosted on a single server to reduce

maintenance and recovery costs.

 Honeywalls where the honeypot logic is embedded within

the firewall itself can be implemented.

Although the solution has a few shortcomings as

mentioned above, honeymesh is very robust and provides

multiple levels of security checks and intrusion detection

mechanisms to effectively detect deflect and prevent possible

DDoS attacks. Also, the above shortcomings can be addressed

in future enhancements of the proposed solution.

V CONCLUSION

Distributed denial of service (DDoS) attacks are dangerous
and can potentially render the production site unusable either
by flooding the server network with thousands of malicious
requests or crashing the server by exploiting the vulnerabilities
in its software. Several solutions have been proposed to deal
with DDoS attacks. However, these solutions are either
expensive due to usage of multiple physical servers for
honeypots or do not successfully address the issue of flooding
type of DDoS attacks. The new solution proposes to create a
virtual network or mesh of honeypot VM’s and honey daemon
processes to provide multiple levels of security checks and
intrusion detection using behavioral analysis and challenge-
response models. Also, malicious traffic is routed to honey
farm thereby protecting the production server and internal
networks from both crashing and flooding type of DDoS
attacks. Honeymesh when integrated with existing security
infrastructure such as firewalls, encryption, authentication
services, virtual private network (VPN) etc. can protect the
server network from any kind of DDoS attacks. As already
stated, the solution does have a few shortcomings which can be
addressed in future enhancements to this solution.

REFERENCES

[1] Christos Douligeris and Aikaterini Mitrokotsa, "DDoS attacks and
defense mechanisms: classification and state-of-the-art", Computer
Networks: The Int. Journal of Computer and Telecommunications
Networking, vol. 44, no. 5, Apr. 2004, pp. 643–666.

[2] Stephen M. Specht and Ruby B. Lee, "Distributed Denial of Service:
Taxonomies of Attacks, Tools and Countermeasures”, Proceedings of
the 17th International Conference on Parallel and Distributed Computing
Systems, September 2004, pp. 543-550.

[3] J Mirkovic, and P Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms”, ACM SIGCOMM Comput. Commun. Rev. 34,
2004, pp. 39–53.

[4] S.T. Zargar, J. Joshi, and D. Tipper, “ A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks”, IEEE
Communications Surveys & Tutorials, January 2013, pp. 2046–2069,

[5] R.C. Joshi and A. Sardana, "Honeypots: A New Paradigm to
Information Security", Science Publishers,2011

[6] L. Spitzner, "Honeypots: Tracking Hackers", Addison-Wesley
Proffesional, 2002.

[7] K. Cabaj and P Gawkowski, “HoneyPot systems in practice”, Przeglad
Elektrotechniczny, Sigma NOT 91(2), 2015, pp. 63–67.

[8] Matthew L. Bringer, Christopher A. Chelmecki, and Hiroshi Fujinoki,
“A Survey: Recent Advances and Future Trends in Honeypot Research”,
I. J. Computer Network and Information Security, 2012, pp. 63-75.

[9] S. M. Bellovin, “ICMP Traceback Messages Internet Draft: draft-
bellovin-itrace-00.txt”, Mar. 2000.

[10] Natalie Weiler, “ Honeypots for distributed denial-of-service attacks”,
Proceedings of Eleventh IEEE International Worksops on Enabling
Technologies, 2002.

[11] Vinu V. Das, “Honeypot Scheme for Distributed Denial-of-Service”,
Proceedings of the 2009 International Conference on Advanced
Computer Control, January 2009, pp. 497-501.

[12] Sherif M. Khattab, Chatree Sangpachatanaruk, Daniel Moss, Rami
Melhem and Taieb Znati, “Roaming Honeypots for Mitigating Service-
Level Denial-of-Service Attacks”, Proceedings of the International
Conference on Distributed Systems, March 2004, pp. 328–337.

[13] Kumar Shridhar and Nikhil Gautam, “A Prevention of DDos Attacks in
Cloud Using Honeypot “, International Journal of Science and Research,
Volume 3 Issue 11, November 2014, pp. 2378-2383.

[14] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The
science dmz:: A network design pattern for data-intensive science.”,
Proceedings of IEEE/ACM Annual SuperComputing Conference
(SC13), Denver CO, USA, 2013.

[15] Xuxian Jiang and Xinyuan Wang, "Out-of-theBox Monitoring of VM-
Based High-Interaction Honeypots", Proceedings of the International
Conference on Recent Advances in Intrusion Detection, September
2007, pp. 198-218.

[16] Yu Adachi and Yoshihiro Oyama, “Malware Analysis System using
Process-Level Virtualization”, Proceedings of IEEE Symposium on
Computers and Communications, July 2009, pp. 550-556.

[17] James Smith and Ravi Nair, "The Architecture of Virtual Machines",
IEEE Computer Society, 2005, pp. 32-38.

[18] YiZhang, QiangLiu and Guofeng Zhao, “A Real-Time DDoS Attack
Detection and Prevention System Based on per-IP Traffic Behavioral
Analysis”, IEEE 3rd International Conference on Computer Science and
Information Technology (ICCSIT ’10), April 2010, pp. 163–167.

[19] Aamir, M. and Arif, M., "Study and performance evaluation on recent
DDoS trends of attack & defense", International Journal of Information
Technology and Computer Science, 2013, pp. 54–65.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS080325

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 08, August-2015

267

